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The temperature dependence of viscosity was taken into account in solving the equations 
of change for laminar flows of pseudoplastic fluids in circular tubes. The solutions were ob­
tained for the entrance and the thermally well developed regions at the conditon of constant 
heat flux. Those analytical solutions were approximated with the equations of non dimen­
sional moduli, which were in good agreement with the experimental results of the authors. 

Furthermore, even if the temperature dependence of viscosity was taken into account, 
the plots of Nusselt numbers at the thermally fully developed region against Umax/Um were 
shown to be just shifted on the same curve for those plots of nearly isothermal flow. 

Introduction 

511 

In order to obtain the heat transfer coefficients of the laminar flow of non­

Newtonian fluids in a circular tube, many investigators have solved analytically 

the equations of change with the various non-Newtonian models. Beek and Eg­

gink0 summarized these results for the following conditions, ( 1) entrance region 

-constant wall temperature, (2) entrance region-constant heat flux, (3) thermally 

fully developed region-constant wall temperature, (4) theromally fully developed 

region-constant hear flux. Those solutions were based on the assumption that 

all the transport properties of the fluid were independent of the temperature or 

that the flow was nearly isothermal. 

In this paper, the authors will take into account the temperature dependence 

of viscosity in solving the equations of change for the entrance and the thermally 

well developed regions at the condition of constant wall heat flux. Those analy­

tical solutions will be approximated with the equations of non diemnsional moduli, 

which are in good agreement with the experimental results. In the experiment, 

aqueous solutions of carboxy methyl cellulose (C.M.C.) were used and presumed 

• Department of Chemical Engineering 



512 Tokuro M1zusHINA and Yoshifumi KuRIWAKI 

to be pseudoplastic fluids, the flow characteristic of which was assumed to be re­

presented by the Ostwald-de Waele's power law model. 

Beek and EgginkD showed that the plot of Nusselt numbers in the thermally 

fully developed region against the ratios of the maximum to the average fluid velo­

city obtained analytically, for the nearly isothermal flow with use of any model of 

non-Newtonian fluids, could be correlated with a single curve. The authors will 

show that the plot of those obtained from taking into account the temperature de­

pendence of viscosity can be correlated with the same curve as that given for the 

nearly isothermal flow. 

Temperature Dependence of Viscosity 

The flow characteristic of pseudoplastic fluids is assumed to be represented 

by the power law model 

I 
du 1• T = -m dr (1) 

As the experiment with the aqueous solutions of C.M.C. shows that the values 

of n are independent of the temperautre in the range of 15°C~60°C, while that of 

m changes considerably with temperature, it is assumed that this is the case common 
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to all pseudoplastic fluids. For the convenience of the following calculation, equa­

tion (2) is assumed to represent the temperature dependence of m. 

mo m=( t-to)" I+,8c-~ 
lo 

( 2) 

,Be is a characteristic. constant of a material, and is determined by experiments as 

0.5 for aqueous solutions of C.M.C. 

As shown in Fig. 1, the results of calculation with equation (2) are in good 

agreement with those of measurement., 

Thermally Fully Develpoed Region 

In order to take into account the temperature dependence of m, one has to solve 

the equation of motion, the equation of energy and equation (2) simultaneously. 

Since this calculation is tedious, the authors adopted the following approximation 

method of calculation. Equation of motion is 

B.C. (1) at r = 0 

(2) at r = R 

Equation of energy is 

B.C. (1) at r=O 

(2) at r = R 

(3) at z=O 

u = finite 

u=O 

t = finite 

at -A,ar = qw = constant 

t = lo 

1. The first approximation of velocity profile. 

Substituting 

into equations (3) and (4), one obtains 

_a [mx(-~)"] = -R•+l dP X ax ax dz 

B.C. (l') at X = 0 u = finite 

(2') at X = I u=O 

( 3) 

(4) 

( 5) 

( 6) 

( 7) 

( 8) 

( 9) 
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Solving these gives 

u = ---- • - •dX ( R•+ 1 dP ).!..J1 
( X ).!.. 

2 dz· x m 

u - --- - • - •dX ( R•+i dP).!.J
1
(X).!. 

max - 2 dz o m 

u 
Um 

Umax 

Um 

1 

II X" 
x---X.dX 

m" 
1 

J
I xn+2 

0~dX 
m" 

1 

f 
1 x•+2 
0
--.!..-dX 

m" 

(IO) 

(l l) 

(12) 

(13) 

(14) 

Assuming m and n are independent of the temperature, the first approximation 

of velocity distribution is calculated as 

_!!__ = 3n~l (l- x¼+1) 
Um n,l 

Umax 3n+ 1 
U:::- = n + C 

2. The first approximation of temperature profile. 

(15) 

(16) 

Substituting the first approximation of velocity distribution or equation (15) and 

0 = (t-to)/( q~R) 

Z = az/(R2um) 

into equation (5), 

one obtains 

3n+!_(l-x>i~ = _l __ a_( x~) 
n+l az x ax ax 

B.C. (l ') at X=0 0 = finite 

! (2') at X= l -80/aX= 1 

(3') at Z=O 0=0 

(17) 

(18) 

(19) 

(20) 
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Solving these equations gives the first approximation of temperature distribu­

tion as follows. 

(3n+ 1) 2 2n2 .!.+s 19n2+8n+ 1 
2(n+ 1) X + (n+ 1X3n+ 1) X • + 4(3n+ 1)(5n+ 1) 

3. The second approximation of velocity profile. 

Equation (2) can be transformed into 

where 

mo 
m = (l+,80)• 

o= o Rq., 
,_, ,-,c,\,lo 

Substituting equations (21) and (22) into equation (13) gives 

_!!:__ = 3n+l [i-A 17n2+8n+l ]-1 

Um n+l 30n2+16n+2 

[(l X .!_+1) A (1 x.!_+s) An2 (1 X!.+4)] 
X - • -2 - • + (2n+l)(3n+l) - • 

where 

[ 
1 19n2+8n+l 2II ]-1 

A= "7/i+ 4(3n+l)(5n+l) + G;:, 

4. Nusselt numbers. 

(21) 

(22) 

(23) 

(24) 

(25) 

Since it can be assumed that 'iJt/8;:, = 'otm/8;:, = constant for the constant heat 

flux in the thermally well developed region, Nusselt numbers can be calculated as 

Nu.,,= [2J1x-.E--dxJ1 dXJx x___!!:_dx]- 1 

O Um X X O Um 
(26) 

By changing the order of integrals, 

Nu.,,= [2J1 dXJX X___!!:_dxfx X___!!:_dx]-l 
O X O Um o Um 

(27) 

Substituting equation (24) into equation (27), one obtains the approximate 

solution for Nusselt numbers as 

N = 8 15n2+8n+l [1-A 17n2+8n+l ]2x[l-AS A2s 1-1 
u.,, 3ln2+12n+l 30n2+16n+2 1 + 2 (28) 

where 
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8114n5 +875ln4 +3720n3+ 774n2+ 78n+3 S1=----------------3(3n+ 1)(4n+ 1)(7n+ 1)(3ln2+ 12n+ 1) 

583663n8 + 1047052n7 +819364n6 +364784n5 + 100850n' 
+ 17680n3+ 1912n3+ l 16n+3 

S 2 =~-4(=3_n_+~l~)2(=5~n-+~1~)2=(7~n-+~l~)(~l~ln_+_3=)~(3~ln~2-+~1~2-n-+~l~)-

Bird2> and Grigull3> have given the solution for nearly isothemral flow as 

15n2+8n+ 1 
Nu .. = 8 3ln2+ 12n+ I 

(29) 

(30) 

(31) 

Comparing equation (28) with equation (31), it is noted that the term of [I-A 

17n
2
+ 8n+l ]

2 
x [1-AS +A2 S J-1 is the correction term for temperature depen-

30n3+16n+2 1 2 

dence of m. 

Substituting equations (21) and (22) into equation (14), one obtains 

I-A (n+l)(4n+l) 
Umax 3n+ 1 2(2n+ 1)(3n+ 1) 

Um n+I I-A I 7n2 +8n+ 1 
2(3n+ 1)(5n+ 1) 

Comparing equation (32) with equation ( 16), it is recognized that the term 

[ 
(n+ 1)(4n+ 1) ]/[ l 7n2 +8n+ 1 ] 

l-A 2(2n+ 1)(3n+ 1) l-A 2(3n+ 1)(5n+ 1) 

1s the correction term for temperature dependence of m. 

(32) 

In Fig. 2 the values of Nu .. computed with equation (28) are plotted against 
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8 
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7 
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6 t-~~-,1'---t-------+----~ Gz=20 
8 

::, 

Z5 

to=25(°Cl 

t-------'!""'=-----/f------+------f qw = 3.156·10
2

(cal·cm
2
.sec-l) 

A =-0.272 

4 

3 t------+------lNu =B l5n
2
+8n+I Umax 3n+I 

00 3ln2 +2n+I vs. -rr;;;-=ri+T 

2 
1.0 1.5 2.0 Umax 2.5 3.0 3.5 

u;;;-
Fig. 2 Calculated values of N1.1oo of nearly isothermal flow and non isothermal flow. 
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those of Umax/Um computed with equation (32) and also those of Nu .. computed 

with equation (31) are plotted against those of Umax/Um computed with equation 

( 16). It is recognized that both plots can be correlated with a single curve. 

Entrance Region 

At the entrance region, the heat penetrates only the thin layer near the wall. 

Bird2> gave the solution of this case as 

( 
pD 3 )1/3 

Nu, = 0.650 az (33) 

where 

p--~1 - dr r=R 
(34) 

and for nearly isothermal flow 

(35) 

Consequently 

( 
3n+ 1 ) 1

/
3 

Nu, = 1.41 ~ G;::,1
/

3 (36) 

In order to take into account the temperature dependence of viscosity, the 

authors made the following assumptions (Refer to Fig. 3) 

( 1) The heat penetrates the thin layer of thickness y,, namely until the plane 

of R,. 

(2) The temperature gradient in that layer is linear. 

(3) The temperature of the core flow is to. 

(4) Because the thickness y, is very small, the average temperature of the 

flow is also t •· 

Fig. 3 Approximate temperature profile in themral entrance region. 
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Thus 

to-tw = q:D-/ Nu, 

and 

Ye= R-Rc=D/Nu, 

The temperature phofile is, 

for R>R, 

r-R, 
t = (t,.-to) R-Rc +to 

Substituting equations (38) and (39) into this equation gives 

t = - -+---1 --+to ( 
r 2 ) q,.R 
R Nu, ;,., 

Accordingly 

for 2 1 ~X>l---- Nu, 

0 = -(x +~--1) Nu, 

And also one obtains 

for 

Substituting equations ( 40), ( 41) and (22) into equation ( 13) gives 

_um __ (3n+l)(4n+l) X 

u - (n+I)(2n+I) 

(2n+ 0{ 1 +.a( 1--k) }o-x¼+1)-(n+ l).B(l-X¼• 2
) 

(4n+l){l+.B(l- Ju. )}-.B(3~+1)-n.B(l- Ju. )¼+4 

Consequently 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 
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In equation ( 43) the bracketed term is a correction term. The values of this 

term can be calculated from the first approximation of Nu, obtained from equation 

(36). 

Equations of Non Dimensional Moduli 

1. Thermally well developed region. 

The analytical solution for nearly siothermal flow, equation (31) can be ap­

proximated 

( 
3n+ l )'/3 

Nu"" =4 .36 4 n- (44) 

for the range of n=0.2~3, within the error of ± l percent. 

On the other hand, as shown in Fig. 4 the correction term for temperature de­

pendence of m may be approximated with (m/mw)•· 141 •"·
1

• Though the values 

of A changes considerably with the value of Gz, the correction terms for Gz= 10 

(shown in Fig. 4) and 20 were shown to be approximated with the same modulus. 

Consequently, the Nusselt numbers for constant heat flux and thermally well 

developed region are represented with 

4 6 

(-~l) 
2 8 10 

Fig. 4 Correction terms for temperature dependence of viscosity for thermally 
fully developed region (Gz= 10) 
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2 
4 (- qwR) 6 

.?do 

8 to 

Fig. 5 Correction terms for temperature dependence of viscosity for thermally 
entrance region (Nu,= 10) 

- ( 3n+ 1 )1/3( m )0-14/n•·' Nu .. - 4.36 - 4~ -
n mw 

2. Entrance region 

Substituting equation (43) into equation (33), one obtains 

1 ( 1 2 ) !_+4 

( 
3n+ 1 )1/3 1/3[ - ---nu; n ]-1/3 

.Nu,= 1.41 4n Gz 1-(_l +
4
)(-2 ___ l_) 

n Nu, fJ 

(45) 

(46) 

( 
m )o.221n•-1 

For Nu,= 10, the correction term may be approximated with mw as shown 

( 
m)o.111n••' ( m )0-14/n•-7 

in Fig. 5. The same procedure gives - for Nu,=6.54 and --
mw mw 

for Nu,=5. 

Consequently, the Nusselt numbers for constant heat flux and entrance region 

can be represented by 

_ ( n+l )1/a 1/3( m )ctn"·' Nu,-1.41 -
4
- Gz -

n mw 
(47) 

where c = 0.045Nu,0
•
1 (48) 

Substituting Nu, obtained from equation (36) into equation ( 48), the values 

of c is computed. 
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Experimental Results 

The test section is consisted of a brass tube of 17.3 mm O.D., 12.7 mm I.D. 

and 4000 mm long, wound with electrically heating nichrome wires of 0.8 mm 

O.D., and preceded by a fore-flow section of 1000 mm long. The heating section 

is covered with a thermal insulator, on which heating wire is wound again as a com­

pensator. 

The wall temperature and the temperature prfile of the flow were measured 

with copper- constantan thermocouples near the exit ?f the test section. The ave­

rage temperature of the fluid was computed from its inlet temperature and the 

amount of Watt applied to the heater. The heat flux was computed from the heat 

added and the heat transfer surface area. Thus, the heat transfer coefficients at 

the measuring point were calculated. 

The values of the rheological properties, m and n were changed by varying 

concentration of C.M.C. of the solution, and they were measured with a Shimazu 

Universal Rheometer UR-IM (coaxial cylinders type). Those properties changed 

with time by the effect of heating so much that it was necessary to measure them 
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Fig. 6 Measurement and first appromimation profiles of temperature. 
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Fig. 7 Experimental results of Nusselt number. 
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Fig. 8 Experimental values of Nu,,. vs. Umax/ Um computed for non 
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500 

during every run. The range of the values of n of the solution used was 1.00~0.33. 

In Fig. 6 the measured temperature profiles and equation (21) of the first ap­

proximation of them are compared. It is recognized that both of them are in 

fairly good agreement with each other. 

The experimental results ofNusselt number are plotted against Graetz number 

in Fig. 7. Equations (45) and (47) correlate the data well. It should be noted 

that Gz=30 is the critical point between the entrance and thermally fully developed 

region. 

In Fig. 8, the experimental results of Nusselt number in the thermally 

fully developed region vs. Umaxlum computed from equation (32) are plotted. The 
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theoretical curve as same as that in Fig. 2 correlates the data fairly well. 

In Fig. 7 and 8, the data of aqueous solutions of gylcerol are included. 

Conclusion 

This paper dealt with ,the heat transfer to laminar flow of pseudoplastic fluids 

m a circular tube at the condition of constant wall heat flux. 

The temperature dependence of viscosity was taken into account in solving 

the equations of change to obtain the Nusselt number at the entrance and thermaly 

fully developed region. 

Those analytical solutions were approximated with the equations of non-di­

mensional moduli, which were shown to be in good agreement with the experimental 

results obtained by the authors. 

Nomenclature 

A 

C 

D 

Gz 

h 

m 

mo, mw: 

u 

Nu, 

N11oo 
p 

p 
qw 

R 

R, 

r 

s,, S2 

to 

lw 

Equation (25) 

Equation ( 48) 

Diameter of tube 

II 

Nomenclature 

4D2u,. 
Graetz number = ---

Heat transfer coefficient 

Constant in power law model 

m at to and t w respectively 

Power in power law model 

Nusselt number at entrance region 

Nusselt number at fully developed region 

Pressure 

Velocity gradient at wall 

Heat flux at wall 

Radius of tube 

Fig. 3 
Radius 

Equation (29) and (30) respectively 

Temperature 

Inlet temperature of fluid 

Temperature of wall 

[-1 
[-] 

[cm] 

[-] 

[ cal/cm2sec • deg• C] 

[gr•sec•- 2/cm] 

[gr•sec•-2/cm] 

[-] 

[-] 

[-] 

[gr/sec2 ·cm] 

[1/sec]. 

[ cal/cm2sec] 

[cm] 

[cm] 

[cm] 

[-] 
[OC] 

[•CJ 
[OC] 
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u 

Um 

Umax 

X 

Ye 

z 
z 

a 

/3 

/3c 

0 

A, 

T 
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Velocity of fluid 

Average velocity in tube 

Velocity at center 

Non-dimensional radius, equation (7) 

Fig. 3 
Distance along axis of tube 

Non-dimensional distance along axis of tube, 

equation (18) 

Temperature conductivity of fluid 

Coefficient of temperature dependence of m, 

equations (22) and (23) 

Coefficient of temperature dependence of m, 

equation (2) 

Non-dimensional temperature 

Thermal conductivity of fluid 

Shear stress 
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