A Theoretical Consideration on Helicoidal Girder
By
Ichiro Konisui*, Naruhito Smiraismi* and Shun-ichi Kanse*

(Received Sept. 30, 1967)

A theoretical consideration is given on an arbitrary supported helicoidal girder and
an approximate method of analysis is presented, taking into an account the St. Venant’s
torsion in which the fundamental relationship between the sectional forces and defor-
mations are obtained by use of the Reduction method.

Introduction

Recently a number of curved as well as twisted girders are planned from
various structural demands for design of rather complex interchange structures
for the urban express highways. The problems for the design of such helicoidal
girders seem to refer to two aspects; namely (i) the exact analytical theory to
clarify the structural responses under the design loads and (ii) the simple approxi-
mate methods for the designer’s use.  As the first step of analysis some fundamental
considerations for structural characteristics of a helicoidal girder are given for the
former purpose. Previously, the theoretical studies on this problem have been
performed by a number of researchers, such as M.C. Holmes", Y.F. Young &
A.C. Scordelis,” F. Baron,” K. Washizu,” et al. Young and Scordelis investigate
the heliocidal girder, fixed at ends, subtending a horizontal angle of 180 degrees,
with a slope of 30 degrees and compare the theoretical results with the experimental
ones?., F. Baron® formulates a general solution of curved structures by use of
the matrix method and showed a numerical example. So far the most rigorous
investigations on the curved and twisted beam of the cantilever type are presented
by K. Washizu®. Based on above mentioned results a consideration is given on
the arbitrary supported helicoidal girder and an approximate expression for response
is presented.

1. System of Coordinate

The equation of the line of centroids of the cross sections of the girder (this
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line shall be called hereafter the axis of the girder) is expressed as follows.

r=r(s) =rd) ‘
= (a cos 0)i+(asin 6) j+ (b6) k (1. 1)

where i, j and k are unit vectors along the Cartesian coordinate axes, a is the radius
of the circle which is the projection of the axis on the plane OXY, & is a coefficient
proportional to the pitch of the helicoidal curve and € is the polar angle in the
plane OXY.

It is possible to take the arc § measured from the X axis, on which the terminal
point of the axis lies, as the parameter along the curve,

Let £,, £, and £, be the unit tangent vector, the unit principal normal
vector, and the unit binormal vector of the girder axis respectively.

The relations between them which are well known as the Frenet- Serret for-

mulae of the curve are expressed alternatively as follows

d d

d d

7&:1 = —rf,+1¢, 71% = —cos ¢&,+sin ¢, (1.2)
de, dé, .

df =% 0~ T

where £ and t are the curvature and the torsion of the girder axis respectively,
and are given by

= a(@Hb) ot = b)) (1.3)

¢ is the angle between the OXY plane and the tangent to the girder axis at any
point.

The cosine-directions of the triad of vectors particular to the girder axis with
respect to those fixed in space are given in Table-1. .

Table 1
Z i E
§ % —sin § cos ¢ —cos § cos ¢ sin ¢
é y —cos 8 —sin @ 0
€. — sin f sin ¢ —cos @ sin ¢ —cos ¢

where

cos ¢ = a+(a*+b%)"? sin ¢ = b (a*+-6%) 7 (1.4
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For any cross section of the girder defined by the angle 6, a system of rec-
tangular coordinates with the origin at the centroid O is taken so that they con-
stitute a right-handed system of coordinates in the manner that the axes are so
directed that x, y and z coincide respectively with the tangent, the principal normal
and the binormal of the girder axis.

The position-vector of any point on the section contour which is denoted by
P is expressed as follows, provided that it refers to such a coordinate system.

P =y{,+2, (1.5)

and thus the position vector of the same point which is referred to the coordinate
system fixed in space and is denoted by R is expressed as follows.

R=rt+P
= {(a—p)(cos 0+ zsin ¢ sin 6}i
+{(a—y) sin 6 —zsin ¢ cos 6} j+ (b6 z cos ¢)k
= A cos (6—a)i+A4sin (0 —a)j+ (60 +z cos ¢)ke = Xi+ Y j+Zk (1.6)
where . :
4= {(a—y)*+2*sin® ¢} V2 cosa = (a—yp)-A47}
sina = zsin ¢+ 4™
It is clear from the above expression that any points on the section contour
describe helicoidal curves corresponding to an increase of the angle.
Since the Jacobian determinant obtalned from above expression does not

vanish, any points on the section contour are decided uniquely by the pairs of
parameters (0, y, z) or (s, y, z).

9(X,Y,2Z)
8(0, », z)

J = (@45 —0) (@ +5) %0

2. Deformation of the Girder Axis

The deformation of the axis is characterized by its rotation which is denoted by
¢ and by its displacement of which components are denoted by u, » and w in the
directions of the x, y and z axes respectively.

And thus the expression of the displacement of the axis is written in vectorial
form as

V = u(s)€,+o(s)E,+w(s)é. (2.1)

The quantities relating directly to the deformed state of the girder will be
marked hereafter by an asterisk.



4 Ichiro Konisui, Naruhiro Suiraisui and Shun-ichi Kanse

Provided that the relation between the line element of the axis after defor-
mation and one before deformation is given by ds*=(14-¢)ds the tangent vector

of the axis after deformation is given by

dr¥ dr* (dr dv
e = (l—e) - = (1 — — T —
ds* (1= ds (1=e) d3+ ds )
~ fx—l—(mu -|—@-—‘rw )§y+(w+@)§z (2.2)
ds dJ‘

The square of the length of the line element of the axis after deformation is
given by
ds¥* = dr*«dr* = (dr+4-dV)-(dr+4dV)
=~ dr-dr+2dr-dV
= ds*+2ds€,,-dV (2.3)

and the increment of the displacement is also given by

_dV, _[(du_ @) dw }d 9.4
v = ds ds {(ds lcv)ﬁx—i—(mu—{—ds fy—i—dsﬁz ' ( )

Substituting this expression in above one, the relation between the square of
the length of the line element before deformation and one after deformation can be

written as follows
2 du 2
ds*¥* = {14-2(——rK0v ) ds (2. 5)
ds
from which the expression of ¢ is given finally by

ds*—ds _ du
= T8 2.6
¢(s) ds ds " 2.6)

and this is called the streich of the axis.
The infinitesimal rotation vector of the axis caused by deformation, which is

denoted by & is obtained using the epxression (2.2) as

dr dr*
2(9) = ¢, ds  ds*

=06, +2,£,+2.¢,
‘Qx(‘y) =¢

2y(s) = —(w#%) (2.7)

dy
,Q =3 —_—
2(5) xu+a’x Tw
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The rate of rotation vector denoted by ¢ is expressed as follows

¢(s) = ‘% = gL 4L, 4.8

= %—{—mw—i-/cd—z‘:
de,
P,(5) = &2, W—T'Q’ (2. 8)
dv d*w
Kp—KTU rds—l—r w P
2
g.(s) = T‘Qv'*_d *
ds
du ., d% dw
= B _ —9r
F ds v+d52 : ds

3. Deformation of the Cross Section

The displacement of the cross section based on the Bernoulli-Navier hypothesis
(which is the same as the law of plane sections) is given in vectorial form as
Vo= V+2XP = af, +05,4+0¢, 3.1
where

i=u—L2,y482,z
- (o 4%)
u (/cu—l—d Tw ) y—\ ro+ 7 z

s
I=v—8,z=0—92z

B =wtl,y=wtey

The warping displacement is considered as below. Using Table-1 and next
relations between g, b and &,

a=r(&f4+7H7! b=r(®+H)"

the radius-vector of a point on the axis which issues from the origin fixed in
space is expressed by using unit vectors particular to the axis as

r(s) = (£ 4-7%) sE, — k(KP4 T ar (B2 7)) TS, (3.2)

and also the position-vector of a point on the section contour is expressed in the
same manner as
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R(s, y, z) = r(s)+P(s, 9, z)
() s, — (R ) b+ e () s 2, (3.9)

by using (1.2), the base vectors are obtained as follows.

g, = aa_lsz = (l—m_y)fx—z'zﬁy—l—ryfz
_OR
5, = R, (3.4
_oR _
T8z =

where g, is the vector tangent to a generator of the girder, and unit vector in

this direction which is denoted by e, is
e, = (9.°9,)"" 9. = &." 9,
where g,,”'/* is obtained from equation (3.4) as
8" = {1 =r)"+7* (" +2)} 7
% (1) k2 (1) G
The unit vector tangent to a generator of the girder and the partiél derivatives

of this vector with respect to coordinates s, y and z must be calculated for the sake

of the estimation of strain components.
e,~ §x—fz(1 _'C.y) —x§y+7.y(l _’C.y) _léz

56 ~ kra(l—ry) "k fe—ey(1—09) e, — 21 —r3) X

a (3.6)
€r ~ —rktz(l—£y) %+ r(l—xy) 7%,

oy ‘

98~ —2(1—ry) 7,

0z

4. The estimation of Strain Component

Let V,, be the vectorial expression of a warping displacement of the girder,
it can be assumed using unit vector e, as

Vo = U('%)’vs z)e,(s, », z) » (4.1)
Since the total displacement of the section is

V= ff(l)-i- f’(z)



A Theoretical Consideration on Helicoidal Girder 7

the position-vector of the section contour after deformation is given by
R* =R+V

Strain components of the girder are obtained by definition from the difference
between the square of the length of a line element after deformation and one before

deformation,

d§*2—d8* = dR*-dR* - —dR-dR
= (dR+dV)-(dR+dV)—dR-dR
~ 2dR-dV = 2dR-7-dR (4.2)

While from (3.4) the increment of position-vector dR is given by the formulae
and from (3.1) the increment of the displacement vector based on the law of plane
section is written as

Ve, = {(g—f—mﬁ)d +9 4y+ 24z e,
+ {(£+xa—rw)ds+a—;dz}§, (4. 3)
+{<Z—f+rﬁ>ds+%§4y}§z

and from (4.1) the increment of warping displacement vector is given by the

formulae

AV, = (a—Ud +—d —|———a’z)
ds dy

( %€ 4542 ”dy—}— ‘dz) (4. 4)
Considering these increments of vectors and (3.6), strain components 7,
(¢, j=x, y, z) are expressed in terms of (2.6), (2.8) as
~ (1=53) e+ (5 +2) (1—03) et (1—59) 24,
au
—(1=£y) g+ (1—ry) ™ 7=

2

TxJ'

F 0= 22— S 1) 2 (1) 0]

reem H{01=0) 91— 2L 1—g) L 1-e) 01} @.9)

q

TJ’J’

—rz(,;; {(1—sp) U}
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"'l‘z'i —xy) 7t —z'—a— —xy)?
re = gl o g - U= L 11 -0)"0])

0 -
Tez == U’a—z{(l—")’) 1(]}

but these expressions are derived by taking into account the following relation
between the line element in the direction of vector £, which issues from any

point on section contour and that of the girder axis before deformation

d8¢,, = {(1—ry)*+7*(y* 42}V ds =~ (1 —xy)ds . (4.6)

Strain components 7,,, 7,, and r,, appear from the fact that the tangent to
a generator of the girder is not in accord in general with that of the girder axis
as it is clear from (3.6), and so is the second term of the strain components 7,
and 7,,.

Ordinally rampway is characteried as

7y, 12 (l—cy) =~ 1

therefore, provided that ry and 7z can be neglected compared with (1—«£y)
and so the terms with ry and rz can be dropped out, the strain components are

approximately expressed as follows,

Tas <‘—W>“E+<l—w>“z¢y—<1—xy>—*y¢z+(1_my>“?ef—f
1 . 5 .

r”z?{_“‘”) z*"x+(‘—"y)a—y[<1—w) U]} 4.7)
1

sz ~

Ha—s e+ (-0 21005 01

and more roughly they are reduced to the expression by cylindrical coordinates of
which Z axis is inclined by the angle ¢ with respect to vertical axis in a sense
fixed in space at any cross section of the girder.

And thus the warping displacement U can be assumed to take the form of
the product of a basic transverse distribution (the unit warping function) and rate
of twist.

U= —w¢,

5. Equilibrium Equation

Let £ be the stress vector acting upon the section contour of which components

are o,,, 0,, and o,, along the axes, that is

f=o0,6.+ axy§y+ 0z
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Using stress vector £, the force vector F (with the components N, Q, and
Q , along the axes x, y and z) and the moment vector H (with the components T,
M, and M, along the same axes) acting upon the cross section are obtained by
definition as follows.

F= S fdydz = NEA+Q £, +Q.E,
(5.1)
H=S (Pxf)dydz = TE Mg, + ML,

Let G(f) be the external force vector acting upon the section 6=8 with the
components G,, G, and G, along the axes x, y and z respectively and K(f#) be the
external moment vector given by its component K., K, and K, along the same
axes, that is

G(g) = Gz§x+Gy§y+Gz§z
K@) = K. +K,£,+K.E,

Z

P

Fig. 1. Coordinate Systemand Description of Description of
Deformations.

F(6)
HB)

~F(0) 16(8)

6=0

Fig. 2. Equilibrium of Forces.
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The internal force vector and moment vector in any cross section =8 are
found using that of the cross section §==0 and external ones from usual equilibrium
conditions of the girder, considered as a rigid three-dimensional body.

Referring to Fig. 2, the vector equations of equilibrium are written by
FO)+GON(6—F)—F(0) =0
H(6)—H(0)+K@ U (0—6)+Lx (—F(0)) (5.2)
+hxGONOG—-F) =0
where 11(6—8) is the unit step function defined by

1 for 6>8

n(e—6) =
( ) {0 for 6>0

L is a position vector with the components L,, L, and L, which is drawn from the
point on the axis considered to the origin of the axis and A is a position vector given
by its components k,, &, and £, which issues from the same point to the application
point of external force and moment.

The relations between the triads of vectors particular to the axis defined by
0=0, and those defined by §=¥6, are needed in order to reduce the forees and the
moments in any cross section to those in the section considered.

Taking into account of the Table-1, they are expressed in the form of matrix

as follows.
{£(6,)}° = [A(6,—6,)1{(6)} (5.3)
The elements of the matrix [A] which are function of angle 6 are given by
a,, = cos® ¢ cos 8+sin’® ¢ a,, = —cos ¢psin@ a, = sin ¢ cos $(1 —cos 0)
a, = cos ¢ sin 0 a,, = cos 0 8y, = —sin ¢ sin 0 (5.4)
a,, = sin ¢ cos (1 —cos 8) a,; = sin $sin @ ag = sin® ¢ cos 8 +cos® ¢

From the above expressions and the fact that matrix [A] is a orthogonal one,

the following relations are obtained.
[A(—06)] = [A(6)]" = [A(O)) (5.5)

Considering these relations, the ones needed for the translation of the force and

moment vector are given by
EOHFOY={£@}HAGIFO}  {£O} {H(0)} = {£(6)}AO){H(0)}*
{E@OHe®} = {£OHAC-HH{GO)} {EOHKEO)}={LO)HAE—-){K(©O)}

The position vector A is expressed in the form of matrix by taking into account
of the Figs. 1, 2 and Table-1,
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h=r@)—r6) =c"seco{E(O}{R(O-O)} (5. 6)
where : : :
h, = —{cos® ¢ sin (0 —B)+(6—0) sin® ¢}
k, = {l—cos (6—8)} cos ¢
k, = {sin (6 —8)—(6—8)} cos ¢ sin ¢

In the same manner, the position vector L is written by

L = r(0)—r(6) = £ sec ¢ {£(0)} {R(6)}* (5.7)
Introducing a new matrix defined by
0 -k, &,
[R)l= { E, 0 —z,} (5. 8)
—k, K, 0

the vector products of the vector & and G, L and F(0) are expressed as follows.

hxG(@) = {£O}RO-IAO-E)HEE)} s sec ¢
L F(0) = {£(6)} [R(6)][A(O)]{F(0)}*x" sec ¢

For the sake of simplicity, the product of matrices [&] sec ¢ and [A] are
replaced by new matrix [B] of which are written as follows.

b,, = cos ¢ sin ¢{2(1 —cos 8) —0 sin 6}
~ by, = sin ¢(sin 6 —0 cos 0)
by, = —sin ¢(sin 0 —8 cos 8)
by, = 0 sin 0 —tan ¢
by, = (cos® ¢ —sin® ¢) (1 —cos 0) 40 sin 0 sin® ¢ (5.9
b,y = cos ¢ sin 0-+0 cos 6 tan ¢ sin ¢
by, = (cos® ¢ —sin® ¢) (1 —cos 6)+0 sin 0 sin® ¢
by, = —cos ¢ sin 6 —0 cos 0 tan ¢ sin ¢
by = —2 cos ¢ sin ¢(1—cos 0) 40 sin 6 tan ¢ sin’ ¢

©w

2

8
!

Using the previously obtained relations and the dimensionless internal and
external forces and moments defined by

F(®)=EJF(6)  H(©)=«cE],H(0)

GO =+EJGO) KO =«EJ,R®@) (5. 10)

in which EJ, is the moment of inertia with respect to y axis.

The matrix equation of equilibrium are finally expressed as follows.
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{F(6)} = [A(0)]{F(0)} —[A(0—0){G(B)} N(6—F)
{H(0)} = [4(0) {H (O} —[A(0—O)[{R (@)} 1(0—) (5. 11)
+B(O){FOYB(O—){G @)} 10—F)

6. Fundamental Differential Equation for the Stress
Resultants and Displacements

From equation (4.7), the position of the coordinate origin is determined by

the following two orthogonal relations
S (1—£)"ydF = 0 S (l—£)"zdF = 0 6. 1)
F F

and the position of the pole of the sectorial areas, in other words, the shear center is

determined by the two orthogonal ones
S (1—xy) ywdF = 0 S (1—k3) 'zwdF = 0 (6.2)
F F

and the position of the origin of the sectorial areas is determined by the following

equation

L(l—xy)“wdF =0 (6. 3)

but these points are substituted for simplicity by those determined by cylindrical
coordinate system.
For brevity, the non-dimensional forms of the rate of rotations and displace-

ments which are marked similarly by a bar are introduced and are given by the

following relations respectively

F=r V=«V (6. 4)
According to (2.8), (4.7) and (5.1), and considering the three orthogonal

relations (6.1), (6.2) and (6.3), and neglecting the terms with z® in (2.5), and

taking into account the relation 5—: £ sec ¢ -(;f% <(—1‘% which is denoted hereafter by
s

the symbol D), the non-dimensional components of the rate of rotation ¢,, &,
and the stretch of the axis ¢ (which has as a matter of course no dimension) are
expressed in terms of the non-dimensional components of the stress resultants as
follows
e ~ sec ¢Du—ov = 6N (6. 5)
J, ~ p—tan ¢-1—2 tan ¢ sec Do —sec’ $D’W = aM,+BM, (6. 6)
J, =~ sec ¢Du-sec’® D0 —2 tan ¢ sec $Dw = B(M,+rM,) (6.7)
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where @, §, 7 and & are non-dimensional section constants defined by

«= Jy'Jz/Jyzz p= Jy/Jy:
T Uy Sl Ty -1 Ty JelJye) 1 (6. 8)
r=Jol s 5= rJ,IF

And the torque referring to the shear center is expressed approximately in
terms of ¢, as follows

J, =~ sec ¢Do-tan ¢o-+sec $Dw ~ v(u*—D*) (T 42,0 ,— 5,Q..) (6.9)
where v and 4° are non-dimensional section constants defined by

Jy GJr 610
£*C,, “ £*EC, (6. 10)

V=

in which J and C, are torsion constant and warping constant respectively.
From equations (6.5), (6.6), and (6.7), the differential equation with respect
to @ is obtained as follows.

D{D*+ (143 sin® ¢)} (D*— st w
= —cos’ ¢pev+(T+2,0,— 5,0 .)—cos’ ¢+ D(D*— 1) (aM,+BM,)  (6.11)
—2 cos® ¢ sin ¢« B(D*— ) (M, +1M,) +cos® ¢ sin ¢-8(D*—u*)N

and the solution of this differential equation is

w = C,+ G, sin (143 sin® ¢)0+-C, cos (143 sin® ¢)6
+C, sinh 404 C; cosh 8
—cos’ ¢ev - L(T+2,0,— 5,0 ,)—cos® ¢- LM,
—2 cos® ¢ sin ¢+ A7« LM, +cos® ¢ sin ¢+ LN

(6.12)

where C,~C; are integration constants and L{®, L{® and L{’ are integration

operatiors defined by

0 __ 1 o _ 1

- —_ LY =
D*+1+3sin’ ¢ ?  D(D*+1+3sin’ ¢)

(6.13)

o __ l

LY =
P D(D*+1+35in® ¢) (D*—2)

and the terms with these operators give the particular solution in which the stress
resultants at the section §=0 are included which are as yet unknown.
Similarly the differential equation with respect to o is

Do+ (1 —sin® ¢)0 = cos® ¢+ frM,—cos®* ¢+ N+2 sin ¢Dw (6. 14)

and the solution of this differential equation is
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9 = C;sin (1 —sin® ¢)0+C, cos (1 —sin® ¢)0
+cos? ¢+ Br LY M, —cos®* ¢+ 0L N+ 2sin ¢+ LY (Dw) (6. 15)
where
1
LY =" 6.16
¢ D*41—sin® ¢ ( )
By substituting (6.12) into (6.14), 7 is expressed by integration constants
C,~C, and the stress resultants at the section §=0.
From (6.5), @ is written by

2 =~ cos pD (00 N)4-C, 6.17)

and introducing (6.15) into (6.17) @ is expressed by the integration constants
C,~C; and the stress resultants at the section.
From (6.6) ¢ is given by

@ =~ tan ¢-u-+2 tan ¢ sec $Dv+sec? pD*w-+all ,+ M, (6.18)

and expressed by the same unknowns as z by subsvtituting (6.12), (6.15) and (6.17)
into (6.16).

Finally the warping moment is given by

M, ~ D@, ~ sec $D*M,+2 tan ¢+ frDM,—tan ¢-0DN
+sec® ¢D*(D*+ 143 sin’ ¢)w (6. 19)

Using these equations the unknowns are determined by imposing the proper
boundary conditions at the both ends of the girder.

Conclusions

In this analysis an approximate solutions for arbitrary supported helicoidal
girder are presented. The expressions in this paper should be more simplified
for design purposes and although it also calls for detailed numerical studies the

fundamental characteristics of helicoidal girders are clarified in' this paper.
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