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In this paper, the author deals with the optimal transmission system planning 
based on topological considerations. 

The development of mathematical technique, particularly, the network flow theory 
has enabled the system planning taking account of topological situations. The construc­
tion cost characteristics for the actual transmission system are frequently expressed by a 
staircase function. 

The paper describes the method for solving these transmission system planning by 
means of integer linear programming with zero-one variables. 

1. Introduction 

In recent years, the development of mathematical technique and the digital 

computer has enabled more difficult transmission system planning considering 

load growth1
'. In particular, the network flow theory has been available for 

this purpose2
'; first, we can represent a transmission system as a directed network 

and intend to solve the network problem by means of a method based on topological 

considerations. In these studies, they assume that the cost characteristics for a 

construction of system elements are expressed by a linear function. However, in 

case of a transmission system, the cost characteristic is frequently expressed by a 

staircase function. 

Thus, in the present paper, from the supply-demand theorm of the network 

flow theory, the author introduces the necessary and sufficient condition to satisfy 

the demands in the transmission system. The optimal plan for a given load pattern 

has a minimal cost, so that the optimal system planning can be written as the 

problem of an integer linear programming with zero-one variables. There are 

several methods available for solving an integer linear program. We can make 

use of R. E. Gomory's method3
' and E. Balas's additive algorithm''. 
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2. Directed Network for the Transmission System 

Consider the transmission system which consists of power plants, substations, 

transmission lines and loads as shown in Fig. 2.1. This transmission system is 

represented by the directed network in which transmission lines correspond to 

arcs and power plants, substations and loads correspond to nodes, as indicated in 

Fig. 2.2. A number g(x) may be thought of as the supply of power at source x, 

l(x) the demand of power at sink x. We can suppose that each arc and some 

nodes have capacities; it may be thought of intutively as representing the maximal 

amount of transmitted electrical power. Therefore, in this network, there are 

multiple sources and sinks, and several nodes have capacities. 

However, the addition of two nodes and several arcs to the multiple source, 

multiple sink network reduces the problem to the case of a single source and sink. 

Furthermore, by a simple device the network with both arc and node capacities 

can be reduced to the extended network with only arc capacities. If the given 

network is that of Fig. 2.2, the extended network with only arc capacities is shown 

in Fig. 2.3, where g(x), d(x), l(x) and t(x) are respectively capacities of power 

plants, substations, loads an1 transmission lines. 

Consider the flow from source s0 to sink t0 on the network shown in Fig. 2.3, 
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the pattern of this flow is interpreted as the power flow distribution of the trans­

mission system shown in Fig. 2.1. 

Therefore, in order to investigate whether the demand can be fulfilled from the 

supplies in the transmission system, calculate the maximal flow from source s0 to sink 

t0 on the extended network shown in Fig. 2.3. Let F,,. be the maximal power flow 

obtained from the calculation and if we put the overall supply power and load 

power as G and L, these are written as 

G = ~ g(x) 
:tES 

L = ~ l(x) 
:tET l (2. l) 

where Sand Tare sets of all sources and all sinks, respectively. 

Hence the demand-supply conditions of the transmission 

classified as follows; 

system will be 

(1) If F,,.=LsG, the demands can be fulfilled from the supplies. 

(2) 

(3) 

(4) 

If F,,.=G<L, the system has a lack of supply power. 

If F,,.<Ls G, the capacity of the transmission line is insufficient. 

If F,,.<G<L, the system has a lack of supply power and the capacity of the 

transmission line is insufficient. 

When we intend to design the transmission system to satisfy the increasing 

demand, the extended network corresponding to the transmission system involved 

plants, substations and transmission lines to be constructed in the future must 

satisfy the condition (l), i.e., F,,.=LsG. 

If we assume that the construction cost is proportional to the capacity for an 

increase, the optimal (minimal cost) expansion planning of the transmission system 

can be reduced to the problem of constructing network flows that minimize cost. 

The minimal cost flow problem has been treated by many authors and the effective 

algorithms for digital computer are now well known. 

However, for example, suppose an increase of plants or transmission lines 

being already constructed, a generator capacity of plants or a transmission capacity 

of lines for an increase will be limited by the capacity of the existing generators or 

lines. Therefore, the cost characteristics are expressed by a staircase function, 

since we must study the discrete programming problem instead oflinear programm­

ing problems. 

3. Cost Characteristic and Expression of the Capacity of Arc 

In this paper, we shall treat such a case that the cost for a construction can be 

shown in Fig. 3.1, that is, th~ relation between capacity and cost is expressed by a 
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staircase functi01;1. In this case, each arc can be expressed by a parallel connec­

tion of arcs having a constant capacity as indicated in Fig. 3.2 where C'0)(x,y) is 

an arc being already constructed and .JCC1)(x, y), .JCC2)(x, y), ·•• and ,1ccm)(x, y) 

are capacities of increasing arcs. 
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Fig. 3.1. Construction cost characteristic. Fig. 3.2. Parallel connection of arc. 

Now, introduce the variables fil(x, y) and .JJW(x, y) constrained to take 

only one of the values O or 1. Hence the capacity of arc (x, y), C(x, y), may be 

written in two ways as follows: 

Case 1: 

where 

and 

fil(x, y) = 
{ 

I, 

o, 
if C(x, y) = C'0)(x, y) +cu\x, y) 

if C(x, y) * CC0)(x, y) +cm(x, y) 

(3.1) 

(3.2) 

(3.3) 

In this case, the following con5trained relation is required for the variablesfm(x,y), 

(i=O, I, ···, m(x,y)), namely; 

where 

Case 2: 

,n(z,Y) 

~ j'il(x, y) = I 
i=O 

if C(x, y) = cco)(x, y) 

if C(x, y) * CC0)(x, y) 

where the variable .dfm(x,y) can be taken the value 1 in case of 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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Introducing the variables JJ~0 (x,y), (i=l, 2, •··, m(x,y)) constrained to take only 

one of the values O or 1, we can also express the constraints described above as the 

constrained equations, that is, 

(i=l, 2, ···, m(x,y)) (3.8) 

4. Formulation as Integer Linear Programs 

If any cut separating source s0 and sink t0 is expressed by (X, X) and its capacity 

by C(X, X), the necessary and sufficient condition under which the demands can be 

fulfilled from supplies in the extended network shown in Fig. 2.3 can be written 

that 

C(X, X) 2L (4.1) 

holds for every subset X ~ N. (See Appendix) 

Using the expression of Eq. (3.1) as an arc capacity, C(x,y), for any cut P; 

we obtain the constraint as follows; 

or 

where n is a number of cut separating source s0 and sink t0 • In the case of using 

these expressions, another constraints is required for the variables JCil(x, y), (i=O, 

1, ···, m(x,y)) as 
m(x,Y) 

~ p 0 (x, y) = 1 (4.4) 
i=O 

In Eq. (4.2) or (4.3), if the inequality 

~ cc0i(x, y) 2 L (4.5) 
(X,Y)EPj 

will be satisfied for any cut P;, that is, the cut capacity being already constructed 

exceeds an overall load power L, we take away the inequality corresponding to cut 

P; from Eq. (4.3). 

The optimal transmission planning for a given load growth pattern is to 

determine the number JCil(x,y) in order that the overall construction cost 

(4.7) 

remains a minimum, where A is a set of all arcs and 

(4.8) 
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Consequently, we have to find the values offm(x,y) which reduce the function 

Eq. (4.7) to a minimum, knowing that the variables are subject to the constrained 

conditions Eqs. (4.3) and (4.4). 

Futhermore, when we use the expression ofEq. (3.6) as an arc capacity C(x,y), 

another linear program will be obtained, namely; 

The optimal system planning is to find the number Jfi)(x,y) constrained to 

take only one of the values O or 1 which minimizes the linear form 

(4.9) 

subject to the linear constraints 

and 
(j=l, 2, ···, n) (4.10) 

(j=l, 2, ... , m(x,y)), (x,y)EA (4.11) 

Therefore, the problem of the optimal transmission planning is to solve a 

special type of integer linear programming problem in which the integer variable 

has to be either O or l, depending on whether or not some increase of the system 

element is used. 

At present, several methods are available for solving integer linear programs. 

The best known among them is R.E. Gomory's algorithm. They use the dual 

simplex method and impose the integer condition by adding new constraints to the 

original constraint set. Another effective algorithm which is proposed by B. Ealas 

represents a combinatorial approach to the problem of solving discrete-variable 

linear programs with zero-one variables and it seems to work very efficiently. 

5. Extension to the Long Term Design 

The optimal long term planning for load growth should have the lowest cost 

of accumulation of annual requirments. Therefore the planning problem is to 

find the economically optimal sequence. 

If we adopt n years as the period considered for the planning, the capacity of 

arc (x, y) may be written as 

C(x,y) = cc0)(x,y) +JCCl)(x,y) {JJP'(x,y) +JJ~1'(x,y) + ·" +L1f~1'(x,y)} 

+Jcc2\x, y) {Jff2> (x,y) +JJ~2> (x,y) + ... +JJ~2> (x,y)} 

+·"··· 
+Jccm)(x,y) {Jff"''(x,y) +JJ~"''(x,y) + ··· +JJ~"''(x,y)} (5.l) 
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where JJ}"(x,y) is a zero-one variable having to be either l or 0, depending upon 

whether or not the i-th increasing element of arc (x,y) is constructed at the j-th 

year. In this case, the following constrained relations are required for the variables 

JJ}"(x,y) and newly introduced variables JJW(x,y), namely; 

iJ JJ)°(x,y) = l 
1-0 

(i=l, 2, ... , m(x,y)) (5.2) 

and 
J 

JJW(x,y)+ ~ JJP'(x,y) = l 
i-=-1 

(5.3) 

J 
JJW(x,y)+··•+JJ~~'(x,y)+ ~,:JJ)'0 (x,y) = l 

i=l 

(J=l, 2, ···, n) 

By using Eq. (5.1) as the expression of the arc capacity, C(x,y), we can obtain the 

similar integer linear program as obtained in the proceeding chapter. In the 

present case a criterion function (linear form having to minimize) may be ex­

pressed by 
mCx,Y) n 

~ [ ~ ~ Jaj0 (x,y) JJJ"(x,y)] 
(X,Y)E.A i=l j=l 

(5.4) 

The linear program obtained in this fashion has an enormous number of 

constrained equations such as Eqs. (5.2) and (5.3). However, using the algorithm 

obtained by the principle of a combinatorial approach for solving an integer 

linear programming problem, we can deal with these constraints as a criterion for 

selecting the basic feasible solutions. 
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Appendix 

Let [N; A] be an arbitrary network with capacity function C, and suppose 

that N (set of all nodes) is partitioned into sources S, intermediate nodes Rand sinks 

T. Associate with each xES a non-negative number a(x), to be thought of as the 

supply of some commodity at x, and with each xE Ta non-negative number b(x), 

the demand for the commodity at x. Under what conditions can the demands at 

the sinks be fulfilled from the supplies at the sources? The following. theorem gives 

the answer for the above problem. 

Theorem (Supply-Demand Theorem) 

f(x, N)-f(N, x) ::;; a(x) 

f(x, N)-f(N, x) =0 

f(x, N)-f(N, x) ~ b(x) 

0 ::;;J(x,y)::;; C(x,y) 

where a(x) ~ 0, b (x) ~ 0, are feasible if and only if 

xES 

xET 

(x,y)EA 

b(T n X)-a(S n .X)::;; C(X, X) 

holds for every subset X c N. 

(A,l) 

(A,2) 

Where the commodity flow from x toy and the capacity of the cut (X, X) are 

respectively expressed by f(x,y) and C(X, X), and 

f(X, Y) = ~ f(x,y) 
(S,.1)E(..1',Y) 

(A,3) 

Extend the network [ N; A] to a new network [ N* ; A*] by adjoining a fictious 

source s0, sink t0 and arcs (s0, S), (T, t0). The capacity function on A* is defined 

by 
C*(s0, x) = a(x) 

C* (x, t0 ) = b(x) 

C*(x,y) = C(x,y) 

xES l 
xET 

(x,y)EA 

(A,4) 

On the new network [N*; A*], the cut separating s0 and t0 and its capacity are 

respectively expressed by ( Y, Y) and C' ( Y, Y). Since Y = X U s0, Y = X U t0, we have 

C(X, X) = C'(Y, Y)-a(S nX)-b(TnX) 

By using Eq. (A,5), Eq. (A,2) yields 

C'(Y, Y) >b(TnX)+b(TnX) = ~ b(x) = L 
SE'l' 

(A,5) 

(A,6) 

Eq. (A, 6) is the necessary and sufficient condition under which the demand at the 

sink can be fulfilled from the supply at the source on the extended network [ N*; A*]. 


