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Two kinds of mathematical neural models, one simular to a sensory neuron and the 
other to a ganglion cell, are constructed and their properties in view of information theory 
are studied. Each of the models is essentially a threshold element, the output of which is 
a train of pulses emitted at the instants of the stored charge inside the neuron reaching the 
threshold. The interval of the pulses is a random variable, and a method to give its pro­
bability density function is derived. It is seen that the distributions of the output pulses 
of the models are very simular to the spike discharge patterns of actual neurons. For the 
sensory neuron model the channel capacity is obtained and thus the maximum capability 
for a neuron to transmit messages is clarified. The model can also be regarded as a sam­
pling device which samples a continuous signal by firing a pulse every time the signal 
reaches the threshold. A method to recover the original signal from the intervals of the 
pulses thus emitted is given. 

l. Introdution . 

95 

Conceptual or mathematical models of a neuron have been constructed and 

studied by various authers with the motive to clarify the neuaral behavior leaving 

the detailed complexity of the physiological neuron mechanism aside, and hoping to 

apply the results derived with the simplified models in communication, control, or 

some other engineering fields. In this paper, too, a neuron is regarded as an element 

of communication characterized by the emission of pulses, threshold and integration 

mechanism. The properties in view of the information theory are described. 

One of the important aspects of the neural network as a communication system 

is that the messages are sent in the form of the pulse transmission rate, or, ifwe put 

it in a different way, of the intervals of the pulses, having a stochastic nature. Thus, 

in general, only one pulse or an interval has little meaning by itself, but a train of 

pulses is considered to be able to carry a message. Thus the emission of the pulses 

must be fast enough, for example, to follow the change of the external stimulus im­

pressed on the neuron. 

Two kinds of neural models are considered. The first one, a model of a sensory 
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neuron, receives an external stimulus as its input and emits a train of pulses as its 

output. The intervals of the pulses are considered to carry the information about 

the stimulus. The second one, simular to a ganglion cell, receives trains of pulses 

as its input, which cause the emission of pulses at its output. The neuron is regard­

ed as performing a kind of logic. The details of the models and their properties 

are described in the following sections. 

2. Sensory :Neuron Model And Its Properties 

Description of the Model-The input stimulus x of this model is assumed to be a 

continuous function of time. The received input is accumulated in the neuron as 

the stored charge q, and when q reaches the threshold, the neuron emits an output 

pulse. At the same time q is set to a certain initial value, and the accumulation 

process starts again. It is also assumed that the level of the stored charge suffers 

random fluctuations, whose amplitude distribution density has a zero mean and 

variance a2
, and is independent of the previous behavior of the neuron. Hence, 

except for the instants of the emission of the pulses, q is a random variable having 

the Markov property, the infinitesimal mean and variance of the change in q being 

x and a2, respectively. 

The output of the neuron is a train of pulses, the interval of which is also a 

random variable. In order to obtain the probability desity function of the interval, 

the procedures to find the first passage time of a diffusion process can be made use 

of, provided that the input stimulus changes slowly. From the fact mentioned in 

section 1 we see that this condition is, in general, satisfied. The probability density 

of the interval is approximately that of the first passage time, if the effect arising from 

when the accumulation process starts, is negligible. 

The Probability Density of the Interval-Let us consider only one interval, or one 

process of accumulation of the charge. The origins of time and charge q are chosen 

so that q reaches the threshold at t=0, and q = 0 at the instant. The length of the 

interval is denoted r-, and thus the accumulation begins at t= -r-. Let q(-r-) 

= -1o. Under the assumptions made above the probability density of the interval, 

denoted g( r-, %) , satisfies the backward Kolmogorov equation. Hence, 

8g(r-, %) = -x8g(r-, %) +~- 8
2
g(r-, %) 

ar- a1o 2 a1o2 
• 

( I ) 

The boundary and the initial conditions are g(r-, 0) =0, g(r-, =) =0; r->0, and 

g(0, %) = 0; %>0. 

The solution of Eq. (!) with the specified conditions is 
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( 2) 

The input xis regarded as a positive constant. It can be seen that the probability 

density is very simular to that obtained from the spike discharge patterns of actual 
neurons1l-•l. 

The Channel Capacity of the Neuron - The output of the neuron model is the 

interval of the pulses and therefore the transmission of information requires time 

which is a function of the output message. Let the function be l(r). Then the 

average rate of transmission of information is given by 

R = 1/L ( 3) 

where I is the amount of transmitted information ( the average mutual information) 

and L is the average time required to send a message. In terms of the probability 

density, I and Lare written as 

I= -[ r(r) log r(r) d,+ rr p(x)p(r/x) log p(r/x) dxdr ( 4) 

and 

L = r r(r) /(,) dr ( 5) 

respectively, where p(x) is the probability density of x, r( r) is the probability den­

sity of r, and p(r/x) is the conditional probability density of r given x. As stated 

previously, 

By definition the channel capacity 

under the condition 

Since 

and thus 

C= maxR 
PC•l 

r p(x) dx = 1, p(x) 2.0. 

r(r) = r p(r/x)p(x) dx 

r r(r) dr = [ r p(r/x) p(x) dxdr = [ p(x) dx, 

( 6) 

(7) 

( 8) 

( 9) 

(10) 

[ p(x)dx = I if r r(r)dx = 1. Likewise BR = 0 if BR = O. 
Bp Br 
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Hence, the maximization of R with respect to r(r) includes that with respect to 

p(x). Now let 

U= R+,l [ r(r)dr (11) 

and introduce a function h(r), which satisfies the following relation and is indepen­

dent of x. 

[P(r/x) logp(r/x)dr = [p(r/x)h(r)dr ( 12) 

Then U is rewritten as 

Thus dU=O if 

( 14) 

Multiplication of r( r) to Eq. ( 14) and integration with respect to r lead to 

( 15) 

From Eq. (15) channel capacity C can be obtained by noting that [ r(r) dr= 1. 

It is necessary to check if C thus obtained is the maximum with respect to p(x) as 

well as r(r). Probability density p(x) is the solution of the integral equation (9) 

with r(r) given by Eq. (15). Note that the solution should be nonnegative; if 

not, the procedure described above is invalid. 

For p(r/x) given by Eq. (6), we obtain 

(See Appendix A.) 

h(r) = _J_+ log (q0 /V2rr:a2 r 3
) • 

2 
( 16) 

Finally in order to determine the channel capacity from Eq. (15), l(r) should 

be given. It can easily be guessed that if l(r) =r, the interval of pulses itself, the 

channel capacity becomes infinity since the rate of information transmission can be 

made as large as desired by making x large. To suppress very short intervals 

which arise from a very strong input stimulus, it is reasonable to assume, for example, 

( I 7) 

where dis a constant. The second term may be considered to signify the effect of 
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refractory period during which the neuron hardly responds to the input stimulus. 

IfEq. (17) is assumed, then Eq. (15) gives 

C e4ac = q//2ea2d2
, (18) 

from which C can be calculated. 

It can also be derived that 

( 19) 

and 

p(x) = 2x e-c1
/

2J-xqo/"
2

[ {/3 / (x2 -a)}1l 2 I, (2/31l 2 (x2 -a)1l 2
) u(x2 -a) +a (x2 -a)]; 

x?::0 (20) 
where 

and 

a= 2a2C, /3 = (q/-2a2d2C)/4a4 

a (t) ; delta function 

u(t) ; unit step function 

I, ( t) ; modified Bessel function of the first order. 

(See Appendix B.) It can easily be seen that p(x) is nonnegative. 

(21) 

In Fig. I C is plotted as a function of %/a with d being a parameter. Small 

fluctuations in the stored charge level correspond to a small a, and we see in 
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Fig. I. Channel Capacity of Smsory Neuron 
Model. 

Fig. I that C increases as a decreases as 1s expected. The effect of d can also be 

seen in the figure. 
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The average of the input stimulus is 

(22) 

and the average of the input power is 

(23) 

Thus the input power is automatically limited by the assumption ( 17). 

Neuron as a Sampling Device-As described above the neuron emits an output 

pulse when stored charge q reaches the threshold. After a pulse is observed no mes­

sage can be obtained at the output untill the next pulse appears, when the interval 

of the two pulses can be determined to give the output message. Thus the neuron 

can be regarded as a special kind of a sampling device, with the sampled value 

being always constant and equal to the threshold value, but with the sampling in­

stants distributed nonuniformly. The question is whether it is possible to decide, 

from the intervals of the output pulses, about the stored charge q as a function of time. 

Now, it has been assumed that q is set to the initial value just after the emission 

of a pulse, and therefore q is discontinuous at this instant. In other words, q does 

not have the band limited property which is essential in sampling theorems. This 

difficulty, however, can be avoided by introducing a new quantity defined by 

(24) 

where n is the number of pulses emitted previously, and tn-i is the instant when the 

n-th pulse is observed. We assume that the first pulse is emitted at t=O. Then 

., 
!:' 
0 
.,:; 
u 

q• 

---1----

Time 

Fig. 2. Relation between q, q* and ~-

q*(O) =0, q*(t1) =q0 , q*(t2 ) =2% ,··, q*(tn) =n%. The relation between q and q* is 

illustrated in Fig. 2. 
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As seen in Fig. 2, q* increases indefinitely. Therefore we introduce another 

quantity </(t)=q*(t)-q0kt (k will be properly chosen later.), and assume that q1 

is band limited, that is, it has no frequency component above w cycle per second. 

Then, from the instants when the pulses are observed, we obtain 

</(t) "'qo t
1 
(m-ktm{ a~i (t-tm) f!.

1 
(tm-a/2w)/( f!.

1 
(t-a/2w) ~

1 
(t-t0 )] 

ctcm ctcm 

(sin 211:wt/sin 211:tm) (24) 

if the average number of pulses observed per second is 2w or more; 5 > 

(25) 

The approximation (24) is valid in the interval of time when the effect of the finite 

number of sampling is negligible. If the equality in (25) holds, we see that it is 

reasonable to choose k=2w, since q* increases 2w1o average per second. If the 

neuron model is regarded as an integrating device, Ineq. (25) requires that the input 

had a d.c. level of at least 2w1o. The average interval derived from Eq. (6) also 

leads to that x22w1o under the modified interpretation of the condition (25). 

3. Ganglion Cell Model And Its Properties 

The second type of the model described in this paper is simular to a ganglion 

cell which acts as a relay station for transmitting signal in the neuronal circuit. As 

schematically shown in Fig. 3, the cell receives n input pulse trains. The pro­

bability density of the interval of the i-th input is denoted f;(-r). Each pulse 

received by the cell is assumed to have a unit charge, which is stored in the cell. 

11111 
f 1 (T) 

11 I I 
f2 (T) 

) 
I lJI I 
fn (Tl 

lJUJ 
r (Tl 

Fig. 3. Ganglion Cell Model. 

When the stored charge reaches a certain threshold, a pulse is emitted as the output, 

and at the same time the stored charge becomes zero. The process is repeated, 

and thus a pulse train is observed at the output. Furthermore, the i-th input pulse 

train is assumed to have weight of w1, or in other words, a pulse of the i-th input 
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has the same effect as it has W; units of charge. The pulse train may have an 

inhibitory property, in which case the weight becomes -w;. We signify this 

property by h;, that is, h;=I if the i-th input pulse train is inhibitory, and h;=0 

otherwise. The threshold value is denoted m. We are interested in getting the 

the probability density function, r(-r), of the output pulse interval of this model. 

From r(-r) the output uncertainty can be calculated and compared with the input 

uncertainty. 

The steps to obtain r(-r) are as follows. As in section 2, only one interval of 

the output pulses is considered. 

i) Findp,(k, -r) = the probability that k pulses are received at the i-th input during 

the time interval (0, -r). Since 

where -r i is the length of the j-th interval, p;(k, r) is easily found by using the 

Laplace transform. Let .£{!} denote the Laplace transform off. From Eq. (26) 

p,(k, p) =-L{P,(k, -r)} = {f;(p)}"{I-f;(p)}/p, 

where f;(p) =-L{f;(-r)}. Then 

(27) 

(28) 

ii) Find g(m, r) dr = the probability that the total stored charge is min the time 

interval (-r, -r+d-r). It is convenient to use the z transform to get g(m, r). 

g(z, r)=z{g(m, -r)} = Ilp;(zw;c-iJhi, -r), (29) 
i=l 

where p;(z, -r) = z{p;(k, -r)}. Hence, 

(30) 

iii) Finally r(m, -r) d-r= the probability of emission of a pulse during the time 

interval (-r, -r+d-r), can be found from the relation 

)>(m, t)g(o, r-t) dt = g(m, r). (31) 

Therefore 

r(m, p) =-L{r(m, -r)} = g(m, p)/g(o, p) (32) 

where g(k, p) =-L{g(k, -r)}; k = m, o. Then the probability density of the output 

pulse interval 

r(r),...,_,r(m, -r) = _£- 1{r(m, p)}. (33) 
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If there is no inhibitory input, and thus the stored charge is monotonously in­

creasing, step iii) can be bypassed by 

The relative uncertainty of the i-th input and the output is defined as 

and 

H0 = -[ r(r) log r(r) dr, 

respectively. 

Example 1. i=l,2, .. •,n 

For these input pulse trains, 

g(z, r) 

where µ= iJ A; and 
i=l 

If W;= 1 and h;=0 for all i, we obtain 

r(m, r) = e-fLTµ(µr)m- 1/(m-l)!, 

H; = - log..l;+I, 

H 0 = - log µ+a(m) , 

where 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

a(l) = 1.0,a(m) = m+ log (m-1) !-{l/(m-2) !}[ xm- 1 log x•e-"dx; m2:2, (41) 

and a(m) can be easily calculated sequentially, for example, a(2) = 1.577, a(3) 

= 1.848, a(4) =2.023. Sinceµ= iJ J.; the output uncertainty can be less than the 
;...:::1 

input uncertainty, signifying the effect of the summation and intensifying function 

of a neuron. 

Example 2. 

For these input pulse trains 

g(z, r) = fr (s;- 112 sinh J.;rs/12+ cosh J.;rs/12) e-~;7
• (42) 

i=l 
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In case W;=l, h;=O and A;=..l. for all i, 

If n is small r(m, -r) can be derived as given in Appendix C. 

Appendix A 

Substituting Eq. (6) into Eq. (12), we get the following integral equation. 

r p(-r /x) log {qo(2ira2-r3
)-

1l2 e-Cqo-nl2fzcrZT} d-r = r p(-r /x) h(-r) d-r (Al) 

The left-hand side of the equation can be rewritten as 

[ p(-r/x) log {q0 (2ira2-r3
)-

1l2}d-r-(q//2a2) [ (1/-r)p(-r/x) d, 

+x%/a2 -(x2/2a 2
) [-.p(-r/x) d-r 

r~ . 1 r= { . 1 } = Jo p(r/x) log {qo(2ira2
-.

3r 112}d-r-2 = Jo p(-r/x) log qo(2ira2-r")- 112 - -2 d-r 

Thus Eq. (16) follows. 

Appendix B 

From Eq. (9) and Eq. (19) we obtain 

Rewriting, 

(A2) 

(A3) 

(A4) 

This integral equation can be conveniently solved by utilizing a Laplace transform 

pair as follows. Let a Laplace transform pair be given by 

(AS) 

Putting t=x2 and s=r/2a2
, we obtain 

[ 2xf(x2) e-Tx212cr2 dx = F(-r /2a2) . (A6) 

Comparing Eq. (A6) with Eq. (A4), we see that, ifwe decide F(-r/2a2) from the 
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right-hand side ofEq. (A4) and then F(s), we can getf(t) by using a Laplace trans­

form table. Oncef(t) is obtained, 

xz:0. 

From Eq. (A4) we get 

and then 

Thus Eq. (20) follows. 

Appendix C 

n = l; 

n = 2; 

r(m, r) = A e-2>..T (2Jr)2m-1 (1 +~) 
(2m-l)! 2m 

n = 3; 

( ) 3J -3>,.T (Ar)2m-l {32m-1+l+2(32m-l)Ar 
rm, r = ~e 

4 (2m-l)! 2m 

1l = 4; 

+ 3(32m-l)(Jr)2} 
2m(2m+l) 

r(m, r) = ~ e-•>,.T (Jr)2m-1 {42m-1+22m+ 3.42m,1, 
2 (2m-l)! 2m 

+ 3( 42m+1 -22m+2) (Jr)2 + ( 42m+2 _22m+•) (.fr)3} 

2m(2m+ I) 2m(2m+ I) (2m+2) 

n = 5; 

r(m, ,) = ~ e-5),.T (J,)2m-l {s2m-1+32m+2 
16 (2m-l)! 

4(52m +32m _2) Ar 6(52m+1 _32m+1 _2) (Jr)2 
+---------~+-------'-'-----'-

2m 2m(2m+l) 

4(S2m+2_32m+3+2)(Ar)3 5(52m+2_32m+3+2)(Jr)• } 
+~-----~-~+-~-----~--'--

2m(2m+I)(2m+2) 2m(2m+ 1) (2m+2)(2m+3) 

(A7) 

(AS) 
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