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It is well-known that a method of increasing system reliability is the addition of 
redundancy and/or repair. 

In this paper, the reliability models of complex systems with redundancy and/or 
repair are formulated by birth-death processes and semi-Markov processes. The 
authors show how the system modification yields the increase in mean time to system 
failure. They show how the system with repair yields the increase in mean time to 
system failure compared with the similar system without repair. Finally, they also 
show that the system reliability depends upon the repair time distributions and that many 
calculations of the system reliability suggest the significant properties. 

1. Introduction 

As the engineering techniques are developed, the systems become larger and 

more complicated. It is a very important problem whether a system can operate 

with high reliability. It is well-known that a method of increasing system reliability 

is to make the system redundant and/or repairable. In this paper, we evaluate 

the reliability of redundant and repairable systems. 

The problems concerned with the reliability of complex systems have been 

discussed by many authors, e.g. Barlow1>, Garg'\ Gaver5>, and others. 

Many measures of system reliability have been considered. Hosford6> has pro

posed three measures of system reliability as follows: 

(i) Pointwise Availability; the probability that the system is operable at 

time t. 

(ii) Interval Availability; the expected fraction of a given interval of time 

that the system will be able to operate within the tolerances. 

(iii) Reliability; the probability that the system will be able to operate without 

a failure for a given interval of time. 

In this paper, we adopt a Mean Time to System Failure (MTSF) as a measure of 

system reliability. The MTSF represents a mean time until the system is in a 

state of system first failure. We can give many examples of models where this 
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MTSF is an important factor. In these models, occurrence of system failure i~ 

considered to be important. We often encounter such systems in recent compli

cated systems. 
At first, let us consider the following general problems. There is a system 

consisting of many elements. The term element means, for example, computer, 

electric power supply, communication system, etc. Let us suppose that it is 

sufficient to use a part of many elements so that the system can perform its function. 
The system has redundant elements. Each element may sometimes fail. The 

distribution function of failure time for each 

element is given by F(t) (t :?:O). A failed 

element goes immediately into repair, or forms 

a queue to be repaired. The distribution 

function of repair time for each element is 

given by G(t) (t ;?:O). And if a repair of a 

failed element is completed, it is put back 

into an operating state. Thus, we are 

concerned with the time until the system is 

in a state of system first failure. The diagram 

shown in Fig. 1 is useful in illustrating the 

structure. 

Operative elements 

F ( t) 

G (t) 

Failed elements 

Fig. 1. ·Diagram illustrating the 
system. 

We will show, especially, three problems arising in these models. 

In sections 2 and 3, the first problem is dealt with. We assume that both the 

failure time distribution F(t) and the repair time distribution G(t) are exponential. 
Consider a system consisting of n elements and only one repair facility. We analyze 

this system and consider this as a standard one. So, we investigate to what degree 

the reliability increases when spare elements are added, or when repair facilities 

are added on the basis of the standard system. 

In section 4, we consider, in detail, "2 out of n" system as a second problem. 

"2 out of n" system means that the system fails when not less than two of n elements 

are in the failed state. In particular, the "2 out of 2" system is sometimes called a 

two element redundant system. We evaluate the MTSF for the system consisting 

of dissimilar elements and of dissimilar repair facilities. Furthermore, we investi

gate to what degree the reliability of "2 out of n" system with repair increases 

compared with a similar system without repair. 

In sections 5 and 6, we consider the third problem, i.e., an "m out of n" system 

with repair, which means that the system fails when not less than m of n elements 

are in the failed state. We assume, here, that the failure time distribution F(t) 

is exponential and the repair time distribution G(t) is arbitrary, for this system. 
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Moreover, we investigate to what degree the reliability of this system increases 

compared with the standard system with an exponential repair time distribution. 

2. Birth-Death Process Models for Complex Systems 

Here, we consider the following complex systems. The system consists of 

(n+s) elements, where at first n ·elements are operating and s elements are 

spares. The system has at most r repair facilities being simultaneously available. 

On the initial condition, n elements are operating at time 0. The system is assumed 

to fail only when all its elements including spare elements fail. Let us assume 

that the failure time distribution of each element is exponential with mean 1/).. 

That is 

F(t) = 1-exp ( -At) . (2.1) 

While, it is assumed that the repair time distribution G(t) of each repair facility is 

exponential with mean 1/µ. That is 

G(t) = 1-exp ( -µt) . (2.2) 

Under these assumptions, it is well-known that the system forms a birth-death 

process as a mathematical model. 

A birth-death process is a stationary Markov process whose state space is the 

non-negative integers. Now, let us define the state of a birth-death process {X,; 

t ~ O}. The number of failed elements corresponds to the state of the birth-death 

process. For example, state i represents that i elements are in the failed state. 

This system has (n+s+l) states, i=0, 1, •··, (n+s). 

Let us define the transition probability 

(i 1·-0 ··· n+s) ' - ' ' ' 
that the process is in state J at time t starting from state i at time 0. 

As t tends to 0, we have 

P;,(t)-l 
).1t+o(t) (j=i+l) 

1-().,+µ,)t+o(t) (j=i) 

µ,t+o(t) (j=i-1) 

0 (otherwise) . 

(2.3) 

(2.4) 

where;., and µ 1 are a birth rate (a failure rate) and a death rate (a repair rate) in 

state i, respectively. In this system, these rates ).;'s and µ;'s are given in Table 1. 

On the basis of the above preparations, P,1(t)'s satisfy the following system of 
differential equations, 



512 Hisashi MINE, Shunji OsAKI and Tatsuyuki AsAKURA 

Table 1. Birth rates A;'s and death rates µ;'s for the system. 

A) r~s B) r~s 

state k 

k~s 
s~k~r 
r~k 

I At I µt state k I At 

nA kµ 
(n+s-k)l kµ 

k~r 
I 

nA 
r~k~s nA 

(n+s-k)A rµ . s~k I (n+s-k)A 

l 
P~o(t) =-A0P;0 (t) +µ1P;1(t) 

P~J(t) =A 1_1P ;_1_1(t)-(A1+µ1)P ;,J(t) +µ1+1P ;,J+i (t) 

(O:::;;:i,j:::;;:n+s-l). 

I µt 

kµ 
rµ 
rµ 

Now, we assume that n elements begin to operate simultaneously at time 0. 

an initial condition is given by 

where 

(j=O, I, ···, n+s) , 

(j=O) 

(j=t=O). 

Writing the system of differential equations (2.5) in a matrix form, we have 

P'(t)=AP(t), 

where 

and 

-Ao Ao 0 0 

µ1 -(A1+µ1) A1 0 

(2.5) 

So, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

A= 0 µ2 -(A~+µ2) A2 ••.••. (2.10) 

Associated with the matrix A is a sequence of polynominal {Q;(x)}, defined by 

the following recurrence relations 

(2.11) 

(i>O) . 

Above Eq. (2.11) can be written in a matrix form as 

AQ (x) = -xQ (x) , (2.12) 
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where 

(2.13) 

Let G ;}( t) be a first passage time distribution of this system from state i to state 

j. That is, we consider a random variable Tat which time this process enters, for 

the first time, into statej starting from state i at time 0. Then, the probability that 

Tis not greater than tis G ;J(t). Let g;1(s) be the Laplace-Stieltjes transform of 

G11(t), i.e., 

(2.14) 

Then, g,1(s) is given by10
) 

(2.15) 

The initial condition is i=0, since n elements begin to operate simultaneously at 

time 0. From the first equation of Eq. (2.11), we have 

Q0(-s)=l, foralls. (2.16) 

Therefore, the Laplace-Stieltjes transform of the first passage time distribution 

from state 0 to state j is given by 

Let E1 be the mean time from state 0, for the first time, to state j. Then, we can 

easily obtain the following relation. 

We apply this relation to the recurrence relations (2.11) which define a sequence of 

polynominal {Q,(x)}. Differentiating both sides of Eq. (2.11) with respect to x 

and setting x=0, we have the recurrence relations of E~s as follows: 

{ 
E 0 =0, E 1 =l/J.0 

J.1E J+i -(),1+µ1)E1+µ1E1-1 = 1 (j~ 1) . 
(2.19) 

The general solution of these recurrence relations is given by 

(2.20) 

where 

• Superscript t of Q denotes the transpose of the matrix. 
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(2.21) 

Consequently, settingj=n+s, the MTSF of this system is given by En+a• 

3. The Effects of Repair Facilities and/or Spare Elements 

Applying the results given in the preceding section, we can evaluate the system 

reliability from various viewpoints. In other words, we investigate to what degree 

the reliability of a system increases by the addition of spare elements and/or repair 

facilities to the system consisting of n elements and a repair facility. 

Let E! be the MTSF of the system which has n elements, no spare element, 

s=O, and a repair facility, r= 1. Furthermore, E~+. denotes the MTSF of the 

system consisting of n elements, s spare elements and r repair facilities. We define 

Mas 

(3.1) 

This ratio M shows that the ratio of the MTSF of the system consisting of n elements, 

s spare elements and r repair facilities to that of the system consisting of n elements 

and a repair facility. Figures 2, 3, 4 and 5 show M versus 1/p=µ/J. as para

meters rands (n=3,4,5,6). 

Analysis of these Figures asserts the following properties. 

o o~-----'----'---__J___J,_...1__-1__1__-1_ 

23415678 
vp-

Fig. 2. Mas a function of l/p for the 
various system modifications 
(n=3). 

4 

3 

2 

0 

s: spare element 
R: repair facility 

2 3 
vp~ 

Fig. 3. .Y as a function of l/p for the 
various system modifications 
(n=4). 
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S; spore element 
R; repair facility 

+ 3S 

2 3 
f/p---,. 

4 

2 

0 

S: spare element 
R: repair facility 

0.5 

+3s 

1.5 
1/p-+ 
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Fig. 4. Mas a function of 1/p for the 
various system modifications 

Fig. 5. Mas a function of 1/p for the 
various system modifications 

(n=5). (n=6). 

(i) If the ratio of repair rate µ to failure rate l, 1/p=µ/l, is small, i.e., 

if many elements fail during a repair time of one element, the addition 

of spare elements to the system is more effective, in a sense of reliability 

improvement of the system, than that of repair facilities. 

(ii) If the ratio I/ p is large, i.e., if repairs of many elements are completed 

during an element failure, the addition of spare elements to the system 

is more effective than that of repair facilities. 

(iii) If the ratio l/p=µfl lies in a suitable range, the addition of repair 

facilities to the system is more effective than that of spare elements. 

These three properties are valid for any value of n. 

As an example, we consider the case of n=4. If the ratio 1/p=µ/l is 

smaller than about 0.6 or larger than about 1.4, the addition of a repair facility and 

a spare element to the system is more effective than that of 2 repair facilities. 

Moreover,if the ratio 1/p=µfl is smaller than -bout 1.4 and larger than about 

0.6, we can get a reverse conclusion. Thus, we have derived very useful results. 

As long as we take an MTSF as a measure of system reliability, these proper

ties are useful. In practice, we have known, from the empirical data, a failure rate 

A and a repaire rate µ for an element. Using 1/p=µJA, we can determine 

whether we should add spare elements or repair facilities. Further, it is better to 

take into account the economical concept, e.g., the personnel expenditure. 

Here, we have taken an MTSF as a measure of system reliability, but if we 
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take another measure, for instance, an interval availability, we may change the 

concept of system reliability itself. Therefore, we have to notice that the properties 

as we have stated above may not always be valid. 

4. "2 out of n" Systems 

In the preceding two sections, we assume that both the failure time distribution 

and the repair time distribution are exponential But, in this and subsequent 

sections, we assume that the failure time distribution is exponential and the repair 

time distribution is arbitrary. In practical situations, it is natural that a failure 

occurs at random. While, the repair time distribution is generally assumed to be 

an Erlang or regular distribution. 

A "2 out of n" system is considered to be in a state of system failure when not 

less than 2 of n elements are in a failed state. Since the remaining operating 

elements are overloaded, the system failure occurs. We assume that the system has 

a repair facility. The repair time distribution of the facility is arbitrary. If the 

repair time distribution G(t) has its density, we can write 

(4. l) 

Now, let h(t) define that 

h(t) =g(t)/[l -G(t)J (t 20) . (4.2) 

The function h(t) is called a repair rate. h(t)ilt can be interpreted as the probabili

ty that a repair is completed between t and t+Llt, if Lit is a short interval. While, 

using the repair rate h(t), g(t) can be written as follows; 

g(t)=h(t) exp [ -th(t)dt]. (4.3) 

Before the discussion of the general "2 out of n" system, we consider the analy

sis in detail of a "2 out of 2" system, i.e., a two element redundant system. Con

sider a system consisting of two dissimilar elements. Let two elements denote i= 
1,2. We assume that each elenfent has an exponential failure time distribution 

F1(t) = 1-exp ( -J.1t) (i=l, 2). (4.4) 

Furthermore, a repair facility has an arbitrary repair time distribution, but the 

repair time of each element i is different. For each element, the repair time distri

bution is supposed that 

(i=l,2). (4.5) 
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whereg1(t) is the density ofG1(t). And a repair rate of each element can be written 

as follows; 

h1(t) =g1(t)/[l-G1(t)] (i=l,2). 

We define the states of the system as follows; 

state O: Both elements are operative. 

state l : Element l is down and element 2 is operative. 

state 2: Element 2 is down and element l is operative. 

(4.6) 

· state 3: Both elements are in a failed state and this state is considered to 

be a system failure. 

The state transition diagram of this system can be given in Fig. 6. 

Define that 

Both elements up 

0 
Element I down 

~ Element 2 up 

0~~0 
~~ r::\ Element I up 

V Element 2 down 

Both elements down 

Fig. 6. The state transition diagram of a two element redundant system. 

P1(t) ; the probability that the system is in state i at time t where i=O, 3. 

P1(t,x); the probability that the system is in state i at time t and has been there 

between t-x and t, where i= 1, 2. 

Using these probabilities and Eqs. (4.4) and (4.6), we have the following system 

of difference equations. 

P 0 (t+Jt) =P 0 (t) [l -(..l1 +..l2)Jt] + [ P 1 (t, x)h1 (x)dx.Jt 

+ [ P 2 (t, x)h2 (x)dx.Jt+o(Jt). 

P 1 (t+Jt, x+Llt)=P1 (t, x)[l-h1 (t)Llt](l-..l 2Llt)+o(Llt). 

P 2 (t+Jt, x+Llt)=P2 (t, x)[l-h2 (t)Jt](I-..l 1Jt)+o(Jt). 

P 3 (t+Jt) = [ P 1 (t, x)[I -h1 (x)Llt](..l 2Jt )dt 

+ r P 2 (t, x) [I -h2 (x)Jt] (..l1Jt )dx+P 3 (t) +o(Jt) . 

When Jt-+O, Eqs.(4.7)-(4.10) become 

(4. 7) 

(4.8) 

(4.9) 

( 4.10) 
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( 4.11) 

( 4.12) 

(4.13) 

(4.14) 

Ifwe assume that both elements are simultaneously operative, the initial conditions 

are given by 

P 0 (0)=l, P 3(0)=0, l 
P 1 (0, x)=O, P 2(0, x)=O, 

P 1(t, O)=J.1P 0 (t), P 2(t, O)=J.2P 2(t). 

(4.15) 

Let the Laplace transforms of Po(t ), P 1 (t, x), Pit, x), and P 3 (t) denote, respectively, 

Lo(s)=[ exp (-st)P 0 (t)dt, 

L1 (s, x) = r exp (-st)P1(t, x)dt, 

L2(s, x)=[ exp (--st)P2(t, x)dt, 

La(s)=[ exp (-st)P 3(t)dt. 

( 4.16) 

( 4.17) 

(4.18) 

( 4.19) 

Solving the system of integro-differential-difference equations (4.11)-(4.14) with 

respect to L0 (s), L1(s, x), L2(s, x), and L3 (s) under the initial conditions (4.15), we 

have (see Appendix I) 

l L0(s)=-----------, (4.20) 
s+J.1[1-L01 (s+J.2)] +J.2[l -L02(s+J.1)] 

J. 1 exp [ -(s+J.2)x] exp [ -r h1 (x) dx] 
L1(s,x)= 0 

•-~··, (4.21) 
s+J.1[I-L01 (s+J.2)] +J.2[l-L02 (s+,?1)] 

J.2 exp [-(s+J.1)x] exp [ -r h2(x)dx] 
L2 (s, x)=~~-- ----- 0 

·--·· -··, (4.22) 
s+J.1[1 -Lo1 (s+J.2)] +J.2[1 - Lo2(s+J.1)] 



where 

Reliability Consukratwns on Redundant Systems with Repair 

La1(s)=[ exp (-St)dG 1(t), 

La2(s)=[ exp (-st)dG 2(t). 
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(4.24) 

(4.25) 

The inverse Laplace transforms of these equations (4.20)-(4.23) give the pointwise 

availabilities of this system. 

While, the MTSF for the system is defined as 

(4.26) 

provided that 

lim tPA(t)<oo, (4.27) 
1-.00 

where P A(t) indicates the probability that the system is in an operative state. For 

this system, using the above P 3(t), we have 

MTSF= [ [l-P3(t)]dt. 

Using Eq. (4.23), we have (see Appendix II) 

I +~ [l -La
1 
(-l2)] +~ [l-Lai.l1)] 

MTSF= -l2 -l1 
-l1[1-LaP2)] +-l2[l-La2(-l1)] 

(4.28) 

(4.29) 

Ifwe put, in particular, A1=A2=A and G1(t)=G2(t)=G(t) into Eq. (4.29), the 

MTSF becomes 

MTSF=l/-l+l/2-l[l-La(-l)], 

which corresponds to Eq. (8) of Liebowitz11
). 

The MTSF for a "2 out of n" system is given by Downton3
) as follows; 

MTSF= l/(n-1)-l+I/n-l[l-La((n-l)-l)], 

where the failure time of each element obeys the identical distribution 

(4.30) 

( 4.31) 
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F(t)=I- exp (-Jt), (4.32) 

and the repair time distribution G(t) is arbitrary. LG((n-1)..l.) is the Laplace-Stiel

tjes transform of G(t) with substituting s= (n-I )J. 

The MTSF for a "2 out of n" system without repair is given by 

MTSF= 1/(n-l)J+ 1/n..l.. ( 4.33) 

This derivation is easily obtained by substituting La( (n- I )J) =0. 

Let M, called an improvement factor11
) for a "2 out of n" system, define that 

M = !I_~-=-- I)+ I/n [I -LG((n -_I )J)] . 
1/(n-l)+l/n 

(4.34) 

This can be interpreted as the ratio of the MTSF for a "2 out of n" system with 

repair to that system without repair. The improvement factor is a measure of 

degree how the reliability of"2 out of n" system with repair increases compared with 

a similar system without repair. 

Here, we give some repair time distributions with mean Ifµ and their Laplace

Stieltjes transforms. 

(i) Exponential distribution 

G(t)=l-exp (-µt). 

LG(s) =µ/ (µ+s) . 

(ii) k-Erlang distribution 

G(t)=tkµ(kµt)k- 1 exp (-kµt)dt/(k-1)!. 

LG(s)=[kµ/(kµ+s)]'~. 

(iii) Regular ( constant repair) distribution 

{ 
0 Ost< I/µ 

G(t)-
1 1/µ-:::;,t. 

LG(s) =exp ( -s/ µ) . 

(iv) Uniform distribution 

Ost< (R-k)/µ 

(R-k)/µSt < (R+k)/µ 

(R+k)/µSt. 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

( 4.41) 
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1 
Lc(s)= 

2
ks {exp [-J(R-k)/µ]-exp [ -s(R+k)/µ]} . 

Applying these distributions to Eq. 

(4.34), Mis a function of p=J./µ. 

Table 2 shows the calculated 

results of M as a function of p = 
J./µ for the various distributions. 

Further, Fig. 7 shows the improve

ment factor Mas a function of p. 

This Figure suggests that the 

asymptotic forms of M have 

lE 

200 

100 ! 

521 

(4.42) 

M-;:::: 1/(n-l) + 1/n(n-l)p 
1/(n-l)+l/n 

(p-0) , (4.43) 

______J__ 

102 

___ 7_,---c==...J 

M-;::::l (P-=). (4.44) 

101 p-- 10 

Fig. 7. Mas a function of p for "2 out of 3" system 
(exponential case). 

The facts can be verified by the well-known expansions of the Laplace-Stieltjes 

transform Lc((n-l)J.), i.e., 

Le( (n-1 )J.) = 1-(n- l )J./µ+o(J.) 

-;::::1-(n-l)p (p-0). (4.45) 

and 

(4.46) 

wherefo, J;_, ·•• denote the intercept, slope of the repair time density at the origin. 

5. Semi-Markov Process Models for Complex Systems 

In the preceding section, we have discussed "2 out of n" systems. In this 

section, we shall discuss the general "m out of n" systems. A method of differential

difference equations is effective for the analysis of a "2 out of n" system, but an 

application of semi-Markov processes14
'
15

) is relevant to an "m out of n" system. 

An "m out of n" system with which we are concerned is composed of n elements 

and a repair facility. If not less than m of n elements are in a failed state, the 

system is considered to be in a state of system failure. Because the remaining 

elements, not greater than (n-m) elements, are overloaded, the system can be 

considered to fail.. We assume that the failure time distribution of each element 

is exponential, i.e., 
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Table 2. Improvement factor M(ratio of MTSF with repair to MTSF without repair) for a 
"2 out of 3" system as a function of p. 

Uniform Uniform 
p Exponential 2-Erlang 5-Erlang Regular a=0.8/µ 

b=l.2/µ 
a=0.5/µ 
b=l.5/µ 

0.001 201.00 200.90 200.84 200.79 200.66 200.66 

0.002 101.00 100.90 100.84 101.00 100.85 100.81 

0.003 67.67 67.57 67.51 67.47 67.45 67.49 

0.004 51.00 50.90 50.84 51.00 50.80 50.82 

0.005 41.00 40.90 40.84 41.00 40.81 40.82 

0.006 34.33 34.23 34.17 34.13 34.14 34.15 

0.007 29.57 29.47 29.41 29.37 29.37 29.39 

0.008 26.00 25.90 25.84 25.80 25.80 25.82 

0.009 23.22 ! 23.12 23.06 23.02 23.02 23.04 

0.010 21.00 20.90 20.84 20.80 20.80 20.82 
' 

0.020 11.00 ! 10.90 10.84 10.80 10.80 10.82 

0.030 7.67 7.57 7.51 7.47 7.47 7.48 

0.040 6.00 5.90 5.84 5.80 5.80 5.82 

0.050 5.00 4.90 4.84 4.80 4.81 4.82 

0.060 4.33 4.24 4.18 4.14 4.14 4.15 

0.070 3.86 3.76 3.70 3.66 3.66 3.68 

0.080 3.50 3.40 3.35 3.31 3.31 3.32 

0.090 3.22 3.13 3.07 3.03 3.03 3.04 

0.100 3.00 2.90 2.85 2.81 2.81 2.82 

0.200 2.00 1.91 1.85 1.81 1.82 1.83 

0.300 1.67 1.58 1.52 1.49 1.49 1.50 

0.400 1.50 1.42 1.36 1.33 1.33 1.34 

0.500 1.40 1.32 1.27 1.23 1.24 1.25 

0.600 1.33 1.26 1.21 1.17 1.17 1.19 

0.700 1.29 1.21 1.16 1.13 1.13 1.15 

0.800 1.25 1.18 1.13 1.10 1.10 1.12 

0.900 1.22 1.15 1.11 1.08 1.08 1.09 

1.000 1.20 1.13 1.09 1.06 1.06 1.08 

2.000 I.IO 1.05 1.02 1.01 1.01 1.01 

3.000 1.07 1.03 1.01 1.00 1.00 1.00 

4.000 1.05 1.02 1.00 1.00 1.00 1.00 

5.000 1.04 1.01 1.00 1.00 1.00 1.00 

6.000 1.03 1.01 1.00 1.00 1.00 1.00 

7.000 1.03 1.01 1.00 1.00 1.00 1.00 

8.000 1.03 1.01 1.00 1.00 1.00 1.00 

9.000 1.02 1.00 1.00 1.00 1.00 1.00 



Reliabiliry Considerations on Redundant Systems with Repair 523 

F(t) = 1-exp (-..tt) . (5.1) 

and the repair time distribution G(t) of the facility is arbitrary. 

Downton3
) has shown the Laplace-Stieltjes transform of the first passage time 

distribution, i.e., the time to system failure, for the general "m out of n" system. In 

particular, the MTSF for a "3 out of n" system is 

where 

c3 = l -LG[(n-l)..t]+LG[(n-2)..t] , 

d3 = 1-(n-l )LG[(n-2)-l] + (n-2)LG[(n-l )..t] . 

(5.2) 

(5.3) 

(5.4) 

Here, we investigate to what degree the reliability of a "3 out of n" system, in 

which the repair time distribution G(t) is k-Erlang increases comparing with the 

same system in which the repair time distribution is exponential. Using the 

Laplace-Stieltjes transform of exponential distribution ( 4.36), the following equation 

holds 

(5.5) 

While, fork-Erlang distribution we have 

(5.6) 

Let M define that 

M = MTSF for "3 out of n" system with k-Erlang repair time distribution 
MTSF for "3 out of n" system with exponential repair time distribution 

(5.7) 

Figures 8, 9, and 10 show M for various k-Erlang distributions and constant repair 

time distribution as a function of p in the case of n=3,4 and 5, respectively. 

These Figures suggest the useful properties concerned with repair time distri

butions. These properties are summarized below. 

(i) It has been believed that, if the failure time is exponentially distributed, 

the most effective repair time distribution is also exponential. But from 

these Figures, we know, if p is small, a k-Erlang distribution (including 

regular distribution) is more effective than the exponential distribution. 

This fact is valid for n=3,4 and 5. It is estimated to be valid for arbitrary 

n (n?:0). In particular, M tends to 2 as p-0. 

(ii) For n=3, when P is around Po= 0. 768, M is nearly constant 0.987, 
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Fig. 8. M as a function of p for "3 out 
of 3" system. 
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Fig. 9. M as a function of p for "3 out 
of 4" system. 

Fig. 10. M as a function of p for "3 out of 5" system. 

independent of a parameter k of k-Erlang distribution. Therefore, it 1s 

better that we adopt a k-Erlang distribution with a parameter k as large as 

possible for p smaller than p 0 when the repair time distribution is a 

k-Erlang distribution. For p larger than Po, we can get a converse 

conlusion. This remarkable property is vaild for arbitrary integer n 

(n~3). But, the larger n is, the smaller Po is. 
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These two properties should be proved by the following asymptotic behavior. 

Here, we develop the asymptotic behavior of M. First, for a small p, the 

Laplace-Stieltjes transform ofan arbitrary distribution function G(t) is approximated 

by 

where R2 is the second moment at the origin, and 

In particular, if G(t) is an exponential distribution, L0 (nJ.) is given by 

and 

Lo(nJ.) = 1/nJ.+o(l/J.) 

Therefore, Mis approximated, for 11=3, by 

and 

M~ 11+4.fo 
3 (I +2P) 

Furthermore, if G(t) is a k-Erlang distribution, Mis approximated by 

Therefore, we have 

Further, as J.->-0 for k1>k0 , it is evident from Eq. (5.14) that 

For a large J., Mis approximated by 

Thus, we have 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 
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(5.18) 

As p-+ oo for k1 > k0, we have from a simple calculation 

( 5.19) 

Therefore, the two properties stated above are justified from the asymptotic behavior. 

6. Conclusion 

Reliability analysis of complex systems is important and yet difficult. In this 

paper, we have discussed the redundant systems with repair. 

In the case of exponential-failure-exponential-repair, Birth-Death Processes 

are applied to the complex systems as mathematical models. An elegant treatment 

of these processes has been given by Karlin and McGregor. This treatment as we 

have stated in Section 2 is useful in the practical situations. 

While, in the case of exponential-failure-general-repair, Semi-Markov Pro

cesses are relevant to the systems. But, in particular, a method of Dieffrential

Difference Equations is intuitive and comprehensive to analyze a "2 out of n" 

system. 

Many numerical calculations of the system reliability as we have stated in 

this paper are useful. Further, taking account of many factors, these results are 

helpful in designing the optimal redundant systems. 
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Appendix I 

Taking the Laplace transforms of Eqs. (4.11)-(4.14) and using the initial 

conditions (4.15), we have 

Lo(s) • (s+tl1 +J2) = l + [ L1(s, x)h1 (x)dx 

+ [ L2 (s, x)h2(x)dx, (A.l) 

(A.2) 

(A.3) 
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(A.4) 

Solving Eqs. (A.2) and (A. 3), we have 

L1 (s, x) =C1 exp [ -(s+-l2)x] exp [ -f h1 (x) dx], (A.5) 

Lh, x) =C2 exp [ -(s+-l1)x] exp [ - [ h2 (x) dx], (A.6) 

where C1 and C2 are arbitrary constants. Using the initial conditions ( 4.15), we 

have 

Then, we have 

C1 =L1(s, o)=-l1L0(s), 

C2=Lh; o) =-l2L0 (s) . 

L1(s, x)=-l1Lo(s) exp [-(s+-l2)x] exp [-f h1 (x)dx], 

L2 (s, x) =-l2L0 (s) exp [ -(s+-l1)x] exp [ -f h2 (x)dx] . 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

Substituting Eqs. (A.9) and (A.10) into Eq. (A.I) and using the relation (4.3), we 

have 

I . 
Lo(s) =-------------
, s+-l1[l -LG/s+-l2)] +-l2[l -LG2(s+-l1)] 

(A.II) 

Substituting Eq. (A. 11) into Eqs. (A. 9) and (A.10), we have 

-11 exp [ -(s+-l2)x] exp [ -.[ h1 (x)dx] 
L1 (s, x) = --------~~--~, 

s+-l1[l-LG
1
(s+-l2)] +-l2[l-LG2(s+-l1)] 

(A.12) 

-12 exp [ - (s+-l1)x] exp [ -r hz (x) dx] 
L2 (s, x)= o . 

s+-l1[l -LG1 (s+-12)] + -l2[l -LG2(s+-l1)] 
(A.13) 

Substituting Eqs. (A.12) and (A.13) into (A.4), we obtain 

L
3
(s)= ,l/2 X 

s{s+-11[1 -LG
1 
(s+-12)] +-l2[l -Lo2 (s+-11)] 

{
l-LG2(s+-l1) + l-LG1 (s+-12)}. 

s+-11 s+-12 
(A.14) 
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Appendix II 

By the definition (4.28) of MTSF, we have 

MTSF= lim B(T), 
T ➔ oo 

where 

B( T) = r [1-P 3(t)]dt. 

Taking the Laplace transform of both sides ofEq. (A.16), we have 

L8 (s) = [ exp ( -sT) r [I-P3(t)]dtdT 

=+[ +-L3(s)]. 

Using the final value theorem of the Laplace transforms, we have 

lim B( T) = lim sL8 (s) 
1' ➔ 00 s➔O 

= lim·[__!_ - L3 (s)] 
s ... o s 

l + ~1 [l-LG1(.12)] +~2 [l-LGP1)] 
2 1 

A1[l -LG/.12)] +.12[l -LG2(.11)] 

Thus, we obtain 
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