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Axially Symmetric Stagnation-Point Flow of a Rarefied Gas 

By 

Kyoji YAMAMOTO* 

(Received March 27, 1967) 

This paper treats theoretically the axially symmetric stagnation-point flow of a 
rarefied gas. Representative Mach number Ms defined in the continuum flow region is 
assumed to be small and thus the analysis is based on the linearized version of the B-G-K 
equation. A method of solution similar to that used previously in the analysis of the 
two dimensional stagnation-point flow is applied in which the continuum flow and the 
Knudsen layer flow are considered successively. Actual analysis has been put forward 
to the second approximation correct to the order of v M 8 • The results of the distri­
butions of flow velocity, density and temperature in the Knudsen layer as well as the 
shear stress on the wall are discussed in detail. 

1. Introduction 

In recent years, there have been published many studies on rarefied gas flows 

which are based on the so-called B-G-K model'> of the Boltzmann equation in the 

kinetic theory. In particular, when the flow speed is much smaller than the 

mean thermal speed of the gas molecule, the B-G-K equation can be linearized 

and it becomes possible to treat some simple flows with mathematical rigor. Pre­

vious studies in this direction deal with the shear flow along an infinite plane walJ2>, 

the temperature Knudsen layer adjacent to a plane wall3 >, Couette flow4 >, Poi­

seuille flow5 >, Rayleigh problem6 •7 >, plane shock wave8> and so on. These investiga­

tions indicate that the B-G-K model can simulate the Boltzmann equation very 

well. One common point in these studies is that they are confined exclusively to 

the case of one dimensional flow (parallel to the wall) for mathematical simplicity. 

Quite recently, however, Prof. Tamada succeeded in an analytical treatment 

of the stagnation-point flow in two dimensions 9 >. Later, the present author noticed 

that Prof. Tamada's analysis can be extended to the axially symmetric case. In 

view of the fundamental importance of this type of flow, detailed study has been 

carried out and the result is given in the present paper. The analysis proceeds 

almost parallel to that in Ref. 9: The well-known solution of the Navier-Stokes 
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equation for the continuum flow in question suggests a particular form of the 

distribution function of the molecular velocity, which enables us to decompose the 

kinetic equation into a few simultaneous integral equations in one independent 

variable. A method of successive approximation to the solution used in Ref. 9 is 

also effective in which the continuum equation and kinetic equation are considered 

alternately in the progress of approximation. The actual analysis has been put 

forward to the second approximation. It turns out that the profiles of the velocity, 

density and temperature in the Knudsen layer in the present case are quite similar 

to those in the two-dimensional case. An expression of the shear stress acting on the 

wall is also derived. The result of the present study may serve to clarify the 

relationship between the quasi-equilibrium (continuum) region and non-equilibrium 

region (Knudsen layer) of the flow of a gas. 

2. Solution for Continuum Flow 

\Ve take cylindrical coordinates (R, 0, Z) with ongm O at the stagnation 

point and Z-axis normal to the wall. There is no characteristic length in the 

present flow except for the mean free path* l of the gas molecule. We therefore 

take a reference point Son the Z-axis at a definite distance L=Al from the wall, 

A being a given numerical value. Let Q.s be the flow speed and c the sound speed 

at the reference point. Then, we may characterize the stagnation-point flow by the 

Mach number Ms=Q.s/c at the reference point. In the present study, we take, for 

convenience, the reference point in the continuum flow region away from the 

wall, so that A-» l. We also confine the study to the case in which Ms~ 1 and 

so the region of continuum flow may be described approximately by the Navier­

Stokes equations for incompressible fluid: 

17 avR v avR _ 1 ap (a2 vR 1 avR vR a2 vR) 
R aR + z az - - P aR + )I aR2 + R aR2 - R2 + av 

17 8Vz+v 8Vz __ 1 ap+µ(a 2 Vz+ 1 8Vz+82 Vz) 
R aR z az P az aR2 R aR2 az2 

l ( 1 ) 

avR+ VR+avz=o 
aR R az 

where V= ( VR, 0, Vz) is the flow velocity, p the pressure, p the density and JI 

the kinematic viscosity. There is a well-known solution of ( 1) representing the 

axially symmetric stagnation-point flow with no slip at the wall as follows 10>: 

• In general, the mean free path is a function of position and l means its representative value 
defined appropriately (cf. eq. (8)). 
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p 2 { I R
2

} P-Po = - -Q -P(C)+---2 2 R,,· L , 

Vz = -2 __ 9- f(') 
vR,, 

.1-Z '= V R,,y, 

l 
R =LQ ( 

" y ) 

( 2) 

where Q is a velocity parameter, Po the pressure at the stagnation point and the 

functionsf and P satisfy following equations 

f'2 -2ff" = I +J"' 
2ff' = ¼P'-f" (f' = dffd' etc.) } 

and the boundary conditions for ,» I (inviscid region) 

f(C)--, (vR--o..1, Vz= -2Q f) 
and at the wall (' =0) 

J=f' = 0 

( 3) 

(3a) 

(3b) 

The solution may be expressed near the stagnation point R=Z=O as follows 10>: 

VR = Q(R/L)(2a,+······) a=0.6560 ) 

Vz = -2(0../v Re)(a,2+•·····) 
P-Po = -(p/2)0.,2{(2/R,,) (4a, + ······) +R2/L2

} 

( 4) 

This solution, however, becomes invalid in the Knudsen layer where Z=O(l). 

The kinetic theory approach is needed to understand the behaviour of the gas 

there. The solution from the kinetic theory is expected to tend asymptotically to 

( 4) for Z » l. Thus, eqs. ( 4) give boundary conditions at infinity in the kinetic 

theory treatment. A boundary condition as for the temperature T is also needed 

and we shall consider in this study the case of constant temperature in the continuum 

region, viz. 

for Z»L (4a) 

3. Fundamental Equations in Kinetic Theory Analysis 

We assume that the gas obeys the B-G-K equation as mentioned earlier. Let 

V=(VR, V9, Vz) be the molecular velocity, F(V; R, Z) the velocity distribution 

function and n the number density of molecules. Then, the B-G-K equation for 

the present problem may be written as 

( 5) 
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where A is a constant, An the collision frequency. The function F. is the local 

equilibrium distribution given by 

(5a) 

where m is the mass of the molecule and k the Boltzmann constant. The number 

density n, the flow velocity V, and the temperature Tare related to F by the equa­
tions 

n = ! FdV, V = + ! VFdV 

3
k T = _!__ f (V- V) 2FdV, dV = dVRdV8dVz 

m n J 
} (5b) 

integrations being carried out over the whole molecular velocity space. Let n0 

be the number density at R=Z=O of the continuum flow when estended to that 

point with neglect of small but steep variation in the Knudsen layer. Then, Po= 
kn0 T0 is still the stagnation pressure of the extended continuum flow.* 

Now, the flow velocity Vin the Knudsen layer is very small compared with 

the mean thermal speed of the molecule since we are considering the case of small 

Mach number in the continuum region. Therefore, the distribution of the mo­

lecular velocity should be close to an equilibrium distribution at rest with number 

density n0 and temperature T0 • Thus, if we write 

l ( 6) 

the quantities <1>, ~. 8 are all small compared with unity. Inserting (6) into 

(5), (5a), (5b) and retaining only the first order terms, we may have a linearized 

system of the fundamental equations. Comparison of the system with the boundary 

condition ( 4) suggests introduction of new variables 

J.v'h(R, Z) = (r, z), v'hV = V = (v,., V9, vz) } 

v'hV/" = v = (ii,., o, iiz) , 

(<1>, ~. 8)/,c = (</J, a, i-) 

( 7) 

where 

M= Q/c, 

= ay'RJiQ = !!___ (1rr)3/4 (M)3/2 
IC (J. v' h L) 2 2 2 A 

c = v'rkT0/m = v'r/(2h) 
} (7a) 

• The temperature in the continuum flow region is assumed to be constant T0 (eq. (4a)). 
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r being the adiabatic exponent. We have used in rewriting ,r the following rela­

tions valid for the B-G-K gas: 

l = 2/(J.vd), ( 8) 

The parameters Q and M in (7a) are related respectively to the flow speed Qs 

and the Mach number Ms at the reference point (( =v R,) by the equations 

(from (2)) 

These equations together with (8) enable us to calculate Q and M if Qs, c (and 

hence Ms) and A (position of the reference point) be given. Now, in terms of the 

variables in (7), the linearized fundamental equations may be written as follows: 

( 10) 

a = ! Ert,dv , v =, j vE,t,dv 

~ (r+a) = ! v2Ert,dv, E = 1C-
3
f 2e-v

2 

(IOa) 

It can be shown as in Ref. 9 that the mean flow from the solution of the line­

arized B-G-K equation (IO) tends asymptotically with distance from the wall to 

the solution of the Stokes equation in hydrodynamics. The forms ( 4) for ( <{ 1 

in the stagnation-point flow under consideration satisfy the same equation and 

hence we may take the boundary conditions of eq. ( 10) for z-H>0 as follows: 

Vr ,..._, 2rz, 

a ,-...., -4z, } ( 11) 

We assume that molecules are reflected from the wall diffusely. Denoting by aw 

and r w the perturbation number density and temperature of the reflected mole­

cules, we have the linearized forms of the boundary conditions at the wall z =0: 

rt,,,z>o = aw-¾ rw+rwV2 } 

vz = 0 

4. Distribution Function 

( 12) 

Taking account of the axial symmetry of the flow together with the structure 

ofeq. (10), the asymptotic form of¢, and the boundary conditions (12), we assume 

the proper form of the distribution function to be 

( 13) 
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Introducing this in (lOa), we obtain 

a = a(z) 

.- = .-(z) 

x 0=) E,jrv~dv 

vz = ! E<pvzdv 

a = ) Ecpdv 

3 • 

2 (a+.-) = ~ Ecpv2dv 
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( 14) 

( 15) 

( 16) 

( 17) 

Then, substituting ( 13) ,--.,( 17) into eq. ( IO) and comparing both sides, we get the 

next two equations: 

v a,;,= -ifr+2x 
z f}z 

The boundary conditions (12) at z=O become 

3 2 
cp.,z>o = <Iw- 2 '°w+.-wv 

"P'vz>o= 0 

vz = 0 

Also, the boundary conditions (l l) for z- oo are rewritten as 

x(z) ,..,.,, 2z, vz(z) ,..,.,, -2z2 

u(z) ,..,.,, -4z, .-(z) ,..,.,, 0 

5. Integral Equations for Mean Fields and Their Solutions 

( 18) 

( 19) 

(20) 

(21) 

(22) 

(23) 

To begin with, we shall obtain the solution for the flow velocity. Eq. ( 19) 

for ,fr and the boundary conditions (21) and x(z),...,2z (eq. (23)) are identical with 

those in the two dimensional case. Therefore, it may suffice to give a brief account 

of the solution. Solving eq. (19) for ,fr under (21) and inserting the result into 

(14), we obtain an integral equation for x(z) in the following form: 

(24) 

where the function f n(x) is defined as 

(24a) 
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n being an integer. An approximate solution of eq. (24) has been given in Ref. 9. 

Namely, 

s 
;r(z) = 2z+a+;r*(z), ;r*(z) = I:! a.J,(z), 

a,~ -2.078 f a= 2.032, llo = -0.2378 , 

a2 = 3.530, 

i•O 

ll3 = -l.794 

(25) 

On the other hand, we multiply both sides of eq. (IO) by E and integrate the 

result throughout the velocity space with (13),-..,,(17). We then have a continuity 

equation 

dvz+2x = 0 
dz 

Integrating this with (22) and inserting (25), we get the result 

vz = -2z2-2az+,B+v! 
s v: = 2! 2a.];+1(z) ,B = 0.9342 

i•O 

(26) 

) (27) 

In the next place, solving eq. (18) for <p and applying the condition that <p 

should not be exponentially infinite for z- oo, vz <0, and the condition (20) for 

vz>0, we obtain the result 

Inserting this in (15), (16), (17) and earring out some calculations, we get the 

simultaneous integral equations for Vz, a, r: 

y1rvz(z) = (aw-½rw)J1(z)+rwf3 (z) 

+ [ {2Jiiz+ ] 0a+(J2 -½ J 0)(r-4;r)}d7j 

y1ra(z) = (aw-½rw)J0(z)+rwf2(z) 

+ [ {2Joiiz+ J_ 1a+(J1 -½J-1)r-4J1;r}d1J 

(29) 

(30) 
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¾vzr(a+'t") = (aw+½ 't"wHlo(z) + l2(z)}+'t"wf,(z) 

+ [{2Uo+ l2)vz+U-1+ l1)a+½U-1+ l1+2Js)'t" 

-4(11+ ]3)x}d7J 

where the argument of J,, in the integrals is (z-7J). 

If we make use of eqs. (22), (26) and the equation 

[ lo(Z-1J)X(1J)d1J = -vn 
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(31) 

(32) 

which can be obtained by integrating (24) with respect to z, we can eliminate %, 

vz from (29)--(31). Taking the asymptotic forms (23) into account, we write 

a= -4z+a* 

a*-0, 

Then, elimination of x, vz results in the following equations: 

vna* = awfo(z)+'t"wU2(z)-½lo(z)}-4J1(z) 

+ [ {f-1a* + U1-½ l-1)'t"*}d7J 

(33) 

(34) 

!vn 't"* = 11 wU2(z)-½ lo(z)}+'t"wU,(z)-l2(z) +¾lo(z)}-4j3(Z) +2J1(z) 

+[ {U1-½l-1) 11*+Us-l1+il-1)'t"*}d7J (35) 

argument (z-7J) in the integrals being omitted as before, and an additional equa­

tion 

(36) 

These equations for a* and 't"* can be reduced to those in the two dimensional 

case, ifwe replace (a*, T*; aw, Tw) by 2 (a*, T*; aw, Tw), Thus, approximate 

solutions are at once obtained from Ref. 9_ as follows: 

h0 = 1.0816, h1 = -1.2654, h2 = 1.3722, h3 = -0.4306 (37) 

k0 = 0.011052, k1 = -0.011142, k2 = 0.06812, k3 = 0.09492 

aw= 3.3706, Tw= 0.89352 

Introducing in (33) the Knudsen layer variations a* and T* thus found, we can 

understand the behaviours of density and temperature in the axially symmetric 

stagnation-point flow. It may be noted that there occurs a temperature jump 
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between the gas and the wall. 

It will be seen that the component of flow velocity parallel to the wall in the 

Knudsen layer of an axially symmetric stagnation-point flow is the same as in 

the two dimensional case, while the component of flow velocity perpendicular to 

the wall, density and temperature, including jump values at the wall, are just 

twice as much as those in the two dimensional case, if expressed in terms of the 

Knudsen layer variables. 

6. Refinement of Continuum Flow 

As we have seen in the foregoing analysis ( eqs. (25), (27)), the velocity of 

the continuum flow when extended to the wall accompany slip and jump of the 

forms: 

VR = Q(R/L)(2a2ae) 

Vz = (Q/v Re)(4a?/3e2
) = O(e2

) 

a = 0.6560, E = _!_ y]fe = _!_(1CT)1/•(Af)1/2 
2a Jy' hL 2a 2 A ! (38) 

The solution for the continuum flow should therefore be corrected according to this 

result in the next step. Eq. (38) suggests that the correction to be made is propor­

tional to e. It can be shown that the field equation (I) for the continuum flow 

remains unchanged to this order. Thus, our task is to solve eqs. (3) with modified 

boundary conditions for f: 

f=0, 

j,..._,(' 

at ( = 0 } 
at (-oo 

(39) 

Denoting by Jo the non-slip solution given in 2, the solution of the first equation 

m (3) subject to (39) can be easily obtained by perturbing j~. Thus, 

f = fo+aaefo' 

On the other hand, we have from (33) 

(40) 

(41) 

at the'outer edge of the Knudsen layer, so thatp-p0 =0 at (=R=0 in (2), and so 

P(O) = 0 (41a) 

Integrating the second equation in (3) under (41a), we have 

(42) 
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The results (40), (42) and (2) constitute the first approximation to the continuum 

stagnation-point flow. This is the so-called slip flow. Expanding these solutions 

for small C and rewriting the results in terms of the Knudsen layer variables (7), 

we have 

ii,.,_, r{2z+a+e(-z2-az)} 

vz ,_, -2z2-2az+,8+e(Jz•+az2) 

a ,_, -4z+e{2z2+2az-r2} 

!' ,-..,o 

(43) 

These equations again afford boundary conditions at z - oo for the second ap­

proximation (correct to O(e)) to the flow in the Knudsen layer (cf. (11)). One 

thing to be added is the correction to the relation (9) between the parameters. 

From (2) and (40), we have 

Vz = -2(Q/v R.){.fo(C)+aae.fo'(C)} 

At the reference point, C = v R. and I Vz I = Q5 , so that* 

(Q5 , Ms)= (2/v R,,){fo(v R.)+aae.fo'(v R,,)}(Q, M) 

7. Refinement of Knudsen Layer Flow 

(44) 

We ne}(t proceed to the second approximation to the Knudsen layer flow. It 

can be shown that the linearized B-G-K equation ( 10) does not change to this 

order of approximation. We indicate hereafter by suffix 1 the quantities to the 

first approximation obtained in the preceding paragraphs and by suffix 2 the 

correction terms proportional to e to be obtained below. Thus, bearing (43) 

in mind, we assume that the perturbation distribution function </J in the form: 

Inserting this in ( 1 0a), we have 

ii,.= r(x1+ex2), X2 = i Eifr2v;dv 

vz = vz,i+Evz,2, v.,2= i E<pzv,,dv 

a = a1+ e(a2-r2), a2 = i E<p2dv 

T = r1+e!'z, ¾(a2+.-2) = } E<pp2dv 

• The speed of sound c is associated with the temperature T0, which remains unchanged. 

(46) 

( 47) 

(48) 

(49) 
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Substitution of (45),-,(49) into eq. (10) and comparison of both sides yield the 

following equations for <p2 and ,P,2 : 

The boundary conditions at the wall (cf. (12)) become 

Also, the boundary conditions ( 43) for z-+ oo give 

X2 ,_, -z2-a1z, 

a2 ,_, 2z2 +2a1z, 

(50) 

(51) 

} (52) 

(53) 

We first solve eq. (51) for ,P,2 under (52) and introduce the result m (46). We 

then obtain the equation for x2 : 

(54) 

An approximate solution of this integral equation is again found in Ref. 9. Thus, 

s 
xf = ~ a~2 )];(z), a2 = -0.533 

t=O 

a~2
l = 1.479, a~2

J = -9.34, a~2
l = 13.23, a~2l = -5.74 

} (55) 

Substituting x2 from (54) into the continuity equation (cf. (26)) and integrating 

under the condition iiz. 2(0) =0, we get 

/J2 = l.192 l (56) 

Now, we refer briefly to the shear stress acting on the wall. It is well known 

that the gradient law for the stress breaks down when the velocity distribution 

function changes appreciably in the interval of mean free path or time. The shear 

stress is written, by its definition, as 

SRzf (2po) = -IC ) E[~]z=oVrVzdV 

= -IC ) E{,P, 1(vz, 0) +e,P,2(vz, 0)}v~vzrdv (57) 
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Inserting ,fr1(vz, 0), ,fr2(vz, 0) and making some calculations, we are led to the 

result 

(58) 

The same result is also obtained by a continuum calculation basing on the slip 

flow as given by ( 43). 

We finally proceed to obtain 112 and ?"2• We solve eq. (50) with known ,fr2 

taking account of (52), and insert the resulting <p2 in (47),-.,(49) as before. We 

then have three equations involving ;r2, vz. 2, a2 and ?"2 • From these equations, we 

can eliminate %2 , vz,2 as in the previous case. The results are simultaneous in­

tegral equations for 112 and ?'2 • Remembering (53), we write 

} (59) 

Then, it is found that the equations for af and T"f just coincide with (34) ,_,(36) if 

we take 

(60) 

Thus, the final results for the Knudsen layer flow may be summarized as 

follows: 

(61) 

where a,, xf are given by (25), /31, vf 1 by (27), af, T"f by (37), a2 , xt by (55) /32 , 

vf,2 by (56) and at, T"f by (60). Further, the wall temperature variation becomes 

where the values of?' w,1 and ?' w,2 are given in (37) and (60) respectively. 

In Fig. l are shown plotted Vy/r and V z for three values of e. Plots of 

[a]Y=O and?' for the same values of e are given in Fig. 2. Thin lines represent 

asymptotic behaviors. We can see in these figures the first order effect of e or 

v M 5 to the Knudsen layer flow. It will be seen also that the flow velocity Vy 

does not vanish at the wall as noticed earlier. The asymptotic form of Vy takes 

also a finite value when extended to the wall. The temperature in the Knudsen 

layer increases with approach to the wall. The temperature of the wall is higher 
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__ -:;:.-:.-
4-+----f------:;;::"'V"""':::;:,"'-:?...e:;;_-+=~c.='----1 

,, 

0.5 1.0 1.5 -z 20 
0 

-2+------1f---~~+------+------1 

E=O 
0.1 
0.2 

' 
' ' 

-6_j_ ____ __;L_ ____ _1_ ____ __J___~-"'----" 

Fig. I. Distributions ,,f radial and vertical velocities. Thin lines 
represent asya1ptotic behaviours. 

~'-,, ... ::::,. .. , 
.... , .... ..:, .. 

4 -t-----'-'....:''--l.-:'-'_2'_cc-_--+-------+---------1 

0 
0.5 

€=0 
0.1 
0.2 

10 15 -z 20 

Fig. 2. Distributions of density and temperature on the z-aixs. Thin 
lines represent asymptotic behaviours. 
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than that of the gas neighbouring the wall by an amount r w-r (0). 
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