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This remark is concerned with an existence theorem of the generalized solution of 
the Canchy problem in the large 

u1+(u2/2), =g(x)u2 

u(O,x)=u0 (x) t;::::O, -oo<x<+oo, 

where g(x) is any continuously differentiable function with compact support and u0(x) is 
any bounded measurable function. 

I. Introduction 

213 

Since J.M. Burgers derived a mathematical model for the theory of turbulence 

m 1940 1>, many authors have investigated the following type of equations. 

( 1 ) ou+f(t, x, u) + (t ) _ O g 'x, u - . 
ot ox 

Concerning to the generalised solution for the Cauchy problem ( 1), (3), for example, 

O.A. Oleinik2> proved the existence in the large and some kind of uniqueness under 

the following assumptions. 

a) fuu"?::.o>O where o is a constant, 

b) max/g(t, x, u) I ~ 8 h(v) such that 
t,x 

lul,5;v 

Now we will indicate a possibility of extending this result in the case where b) is not 

satisfied. We are considering the following equation 

OU O U2 
2 -+-- = g(x)u 

ot ox 2 
( 2) 

with the Cauchy data: 

( 3) u(x, 0) = uo(x) . 
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We suppose the following conditions. 

( 4) g(x) is a continuously differentiable function with 

compact support in - oo <x< + oo . 

( 5 ) uo(x) is a bounded measurable function. 

Theorem. Cauchy problem (2), (3) has a generalized solution m Ost<+= 

which satisfies Oleinik's uniqueness condition. 

2. Cauchy Problem for a Simple Discontinuous Initial Data 

Let u_(x) be a function with continuous bounded derivative on asxsO, and 

u+(x) a function with continuous bounded derivative on Osxsb. 

We call u0 (x) defined below a simple discontinuous initial data. 

( 6) { 
u_ (x) 

u0(x) = 
U+ (x) 

asx<O 

Osxsb. 

Lemma I. The Cauchy problem (2), (6) has a generalized solution on some 

domain D, which is defined below. 

Proof. The local existence of the solution is shown by the method of charac­

teristics in 3). Here we only have to make clear the domain D where the generalized 

solution is defined by this method. 

Consider the system of ordinary differential equations. 

( 7) 
dx 
-=U 
dt ' 

du ( ) 2 -=gxu. 
dt 

Solving these equations by the following initial value, where, runs in [a, O] and 

[O, b], 

( 8) x(O, f) =,, 
we have the solution of the form 

( 9) 

If u_ (0) <u+ (0) we supplement another initial data: 

(10) x(O, c) = 0, u(O, c) = u_(0)+c(u+(0)-u_(0)) 

and solving (7), (10), we have 
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( 11) l 
c•ct,e) 1~ Jo e-

0
g(TJ)d1Jd( = u(O, e)t 

l•c,,e) 

u(t, e) = u(O, e)e o g(1J)d1J. 

We will see that these functions {u(t, ,), x(t, ,)} , {u(t, e), x(t, e)} generate a 

generalized solution. First we determine t1 the value for which the following 

inequality is true. 

( 12) I%(/,~) 

8x(t, ,) = e ~ g(1J)d1J (l -tg(,)u (,) +/uo)>o 
ae O ae 

Remark. ax(t, e) = (u+(O)-u_(O))te\>(1J)d1J>O for all t 
ae 

by the definition of x( t, e). 

Denoting x_(t, ,), u_(t, ,) the solutions of (7), (8) for aseso, and X+(t, ,), 

u+(t, ,) for Os,<b, we consider two sets of functions {x_(t, ,), u_(t, ,)} 

{x+(t, e), u+(t, ,;)} on the sets 

D_ = {(t, x): Ostst1, x_(t, a)sxsx_(t, O)} 

D+ = {(t, x): Ostst1, X+(t, 0) sxsx+(t, b)}' 

respectively and if u_(O)<u+(O), we also consider the functions {u(t, e), x(t, e)} 

on D0 {(t, x): Ost<+oo, x(t, O)<x<x(t, I)}. By (12) we know that these sets 

of functions define local genuine solutions of (2) u_(t, x), u+(t, x) and u(t, e) on 

D_, D+ and D0 respectively. Now we proceed to discuss 2 cases. 

i) u_(O)<u+(O). 

We can construct generalized solution by defining 

l 
u_(t, x) for D 

u(t, x) = u(t, e) for D0 

u+(t, x) for D+ 

and so we have D={OststJ n {D_UD0 UD+} 

In this case, D_ and D+ have a common domain D 1• We have to determine 

a shock (line x=x* (t) in this common domain D 1 by the following differential 

equation. 

(13) dx* = ___!_{u_(t, x*)+u, (t, x*)}, x*(O) = 0. 
dt 2 
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Taking u+(t, x) in the right hand side of x*(t) and u_(t, x) in the left hand side 

of x*(t) in D 1, we obtain a generalized solution in D= {(t, x): Ost st,, x_(t, a) 

sxsx+(t, b)} which satisfies the Rankine-Hugoniot condition. We can see easily 

in both cases, these constructed generalized solutions satisfy Oleinik's uniqueness 

d. . .f h a /B au;ax au;ax con 1tlon, 1 we note t at u x = - - or - - . a, a, 8c 8c 

3. Local Solution for Pieceweise Constant Initial Data 

Now we consider the following piecewise constant function derived from our 

initial data u0 (x): 

(14) I
, __!__ fC/,tt)h Uo(,)d, 

h Jkh 

0 

where 

for 

on khsx<(k+l)h, 

h>O, k=O, ±1, ... and lxl s[+J, 

Taking this function as initial data for (2), we have 

Lemma 2. There exists the generalized solution of (2), (14) in OstSti, where 

t 1 is independent of h(O<hsh0 ) and depends only on sup I u0 (x) 1-
_oo<x<+oo 

Proof. We note that I uh(O, x) IS sup I u0 (x) I= u0 • First following S. K. 
-OO<X<+oo 

Godunov4> and J. Glimm5 >, using lemma I on each discontinuity x=kh, we can 

construct the generalized solution uh(t, x) of (2) in some interval Ostst*. Here 

we note that each local genuine solution of (2) uc")(t, x) initiated on t=O, khsx< 

(k+l)hisdefinedon {(t,x): Ostst1,xc"l(t,kh)sx<xc"l(t, (k+l)h)} and bounded­

continuous with its derivative, because t 1 is defined by (12) i.e. 

( 15) 

where g= max lg(x) 1-
- oo<x<oo 

If it happens that t* <ti, we must continue the generalized solution uh(t, x) beyond 

t=t*, where the neighboruing decompositions of discontinuities influence each other 

at t=t*, x=x*. By virtue of the smoothness of each uC"l(t, x),.~o,±i,--· on t=t*, 

uh(t, x) is piecewise bounded continuous with its derivative, therefore using once 

more lemma I on each discontinuity point we have a generalized solution of (2), 

(14) on Ostst**(>t*), where t** is limited by new influence at (t**, x**) of 

neighbouring decompositions of discontinuities on t=t*. 

Repeating use of lemma I we can construct the generalized solution uh(t, x) 
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of(2) (14) on 0stst1 because the local genuine solutions uch)(t, x) are determined 

for 0ststu and the number of the influence points of the neighbouring decom­

positions is finite by (13) with the boundedness of uCh)(t, x) and the fact uC")(t, x) 

=0 for large I k 1- q.e.d. 

4. Approximating Solution 

The continuation of the generalized solution beyond t=t1 has some difficulty 

which comes from the many-valuedness of the function uch)(t, x) which is defined by 

the solution of the characteristics and for OS t St 1 has also been local genuine 

solution of (2), therefore we use a slight modification of the method of S. K. 

Goduno0>, i.e. we change the value on t=t 1 of the generalized solution u"(t, x) 

obtained for 0stst1 to the below-defined value u"(t1+0, x), which is considered 

as the initial data of the equation (2) for r;;:::_ t1• 

Definition: 

{u"(t, x)} 0<h<h0 is called an approximating solution on 0sts T (VT>0) 

of the equation (2) with the initial data (3), if it satisfies the following: 

i) There exist ti, ···, tn-i such that t0 =0<t1 <t2 < ··• <tn-i <tn= T and on each 

region {t;<t<t;+1, -=<x<+=}i=0, ···, n-1, u"(t, x) is the piecewise con­

tinuous and bounded generalized solution of (2) with some initial data u"(t;+ 

0, x);=o,1, ... n-i that satisfy the following: 

ii) for i=0, 1, •··, n-1, v X>0 

~ I u"(t;-0, x)-u"(t;+0, x) I dxsc•h, 
l•l~X 

where c is a constant independent of h, may depend on X and 

u"(t0 -0, x) = u0 (x) , u"(t0+0, x) = u"(0, x) . 

Lemm.a 3. If we have the approximating solution of (2), (3) {u"(t, x)} that is 

uniformly bounded on 0sts T, compact in each space L1(0sts T, lxl sX) 
VX>0 and uniformly satisfies the Oleinik condition on each region t;<t<ti+1 

i=0, 1, •··, n-1, then we can have the generalized solution of (2), (3) as the a.e. 

limit (h-0) of u"(t, x). 

Proof. By the definition on each region t;<t<t;+i, u"(t, x) is the generalized 

solution i.e. it fulfills for arbitrary smooth finite function ((!(t, x) 
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+ ) [uh(t;+O, x)<p(t., x)-uh(ti+1-0, x)<p(ti+u x)]dx = 0. 
t-t;ort;+ 1 

Summimg up these equalities i=O, 1, ···, n-1 gives 

(16) ff [uha<p + (uh)2 a<p +g• (uh)2•<p]dtdx+ 
JJ at 2 ax 

O<t<'l' 

+ ~ ~ (uh(t;+O, x)-u(t;-0, x))<p(t;, x)dx+ 
t=t; 

+ ! u0 (x) <p(O, x)dx- ! uh( T, x)<p( T, x)dx = 0 . 
,~o t='l' 

By virtue of the assumption of lemma 3 we can choose a subsequence 

{uhj(t, x)}j~i.z··· converging a.e. to some bounded measurable function u(t, x), and 

so we pass to the limit h;--+O in (16), using the definition (ii), then we have the 

following identity for arbitrary smooth function <p(t, x) vanishing on large !xi 
and t=T. 

Furthermore we see that all sequences {uh(t, x)} converge to the same limit 

u(t, x) that satisfies the Oleinik condition on each region t;<t<ti+1 i=O, I, 2, ···, 

n-1, because under this condition the uniqueness of the generalized solution is 

assured. q.e.d. 

Now for the existence in the large of the generalized solution of (2), (3) it is 

sufficient to see that there is an approximating solution {uh(t, x)} 0<h<h0 of (2), 

(3) satisfying the assumptions of lemma 3. 

5. The Existence and Convergence of an Approximating solution 

Lemma 4. For Os.ts.VT there exists the approximating solution {uh(t, x)} O<h 

<ho of (2), (3) that also satisfies the following: 

(17) luh(t, x)I s.u
0
e[-lg(1J)ld1J = M 

where u0 = sup I u0 (x) I 
-00<%<00 

(18) uh(t, x1)-uh(t, x2) < _c_ 
X1-X2 t-t; 

for t;<t<t;+1 i=O, I, ... , n-l, 

where c is independent of h. 
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Proof. On the strip 0st<t1 uh(t, x), constructed in lemma 2 is the generalized 

solution of (2) with the initial uh(0, x) defined by (14), and by (9) or (11) has 

the form: 

uh(t, x) = uh(t, e) = uh(0, e) e 1:g(r/)d7J 

(19) where ~: e -\;c(1J)d71 d( = uh(0, e)t or 

uh(t x) - uh(t e) - uh(0 e) e rx g(71)d71 
, - ' - ' lkh ' 

(20) where rs e -l!hc(7J)d7J d( = uh(0, e )t, 
Jkh 

therefore we have the estimate on 0st<t1 

(21) I uh(t, x) IS u) \:lc(7/) ld7JI 

where e=e(t, x) is defined by (19) or (20). 

We turn to t 1stst2 where t2 is defined below. We define two piecewise constant 

functions uh(t1, x), uh(t 1+0, x) as follows: 

(22) for xEI,., 

where h>0, k=0, ±1, ±2, ···, I,.=[kh, (k+l)h) and then 

i) on all intervals I,. where uh(tu x)>0 

ii) on all intervals I,. where uh(tu x) <0 

(23.2) uh(t1 +o, x) = max {min {uh(t 1-0, (k+ I )h), O}, uh(tu x)} , 

iii) on all intervals I,. where uh(t1, x) =0 

(23.3) uh(t 1+0, x) = 0. 

By these definitions we have 

or 

(24.2) 

Also by the definition (23) and the Oleinik condition for 0<t<tu especially for 

t=t1-0, that is, 

(25) uh(ti-0, X1)-0(t1-0, X2)<_£_, 

X1-X2 tl 
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we have the following for k=O, ±1, •·· 

(26) f I uh(t1+0, x)-uh(t1-0, x) I dx<J_•_!__h2
• 

J l!, 2 tl 

Thus on these bases by using lemma 2 we can construct the generalized solution 

uh(t, x) for t1<t<t2, where t2 is defined analogous as t 1 : 

(27) t -t - _l_ M - u e(:=\g(71)\d1J 
2 1-gM' - 0 l= 

Furthermore we can estimate uh(t, x) for t1<t<t2 analogously as (21) by the explicit 

solution of the characteristics equation. 

Either 

or 

~ uh(ti-0, kh) e 1:h I g(71) I d71 ~ Uoe 1;: \g(71) \d7J e 1:h I g(71) \d71 

~u
0
el;o\g(7J)\d7J with f

0
<kh~,<x, 

. l(k+l)h 1· 
2-uoe- to \g(71)ld71e- <k+1)h\g(71)\d71 

= -u
0
e -l:o\g(7J) \d7J with x>e'2 (k+I)h>,

0 

or uh(t, x) =0 holds, 

where, and , 0 are defined by (19) or (20) 

(28) !; e-l;g(7J)d7J d( = uh(ti+o, ,)(t-ti), 

(29.l) 

(29.2) 

Thus we have 

(30) 

where e' 0 is defined by (28), (29). 

Moreover the same argument as the last part of 2. gives the Oleinik condition for 

t1<t~t2: 
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(31) uh(t, Xi)-uh(t, X2)<_c_, 
X 1-X2 t-f 1 

where c is independent of h and depends only on M. 

Repeating the same argument for t'z_t2 we have t 1<t2<t3 < .. •<tn=T, which are 

defined by 

(32) i=O, 1, ···, n-1 

(= \g(17)\d17 
where M=u0 el-= , and on each t,<t<t,+i i=O, 1, •··, n-1, uh(t, x) is the 

desired generalized solution satisfying ( 1 7), ( 18). 

Lemma 5. For VX>O, any small a>O, t,, 1>Vt", Vf'2t,+a, i=O, 1, ... , n-1 

we have 

(33) 

where c is a constant independent of h and dependent on X and a. 

Proof. uh(t, x) has uniformly locally bounded variation on t=const. $ [t;, t,+a] 

with respect to x by virtue of (18) by the same argument of lemma 3 in 2). 

We see (33) as follows; 

We note that uh(t, x) is piecewise continuous with its derivative and its dis­

continuous line x=xv(t) P=O, ±1, ... , ±P(h) is the solution of (13): 

dx,, = _!_ {uh(t, x,,-0) +uh(t, xv+O)}, therefore 
dt 2 

(34) l
dx.,_I < M 
dt - ' 

where M is in (27), therefore, for a fixed constant c1>M and L1X=c1(t"-t'), 

t"> t' all discontinuous lines of uh(t, x) cross over the straight line segment joining 

(t", x), (t', x+JX) from the left side to the right side of the latter. 

[) uh(t", x)-uh(t', x) I dxs 

s [) uh(t", x)-uh(t', x+JX) I dx+ r) uh(t', x+JX)-uh(t', x) I dx 

s;fx c1(t"-t')\ 8u ldx+ ~fYpluh(t, x,,-0)-uh(t, xv+O)ldx+ Lx 8( P Jxp 

+ rx (u(t', x+JX)-u(t', x))dx+c2X JX, 
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where :~ is the derivative of uh(t, x) along the line joining (t", x), (t', x+JX), 

x=x11 (t) is the discontinuous line of uh(t, x), X"=x,,(t'), Y11 =x"(t") +JX, ( I Y"-X" I 
s2 JX) and c is a constant appearing in (18), 

where C2=C1 max I~~ I 2x, in which maximum is taken in t,+aststi+1, x=l=xv 

and exists by the bounded differentiability of uch)(t, x) except t=t,+O 

Now we estimate the last term by dividing the interval [t', t"] with the width h, 

[t"-t] 
t' = t1<t2 < ... <t -h- +12':t". Considering uh(t, x,,±0) in tist<tjtl gives 

luh(t, x,,-0)-uh(ti, ,-)1 sclt-til 

I uh(t, x11 +0)-uh(ti, ,+) I :Sc It-ti I , 
where 

(35) 

and 

Therefore 

where 

:S ~ {!I uh(t, x11 -0)-uh(ti, ,-) I dx+ 

+!I uh(ti, ,-)-uh(ti, ,+) I dx+ ! I uh(ti, ,+)-uh(t, x,,+O) I dx} 

s ~ 2c(t-ti) {c1(ti+i_ti) +x11(ti+i)-x
11
(ti)} + 

J 

+ ~ {c1(ti+
1-ti)+x,,(ti+1)-x

11
(ti)}. Variation uh(ti, x) 

J XE [xp(tJ)-E1, Xp(tJ) + E2] 
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At last we have 

~ ~ {c(t;+i_t;)2+ (t;+i_t;) I xPW+i)-xi>(t;) I+ 
P,i 

+ Variation uh(t;, x) (c(t;+i_t;) + I xP(ti+1)-xP(t;) I)}~ 

~c(t"-t')+ ~ hc(t"-t')+ 
p 

+ ~ Variation uh(t;, x) •c(t;+i_ti) ~c(t" -t'), 
j [-X,X+t>Xl 

223 

where the summation for p is the same order as f, where c is independent of h 

and dependent only on M, X and a. q.e.d. 

Lemma 4, 5 give the properties of uh(t, x) assumed in lemma 3 by the same 

argument as in 2), therefore we can conclude as the foregoing theorem. 
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