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The chemical reaction system to be taken up here is an autocatalytic reaction which 
converts an initial reactant A to a reaction product R according to A+ R~R + R or 
A~R. 

Based on the one-dimensional diffusion model cif fluid mixing which takes place
only in the, direction of axial flow, the effects of the axial diffusion on the maximum 
conversion and the optimum temperature distribution are investigated. 

The numerical results are obtained for a system in which the activation energy of 
the reverse reaction is twice that of the forward reaction, and it is recognized that the 
optimum mixing condition to the conversion exists for some operating conditions. 

Introduction 

225 

Examples of autocatalytic reactions in which one or more of the products 

act catalytically are found generally in the acidcatalyzed hydrolysis of various 

esters and similar compounds and in various biochemical processes such as waste 

treatment. The rate of reaction is influenced by the concentration of some of 

the products as well as that of some of the reactants. Therefore, the rate of an 

autocatalytic reaction in a tubular flow reactor is influenced by two important 

factors, i.e. the initial concentration of the autocatalytic agent and the temperature 

at which the reaction is carried out. 

In this paper, how the optimum temperature distribution to maximize the con

version of an autocata-lytic reaction is affected by Pe which expresses the degree 

of fluid mixing has been analyzed by means of a one-dimensional model. 

L.T. Fan et al. 1> have investigated the same autocatalytic reaction i.e. how 

the conversion and the optimum temperature distribution are affected by the 

interaction of product recycle, supposing that the flow in a tubular reactor is piston 

flow. 

* Department of Sanitary Engineering 
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Formulation of Problem 

We shall consider an autocatalytic reaction of the following type which 

proceeds in a tubular reactor; 

( 1 ) 

The equation of the steady-state differential material balance for reactant A in 

a differential section dz of the reactor is 

( 2 ) 

where CA is molar concentration of reactant A, Eis disperison or axial dispersion 

coefficient, L denotes the length of the tubular reactor, u is fluid velocity, and RA 

is the reaction rate of reactant A. 

The kinetic equation of the autocatalytic reaction given by Equation ( 1) can 

be written, with respect to the production of reactant A, as follows, 

( 3 ) 

where a, r, and s are the orders of reaction with respect to individual reactants and 

products, and k1 and k2 are the temperature dependent reaction rate constants 

given by the Arrhenius law of 

k1 =k10 exp (-E1/RT) 

k2 =k20 exp ( - E2 / RT) 

( 4) 

( 5) 

In the above equations k10 and k20 are frequency factors, and E 1 and E 2 are 

activation energies. At any section of reactor we have 

Co= C Ao+ C Ro =CA+ CR ( 6) 

Substituting this equation into Equation (3), it becomes, 

( 7) 

Substituting equation (4) and (5) into equation (7), and inserting the resulting 

equation in turn, into equation (2), the following equation can be obtained, 
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Suitable boundary conditions for the type of continuous fl.ow reactor con

sidered above have been given by Dankwerts as follows, 

( 9) 

E(dCA) _ =0 
dz z=L 

(10) 

In terms of the fractional molar concentration of 

we can rewrite equations (8), (9) and (10), and ifwe assume 

Equations (8), (9) and (lO) can be replaced by 

(ll) 

(12) 

E(dXA) _ =0 
dz z=L 

( 13) 

The following dimensionless quantities have been introduced so as to rewrite 

equations ( 11), ( 12) and ( 13) in dimensionless forms: 

Dimensionless distance TJ=z/L 

Peclet number Pe=uL/E 

Damkohler number DA=(Lk10/u)C0 

Dimensionless constants K 1 =(DA/ Pe) exp (-E1/RT) 

(14) 

(15) 

(16) 

(17) 

(18) 

where an axial diffusion is characterized by the Peclet number Pe, and chemical 

reaction processes by a dimensionless Damkohler number Da, to be defined by 

equations (15), (16) respectively. 

If we use dimensionless quantities defined above, equations (11), (12) and 

(13) can be written as follows. 
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Process equation; 

_l_d
2

XA __ l_dXA=K(X )a(l-X )"-K(l-X )s 
Pe2 dTJ Pe d7J ' A A 2 A 

Boundary conditions; 

_l_ dXA=(XA)o-XAo 
Pe dTJ 

_l_ dXA=O 
Pe dTJ 

(19) 

(20) 

(21) 

Since it is desirable to maximize the yield of product R or equivalently to 

minimize the exit concentration of the reactant A, (X A),, the performance index 

can be defined as follows: 

Solution by Clasical Variational Method~>. 3 >. 4 1 

Defining the following variable, 

~= exp (Pe7J) 

Process equation ( 19) becomes, 

and the boundary conditions are, 

(22) 

(23) 

(24) 

(25) 

(26) 

In principle, the control variable is the fluid temperature in a tubular reactor, 

however, it is easy to solve the problem in which K, and K2 , themselves containing 

the variable of T, are regarded as the control variables. 

The following relations are held between K, and K2 , 

n=E2/E, 

a= (k20 /k10 )(Pe/D A)n-, 

(27) 

(28) 

(29) 
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The optimum temperature can be uniquely determined from the optimum 

value of K1 and K2 • 

In order to use the variational method, the performance index (XA) 1 should 

be rewritten as the explicit function of K 1 and K2 • 

Integrating equation (24) with , from, to ,i, it becomes, 

(30) 

Taking account of the boundary condition of equation (26), the above relation 

becomes as follows, 

(3 l) 

and moreover, from the boundary condition of equation (25), equation (31) 

becomes 

(32) 

Integrating equation (31) with , again, it becomes 

(33) 

then, being , =I, the above equation is 

From equations (25) and (32), the fractional molar concentration at the outlet 

of reactor, (XA) 1 can be expressed by the following relation, 

(35) 

The problem is to obtain K1 and K 2 to minimize the value of (XA) 1 represent

ed by equation (35), and that is, 

(36) 

where, 

and ,1 is Lagrange multiplier. 
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Euler's equation to equations (36) and (37) is obtained as follows, 

(38) 

(39) 

From equations (37) and (38), it is obvious to be 

(40) 

By solving the above Euler's equation the optimum K 1 and K
2 

can be obtained 

as follows. 
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Fig. I. Maximum conversion vs. Pe; zeroth-order i.e. s=O, a=r=l. 
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(41) 

(42) 

Substituting equations ( 41) and ( 42) into equation ( 19), the following equation 

is obtained, 

Solving the above equation with the boundary conditions of equations (20) 

and (2 I), the fractional molar concentration at any point in the reactor under the 

optimum condition can be obtained. 

C 
X 

XAo=0.92 : S=O 

0.0 0.5 1.0 
'?-

Fig. 2. Optimal concentration profile s=O, a=r= I; X.do=0.92. 
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In this paper, only the case of n=2 is considered. 

Defining the following new parameter µ, 

(44) 

Equation ( 41) becomes 

K =_!!:_ (X )a (1-X )r-s 
' 2Pe A , A 

(45) 

and equation (43) can be shown by 

I d
2
XA_ I dXA_ I (XA)2a(I-XA)c2r-s) 

Pe2 dr/ Pe dr; 4a . 
(46) 

Solving the above equation under the boundary condition of equations (20) 
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Fig. 3. Optimal temperature profile s=O, a=r=l; XA=0.92. 
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and (21), the optimal conversion profile is obtained, but at first, -let us consider 

the extreme cases of Pe=O (i.e. Perfect mixing flow) and and P= oo (i.e. Piston 

flow). 

i) The case for Pe=O 

Solving equation ( 46) under the boundary condition of equation (20) it is, 

(47) 

and by taking account of equation (21) the following relation can be obtained. 

Pe=O, that is, 

C 
X 

X -(X ') = f' .!!_ (X )2a (I -X )czr-si >dr; 
Ao A,, Jo4· A A 
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Fig. 4. Optimal concentration profile s=O, a=r= 1; X 40 =0.74. 

(48) 
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and then (XA)i is given by 

ii) The case for Pe= oo 

At the condition of Pe==, equation (46) becomes 

(A) The case for chemical reaction of a=r= l, and s=O orders 

\ soo 
0 
L 
a: 
E 

{!?. 

500 
Pe=50 
Pe=I0 

L---- Pe= 8 

'-----Pe=4 
'------Pe=2 

L--------Pe=I 

0.5 

Fig. 5. Optimal temperature profile s=O, a=r= I; X0 =0.74. 

(49) 

(50) 

(51) 
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(B) a=r= I, s=2 orders 

Then, the optimal conversion at 7J = I is obtained by trial and error. 

Numerical· Calculations 

The value of parameters used to solve equation ( 46) are: 

E 1 = I 0000.0 ( cal/g-mol) 

E 2 =20000.0 (cal/g-mol) 
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Fig. 6. Maximum conv.vs. Pe, s=2, a=r=I. 

(53) 
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k10 = 10.0 (cm3/sec•g-mol) 

k20 =500.0 (g-mol/cm3 •sec) 

L =350.0 (cm); u=l.0 (cm/sec) 

µ =70.0 

Solving equation ( 46) with equations (20) and (21) by using the above values, 

the optimum value of XA can be calculated, and the optimum value of K1 can be 

obtained from this X A by using equation (45). Substituting the values of K1 and 

K 2 into equations (17) and (18), respectively, the optimum temperature in a 

reactor is easily obtained. 

Discussion of Results 

The results of the numerical computation for various values of Pe in the case 

C 
X 
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Fig. 7. Optimal concentration profile, s=2, a=r=l; X,10 =0.9. 
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of µ= (k10/k20) (L/u)k10C0 = 70.0 are plotted in Figs. 1, 2, 3, 4, 5, 6, 7, and 8. 

Now, Figs. 1, 2, 3, 4, and 5 show the results in the case of the zeroth-order with 

respect to the reversible reaction, i.e. s=0 and the first-order to the forward reaction, 

i.e. a=r=l. 

The cases of second-order to the reversible reaction, i.e. s=2 and a=r= 1 to the 

forward are plotted in Figs. 6, 7, and 8. 

Fig. 1 shows how the maximum conversion is affected by the dimensionless 

Pecret number. The parameter in Fig. I is the concentration of the reactant A 

in the feed X Ao • 

The following statements can be made about Fig. 1. 

( i) In the case of the large value of XA0 (XA0 >0.83), there exists the optimum 

Pe to maximize the conversion at the outlet. 
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Fig. 8. Optimal temperature profile s=2, a =r= I; X,10=0.9. 
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(ii) For relatively low XA0 (XA0 <0.8), the conversion at the outlet is increased, 

if Pe is increased. 

(iii) Particularly noticeable is the fact that there is an optimum XAo to maximize 

the conversion at the outlet for the constant Pe. Figs. 2 and 3 show the relation 

of the fractional molar concentration X A vs r; with Pe as a parameter and the 

optimum temperature distribution in the case of XA0 =0.92. 

Figs. 4 and 5 give the relation of X A vs r; and the optimum temperature 

distribution with Pe as a parameter in the case of XA0 =0.74. Noticeable facts 

to be drawn from the Figs. 3 and 5 are that there are extremum points of the 

optimum temperature distributions in the tubular reactor and that the loca

tion of the extremum point moves to the outlet of the reactor, when the flow 

in the reactor nears piston flow. 

Figs. 6 answers the question as to how Pe affects the maximum conversion with 

XAo as a parameter in the case of s=2, and a=r= 1. The curves displayed in this 

figure show that for any value of X Ao the maximum conversion increases steadily 

with the increase of Pe. Furthermore, with Pe considered as a constant the maxi

mum conversion is monotonously increased as XAo becomes larger. 

Figs. 7 and 8 show the relation of XA vs r; and the optimum temperature 

distribution with Pe as a parameter at the case of XA0 =0.9. These Figs. denote 

that there are not any extremum points of the optimum temperature distribution, 

and it decreases monotonously from the entrance to the outlet of the tubular 

reactor. 

Conclusions 

Methods and results were presented of the effect of axial diffusion on the 

optimum yield and the optimum temperature distribution of a tubular reactor 

with an autocatalytic reactions. 

u 

a, r, s 

Nomenclatares 

Back mixing coefficient (cm2/sec) 

molar concentrations of reactant A & product R (g-mol/cm3
) 

length of tubular reactor (cm) 

fluid linear velocity (cm/sec) 

orders of reaction 

reaction rate of reactant A (g-mol/cm3 •sec) 

frequency factors 

activation energies ( cal/g-mol) 

gas constant (cal/g-mol°K) 
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reaction temperature (°K) 

fractional molar concentration defined by X=CA(CAo (-) 

reaction rate constants defined by k1 =k10 exp ( -E1/RT) & k2 =k20 exp 

(-E2/RT) 

Peclet number defined by Pe=uL/E (-) 

Damkohler number defined by DA=(Lk,0/u)CAo (-) 

dimensionless constant defined by K 1 =(DA/Pe) exp ( -E1/RT) ( - ) 

dimensionless constant defined by K 2 = (DA/Pe) (k20/k10 ) exp ( -E2/RT) 

(-) 

z distance from tubular reactor inlet (cm) 

7J dimensionless distance defined by 7J =z/L ( - ) 

,; variable defined by ,; =exp (Pe7J) ( - ) 

n parameter defined by n=E2/E1 (-) 

a parameter defined by a= (k20/k10) (Pe/D A)"- 1 
( - ) 

A Lagrange multiplier ( - ) 

µ parameter defined by µ= (k10/ k20 ) (L/u)k10 C0 
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