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Sub-harmonic Oscillations m Three-phase Circuit 

By 

Akira K1sHIMA 

(Received September 5, 1967) 

Sub-harmonic resonance in a three-phase circuit related with a power circuit with 
series capacitors is studied. 

The paper describes that the equations which govern the oscillations in the system 
are under some restrictions transformed to the form: 

(k = 1, 2, 3, 4) 

and the internal resonance of this system is correlated with the sub-harmonic resonance 
which occurs in the original three-phase system. An analog computer study on this 
problem is included. 

1. Introduction 

When an unloaded or lightly loaded transformer is energized through series 

capacitors in a power circuit, sub-harmonic resonance may occur. This peculiar 

circuit behavior depends essentially on the nonlinear characteristic of the trans

former. The conditions on the circuit parameters to ensure the absence of 1/3-

harmonic resonance have already been presented in the previous publicationP>, 

where the circuit under consideration is a single-phase equivalent circuit. 

Analysis of nonlinear oscillations in three-phase circuits is rather laborious 

and has been presented by several authors2
'-

5
'. But, so far as the author knows, 

papers which deal analytically with the problem of sub-harmonic resonance in a 

three-phase circuit with series capacitors are few. 

The circuit under consideration in this paper IS a simplified three-phase 

circuit, but by this simplification little generality is lost. This paper deals only 

with the sub-harmonic oscillation of the order 1/3 which may commonly be en

countered in the application of series capacitors to a power circuit. But the 

analytical procedure presented here can also be applied to other types of the non

linear oscillation in a three-phase circuit. 
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2. Funclam.ental Equations and their Transformation 

To simplify matters it is assumed that the system of a transmission line with 

series capacitors is symmetrical and the impressed voltages are balanced. The 

system is roughly equivalent to the simplified network as shown in Fig. 1, where 

the iron-core inductors are connected in delta to render a star-delta connected 

transformer. We approximate the characteristic of the iron-core inductors by a 

cubic polynomial in terms of the numbers of flux interlinkage. 

R _ia 

Ve 
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C 

Fig. l. Three-phase circuit with series capacitors. 

The fundamental equations for the circuit shown in Fig. l are as follows: 

Ri,.+v,.+v,.' = e,. = v2Ecos (wt+9') 

Rib+vb+vb' = e,, = v2E cos ( wt+9'- ~) 

Ric+vc+vc' = ec = v2Ecos ( wt+9'-
4
;) 

. _ cdv,. 
t - -0 dt ' 

vb'-v' = R'i '+dy,,. 
c a dt 

v '-v '= R'i,,'+dy,l!. 
c a dt 

, , R'' '+dy,c V ·-vb = t -
.. C dt 

i,.' = C1Y'a+CsY'aa 
i,,' = c1y,,,+c3y,,,3 
ic' = C1Y'c+ca4'/ 

} 

l 
. - Cdvc t - -
C dt 

( I ) 

( 2) 

( 3) 

( 4) 

( 5) 
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where 

R =equivalent line resistance per phase 

C =capacity of the series capacitor 

R' =resistance of the iron-core inductor 

c1 , c3 =characteristic constants of the iron-core inductor 

i0 , ib, ic =currents through the capacitors 

i0 ', i/, i/ =currents through the iron-core inductors 

v
0

, vb, vc =terminal voltages across the capacitors 

va', v/, vc' =voltages at the inductor terminals with respect to ground 

<pa, <p b, <pc =numbers of flux interlinkage of the inductors 

E, w, <p =effective value, angular frequency and phase angle of the im-

pressed voltages 

In general the equations in terms of the phase (a, b, c) variables are not the 

most convenient form to solve the problems. The preceding equations are rewritten 

in terms of zero-phase-sequence-, forward-, and backward-variables as follows: 

(See Appendix l) 

and 

Ri0+v0 +vo' = 0 

Ri1+v1+vi' = ,/f E 

Ri2+v2+v/ = v'fE 

I 
} ( 6) 

( 7 ) 

( 8) 

( 9) 
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io' = c1c/J0+ca[}_cp/ exp {j3(wt+c/J)}+}_c/J/ exp {-j3(wt+si,)} 
8 8 

+ ~ c/Joc/J1c/J2+c/J/] 

ii'= c1c/J1+c3[ ! c/J/c/12+ ~ c/J0c/J/ exp {-j3(wt+si,)}+3c/J/c/J1] 

i/ = C1c/J2+ca[ 1- c/J1c/J/+ ~ c/J0c/J/ exp {j3(wt+si,)}+34'/c/J2] 

The forward- and backward- variables are always complex conjugates: 

i2=i1*, i/=ii'*, c/J2=c/J1*, 

v2 = v1 * , v/ =_ vi'* } 

29 

(10) 

( 11) 

and, as usual, the asterisk indicates complex conjugate. This complex conjugate 

relationship leads to the fact that the third equation in each of Eqs. (6) through 

(10) is superfluous since it is the conjugate of the second one. From the first in 

Eqs. (6) (7) and (9), we have 

i0 =0 (12) 

v0 = -vo' = const. (13) 

Now, in order to simplify, let us introduce new variables x, y, z and , with the 

following relations: 

and denote: 

R' r=R+-
3 ' 

av ,/, 
z = - ;-W'f'o, 

· v3 l 
R' 

r'=-
3 ' 

1 
k=-, 

wC 

(14) 

l (15) 

where av is an arbitrary real constant. Eliminating io', ii', v/ and i in Eqs. (6) 

through (10) and substituting Eqs. (11) through (15) into the result obtained, 

we have 

dz = -r'fo(x, z, ,) 
d, 

( 16) 
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where 

dx = e-jx-y-rf,_(x, z, -r) 
d-r 

dy = -jy+kJ;(x, z, -r) 
d-r 

Akira KrsHIMA 

l 
fo(x, z, -r) = 1:1z+1:3[_!__x3 exp (j3-r) +_!__x*3 exp (-j3-r) 

6 6 

+2xx*z+: z3
] 

( 17) 

(18) 

J;(x, z, -r) = 1:1x+1:3[x2x*+2x*2z exp (-j3-r)+4xz2
] (19) 

Neglecting the resistance of the iron-core inductors, we have from Eq. (16) 

(20) 

This leads to z=const. which means permanent magnetization, and we assum 

z=O (21) 

Substituting z=O into Eq. (19), we have from Eq. (17) 

: = e-jx-y-r{1:1x+1:ax2x*} l 
dy = -Jy+k{l:1x+1:3x2x*} 
d-r 

(22) 

Note that time -r does not appear explicitly in the right-hand sides of Eq. (22). 

For the state of equilibrium (x0, y0), we have 

jxo+Yo+r(1:1+1:"aXoXo*)xo = e } 

k(1:1+1:"aX0Xo*)xo =iYo 
Setting 

X0 = Po exp (j80) } 

Yo= -jk(1:1+1:"aP/) Po exp (j8o) 

we have 

(23) 

(24) 

Eq. (25) is of the third degree in p/. If1:1>0 and 1:3>0, all the roots, p/'s are 
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positive only when, 

where 

a>c-1>0, (a-C-1)
2 >3/32 

e/>e2>e/ 

k 
a= r2+k2' 

e
2

} 1 -
e2 -

2 

} 
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(27) 

(28) 

(29) 

If the condition (27) is not satisfied, one root is positive and the others are complex 

conjugate. Then, corresponding to the positive root, a state of equilibrium may 

exist. The stability of the equilibrium will be investigated in Appendix II. Now, 

let us introduce new variables u and v by the following equations: 

x = x0 +u exp (j80 ) 

Y = Yo+v exp (j80) 
} (30) 

where x0 ,y0 and 00 are given by Eqs. (24) (25) and (26). Then, Eq. (22) becomes 

du . r r - = -Ju-v-- (m3 +m1) u-- (m3-m1) u* 
dr 2 2 

-rra(p0u+2p0u* +uu*) u 

dv . k k - = -1v+- (m3 +m1) u+-(m3-m1) u* 
dr 2 2 l (31) 

+kr3(p0u+2p0u*+uu*) u 

where 

(32) 

3. Solution of Transformed Equations 

In this section, we look for a periodic solution of Eq. (31) when rand C-3 are 

sufficiently small quantities. If we set 

U = Xi+~Xz } 

v = x3+Jx, 
(33) 

where x1 , x2 , x3 and x, are real variables, we have from Eq. (31) 
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dx1 = -rmax1 +x2-xa-rca{P0(3x/+x/) + (x/+x/) X1} 
dr: 

dx2 _ { 2 ( 2 2) } - - -X1-rm1X2-X4-TCa PoX1X2+ Xi +x2 X2 
dr: 

dxa = kmax1+x4+kca{P0(3x/+x/)+(x/+x/)x2} 
dr: 

dx4 = km1x2-xa+kca{2p0x1x1+(x/+x/)x2} 
dr: 

(34) 

We turn, for a time, to a discussion of the character of the generating system of 

Eq. (34). Ifr=O and l'a=O, Eq. (34) becomes 

dx1 dx2 

l 
- = X2-Xa, - = -X1-X4 
dr: dr: 

dxa k dx4 k 
(35) 

- = max1+x4, - = m1X2-Xa 
dr: dr: 

where m1 and ma remain unchanged. The solution of Eq. (35) is related to the 

nature of the roots of its characteristic equation: 

(36) 

If km1 < 1 <kma holds, Eq. (36) has a pair of imaginary roots and two real roots, 

whereas if either km1> 1 or kma< 1 holds, Eq. (36) has imaginary roots only, that 

is, the system of Eq. (35) has two periodic solutions. 

We consider the later case where the roots of Eq. (36) are ±jw1 and ±jw2 • 

Three cases are possible: ( 1) when w2 = J.IW1 where J.I is an integer, that is, the 

exact internal resonance; (2) when w2 ~ J.IW1 , that is, the neighborhood of the 

internal resonance; and (3) when w2 =I= vwi, the non-internal-resonance. We will 

consider the cases (1) and (2). We introduce ha and ha and rewrite Eq. (34) as 

or 

dx2 = -x1 -x4 +c};(xu x2 ) 

dr: 

dxa = hax1 +x4 +cJ;(xi, x2 ) 

dr: 

dx4 = h1x2-xa+cf.(x1' X2) 
dr: 

(k = 1, 2, 3, 4) (37) 

(38) 

J 
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eJ;(xi, x2) = -rm3xi+rc-3{p0(3x/+x/)+(x/+x/2
) zi} 

ef;(x., x2) = -rmiX2 -rC-3{2p0xix2 +(x/+x/)x2} 

ef3(xi, x2) = (km3-k3 ) Xi +kc-3{p0 (3x/+x/) + (x/+x/) Xi} 

eJ;(x2, Xi)= (kmi-h2)x,+kc-3{2p0xix2+(x/+x/)x2} 

33 

l (39) 

The reason why hi and h3 are introduced is the following: If e=0, Eq. (38) 

becomes 

dxi dx2 

l 
- = X2-Xs, -= -Xi-x,, 
d, d, 

dxa h dx, = hiX2-Xa 
(40) 

- = aXa+x,' 
d, d, 

Then, we denote the roots of the characteristic equation of Eq. ( 40) as ±jwi 

and ±jw2 where w2>wi, and we determine the values of hi and h3 to satisfy the 

relation w2 = IIWi • 

In case (1), (km3-h3) and (kmi-hi) are equal to zero, whereas in case (2) 

they are not equal to zero but sufficiently small. We consider Eq. (38) as a nearly 

linear system. If e=0 in Eq. (38), we have the generating system (40) whose 

solution is 

(41) 

where 

(42) 

and a, b and c are constants. Furthermore 

<pi = <p, <pz = jµi<p, <p3 = j(µi -wi) <p, <p4 = (wiµi-1) <p, 

Xi= X, X2 =jµ2x, X3 =j(µ 2 -w2) X, X4 = (w2µ2-l) X • 
(43) 

<p and x being constants, and 

(44) 

Now, we will follow the Bogoliubov-Mitropolsky mthod6 >. Note that in the 

non-internal-resonance case, there is no relation between the phases of two oscil

lations; here, on the contrary, this relation plays an important role. 

We have the first approximation of the solution of Eq. (38): 
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x,. = a<p,. eN+acp,. * e- N+ (b-jc) x,. ei•¢ 

+(b-jc) x,.* e-M (k = I, 2, 3, 4) (45) 

where 

l (46) 

A1 , B1 , C1 and D 1 can be determined by the similar method to that in Bogoliubov

Mitropolsky's text. (See Appendix III) Eq. (46) cannot be integrated in a 

closed form. However, some qualitative aspects of the solution can be establised. 

There are two principal forms of stationary oscillations: (a) those which correspond 

to the singular point of Eq. (46) and (b) oscillations corresponding to the periodic 

solution. The singular points are given by the solution of the set of equations: 

(47) 

The stability of these singular points can be investigated by the variational equations: 

d,,. 3 -+ ~a,.q,q = 0 
d, q=l 

(k = I, 2, 3) (48) 

where 

l (49) 

( a0 , b0 , c0 ) being singular point. If every root of the characteristic equation of 

Eq. ( 48) has a negative real part the singular point ( a0 , b0 , c0 ) is stable and the 

system operates in a internal resonance condition. There exists an oscillation: 

x,. = a0<p1, eN+a0cp,.* e-N+(b0 +jc0)x,. ei•¢ 

+(b0 -jc0 )x,.* e-ie¢ (k = I, 2, 3, 4) (50) 

where 

(51) 

The periodic solution ofEq. (46) will be correlated with a quasi-periodic solu

tion of Eq. (38). 

In the case where the resistance of the inductors, R' is not equal to zero but 

sufficiently small, we may have a nonautonomous nearly linear system: 
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(k = l, 2, 3, 4, 5) (62) 

corresponding to Eq. (37). We may then proceed in a similar procedure to the 

above. A detailed study will be given in a later paper. 

4. I /3-harmonic Oscillation 

We shall consider the case where the 1/3-harmonics may occur in the original 

system. 

Setting 

(53) 

in Eq. (40), we obtain 

(54) 

Denoting the stable singular point of Eq. (46) by (a0 , h0 , c0 ) we have the first 

approximate solution in the form: 

where 

X1 = 2a0 cos 4'+2h0 cos 2cp-2c0 sin 24' 

x2 = -2a0 sin <p -2h0 sin 2cp -2c0 cos 24' 

z3 = -~a0 sin 4'+~h0 sin 24'+.!c0 cos 24' 
3 3 3 

X4 = -~ a0 cos <p + _! h0 cos 24'-~ C0 sin 24' 
3 3 3 

l 
% being a constant. From Eqs. (14), (24), (30) and (33), we have 

'P, = -j V
3 

[Po+2ao exp (-N) +2(ho-jco) exp (-j24')] exp (jOo) l 
Ct>av 

v, = -j-1-[k(c,+c3p/) p0+~a0 exp (-jcp) 
av 3 

--¼ (h0 -jc0 ) exp ( - j2cp)] exp (j80 ) 

Then, we have the a- and ,8-components: 

(55) 

(57) 
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where 
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</1,,, = f 1 sin (wt+r1) +f2 sin ( ! -Jwt+r2)) l 
-f3 sin ( ! +Jwt+ra) 

- - ( 1 ) <P~ = </1 1 cos (wt+r1)-<P2 cos 3 -Jwt+r2 

-fa cos ( ++Jwt+ra) I , 

(58) 

(59) 

(60) 

From Eq. (21), </10 =0. Therefore, we have the phase components of the flux 

interlinkage: 

- . ( 1 2ir) -·'' sm -wt+r +-'f'a 3 3 3 (61) 

<P- . ( 1 2ir) - sm -wt+r--
a 3 a 3 

setting the sufficiently small value J equal to zero. 

If the initial values of the terminal voltages across the capacitors are equal 

to zero, V0 =0 from Eq. (13). 

Therefore, we have the phase components: 

va = V1 sin ( wt+r 1) + V2 sin (-½-wt+ r 2 )+ Va sin (--½-wt+ra) 

Vb= VI sin ( wt+r1 - 2; )+ V2 sin ( + wt+r2- 2;) 
V . ( 1 2ir) + 3 sm 3 wt+ra+3 (62) 
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Ve = vi sin ( wt+r1+ 2; )+ V2 sin (-½-wt+r2+ 2;) 
+ V3 sin ( ! wt+r3-2;) 

j 
where 

(63) 

Tu r 2 and T3 being given by Eq. (60). 

In Eqs. (61) and (62) we see that the first and the second term of the right-hand 

sides forms a positive-phase sequence respectively whereas the third term forms a 

negative-phase sequence. 

That is, the 1/3-harmonic oscillation consists of two components: one a positive

phase sequence, and the other a negative-phase sequence. 

If J is not exactly equal to zero, we also see that the l /3-harmonic oscillation 

with a time-varying amplitude may occur. 

Such unsymmetrical 1/3-harmonic oscillations were observed on the Suriko

Shingu transmission line (See Appendix V). 

5. Numerical Example and Analog Computer Study 

We consider an example, where e=0.4, r 1 =0, rak=0.3 and r 3r=0.l. 

The solution of Eqs. (25) and (26) corresponding to the state of equilibrium 

1s p 0 =0.423 and 00= -89°, respectively. Hence, the roots of the characteristic 

equation (36) become 

±jw1 = ±J 0.672 and ±jw2 = ±j 1.327 . 

By Eq. (47), the singular points (a0 , h0 , c0) are determined. They are 

{ 

a0 = 0.144 

(1) h0 = -0.0945 

C0 = 0.0234 

{ 

a0 = 0.0343 

(3) h0 = -0.000844 

Co= 0.0240 

(5) a0 = h0 = C0 = 0 

a0 = -0.144 

(2) { h0 = -0.0945 

Co = 0.0234 

{ 

a0 = -0.0343 

(4) h0 = -0.000844 

C0 = 0.0240 
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From the variational equation (48), we see that the singular points (3) and (4) 

are unstable and the others are stable. The singular points ( l) and (2) are cor

related with the 1 /3-harmonic oscillations in the original system. An analog 

computer is used to obtain the solution of the circuit analysed in the preceding. In 

this study we compute with the a- and ,8-variables assuming that ~1 =0, R' =0 and 

g,=0. (See Appendix IV). The results are given in Fig. 2 where 1/3-harmonic 

0.3 
e=0.4 

0.2 

0.1 

0 
0.2 0.3 0.4 

c3 k 

Fig. 2. Region in which 1/3-harmonic oscillation is sustained. 

i+&1f ~#i1J1~1 l±l@Ni~{$tt~~J 
11$twij~M H4~ 
·1•,t••u~ffl$NM~ 
~~~fftvt~i 

Fig. 3. Wave forms of 1/3-harmonic oscillation. 
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resonance may occur in the shaded region and smaller resistance results in an 

almost periodic or a non-periodic oscillation. 

Typical wave forms when 1/3-harmonic occurs are shown in Fig. 3 (A), (B) 

and (C). The parameters corresponding to these are indicated by the points A, 

B and C in Fig. 2. 

6. Conclusion 

An analysis of generation of sub-harmonic resonance in a three-phase circuit 

has been presented. The original differential equations of the circuit are trans

formed under certain restrictions to the following differential equations: 

(k = 1, 2, 3, 4) 

By the Bogoliubov-Mitropolsky's method we can analize the internal resonance 

which is correlated with 1/3-harmonic resonance in the original system. We show 

that the 1/3-harmonic components consist of a positive- and a negative-phase

sequence components with time-varying amplitudes in general. The analytical 

results are compared with the results obtained by analog computer. 

Further work on the analysis of the three-phase circuit where the other non

linear oscillations may occur is proceeding. 
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Appendix I 

The transformation from three-phase variables to 0-, a- and ,8-variables is 

defined as follows: 

l (I.I) 

or inversely 

(I.2) 

Using this transformation and the equations given by Eqs. (1) through (5) we 

have the following set of equatiots: 

Ri0+v0 +vo' = 0 l 
Ri.,+v.,+v,.' = ,./f E cos (wt+c;o) 

Ri11+v11+v/ = ,/f E sin (wt+c;o) 

0 = dc/Jo+R'io l dt 

·,/3 v/ = dcp"'+R'i., 
dt 

-yfv.,' = dcpfl+R'i 11 dt 

io = 0, i., = -vfi11, i11 = vfi.,' 

io' = c,c/J0+c3 { ! ,P.,
3

- ! rp.,r/J/+ ! rp.,2rp0 

+: rp/r/Jo+r/Jo"} 

(I.3) 

(I.4) 

(I.5) 

(I.6) 

l (I. 7) 



Sub-harmonic Oscillations in Three-phase Circuit 

- ~ ifJ/ifJ0+3ifJ,.ifl/{ 

ill'= c,if'fl+c3 { ! if',.21'/l+ ! ifJ/-3if',.Y'fJY'o 

+3if'flif'/} 

41 

The transformation which relates the forward- and the backward-variables, 

w, and w2 , to a- and ,8-variables, w,./ and wfl, is defined as follows: 

w, = (w,.+jwfl) exp (-j0) 

w2 = (w,.-j,wfl) exp (j0) 

or inversely 

} 

w,. = -½-{ w, exp (j0) +w2 exp ( -j0)} 

wfl = -½-{ w, exp (jo)-w2 exp ( -j0)} 

In this study 0=wt+cp 

(I.8) 

l (I.9) 

Therefore, the equations given by Eqs. (I.3) through (I. 7) are rewritten in 

terms of the zero-phase-sequence-, the forward- and the backward-variables as Eqs. 

(6) through (10). 

Appendix II 

Ifwe, in Eq. (34), replace x,, x2 , X3 and x4 by f,, f 2, f 3 and f 4, respectively 

and assume that they are sufficiently small to be able to neglect their higher powers, 

we have the variational equations corresponding to the constant solution: 

df, = -rm
3
f

1 
+f2-f

3
, 

d-r 

dfs = kmaf, +f4, 
d-r 

df2 = -f,-rmif2-f4 
d-r 

df4 = kmif2-fa 
dr: 

l (II.I) 

In order that every solution of the characteristic equation of this system has a 

negative real part, it is necessary and sufficient that 

(II.2) 
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If all the roots Pts are positive, that is, the condition (27) is satisfied, the 

condition (II, 2) may be written in the form 

(II.3) 

where 

2(a-c1) ±v (a-c,) 2
- 3/32 

--- - -- (II.4) 

This shows that the equilibrium corresponding to the middle root of the 

three positive roots is asymptotically unstable. From Eq. (25), the condition (II, 

3) may be written in the form 

d(e2 )/d(p/)>O (II.5) 

This shows that the eqilibrium is stable under the circumstance where the 

amplitude p 0 increases with the increasing impressed voltage e. 

Appendix III 

We can assume that for c=l=O in Eq. (38), we have a relation 

(III. l) 

where x1,C
0l, x1,<

2l, • •· are certain periodic functions. As to a, b, c and cp themselves, 

we will try to determine them from the equations 

_.!a = cA1 (a, b, c)+c2A2 (a, b, c)+··· 
dr 

__cl,lJ__ = cB,(a, b, c)+c2B 2 (a, b, c)+··· 
dr 

~ = cC,(a, b, c)=c2C2 (a, b, c)+··· 
dr 

dip = cv1 +cD, (a, b, c) +c2D 2 (a, b, c) + ·· · 
dr 

l 
j 

Following the method in the Bogoliubov-Mitropolsky's text, we have 

l 
where 

(III.2) 

(III.3) 
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(III.4) 

{pk and Xk being the solutions of the adjoint system of Eq. (40). From 

Eq. (III, 3) A,, B,, C1 and D1 are obtained in a closed form. For 11=2, they are 

cA1 = -a{All +A12b-A13c+A14a
2+A15 (b2+c2)} 

cB1 = -B11b-B12c-B13a
2-B1,bc-B16c

2-B16a
2b 

-B11a
2c-B18 (b2+c2) b-B19 (b2+c2) c 

cCl = Cllb-C12c+C13a2+c1,b2+C1sbc+C1aa2b 

-C/alc+C18 (b2+c2) b-C19(b2+c2) c 

cD1 = -D11 -D12h-D13c-D1,a
2-D15 (b2+c2) 

All ,. .. ' Ell ,. .. ' ell ,. .. ' Dll ,. .. being constants. 

Appendix IV 

(III.5) 

Under the assumption <p 0=0 and with negligible small R', Eqs. (I, 3) through 

(I, 7) may be written in the following: 

where 

Ri.,+v.,+ d¢., = ,/2 E cos (wt+g,) 
dt 

Rifl+vfl + d</Jfl = vfE sin (wt+g,) 
dt 

. _ Cdv., z.,- -, 
dt 

ill= C dvfl 
dt 

i., = 3c1</J.,+ 
27 

C3(</J.,2+</Jp;) </J., 
4 

ill= 3c1</J/l+ 27 C3(</J.,2+</Jp;) ¢fl 
4 

l 

l 

Eqs. (IV,l), (IV,2) and (IV,3) are instrumented on the analog computer. 

(IV.2) 

(IV.3) 

(IV.4) 
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Appendix V 

In Nov. 1953, a sub-harmonic oscillation was observed on the Suriko- Shingu 

transmission line when an unloaded transformer bank had been energized through 

series capacitors<8>. The wave forms of the oscillation are shown in Fig. V. 

Fig. V. Waves forms of 1/3-harmonic oscillation. 
IA2 , IB2 , Ic2 =currents through the capacitors. 
VcA2 , VcB 2 , Vcc2=Terminal voltages across the capacitors. 


