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Difference Methods for the Piston Problem 

By 

Tatsuo Nom* 

(Received November 12, 1968) 

We shall consider a piston problem in hydrodynamics and give difference methos to 
to solve it. 

Our aim is to find the algorithm in the neighbourhood of the piston in which the 
piston motion is calculated simultaneously. In our experiment we shall use the modified 
Godunov's scheme in the interior region away from the piston. Our method is an ex­
tension of the scheme to the boundary value problem. 

1. Introduction 

We consider the piston pvoblem1> in hydrodynamics which anse from some 

models of gun-tunnels,3> free pistom shock tubes,2> etc.. This problem has been 

difficult to be solved analytically, while for the design of the above aparatuses 

we have several approximation techniques which use mainly characteristics and 

shock conditions, so that they seem to be very inconvenient. Then we have 

arrived at the necessity of direct algorithm solving the equation of hydrodynamics 

by difference methods. 

In view of the studies of difference schemes themselves many authors have 

attacked the Cauchy problem, while for mixed initial-boundary value problems, 

we know only a few results and we are not in the position having any practically 

effective methods. Here we aim to discover an appropriate method for mixed 

problems. 

As a simple one-dimensional model of a gun-tunnel we take the following 

system. 

tube 

t>. 
(open) high i 

pressure 1 ·~ 
low pressure (closed) 

piston 

Fig. I. The model of the gun-tunnel. 
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Here the cross area of the tube is assumed to be constant, initially the piston is 

positioned at some point and the states of gas in the both chambers rest uniformly, 

and the pressure of the gas in the left chamber is higher than that in the right 

chamber. As soon as the piston is set free it begins to move by difference of the 

forces acting on both sides of the piston. Our aim is to introduce an algorithm to 

solve it numerically. 

The algorithm is mainly depending on Godunov's idea1> and is constructed to 

calculate also in the neighborhood of boundary points. 

2. Differential Equations and Boundary Conditions 

Mainly we shall use the usual equation of hydrodynamics in the Eulerian form 

and the polytropic relation to express the motion and state of gas in each chamber: 

(2.1) 

P1+(Pu)x = 0 

(pu)1+(P+Pu2 )x = 0 

{p(e+½u2)},+{ pu(e+ ! u2+ ! )L = 0 
p = (r-l) pe 

where p is the density, u is the velosity, p is the pressure, e is the internal energy 

per unit mass and r is the adiabatic exponent. 

The equation of the piston motion is as following: 

(2.2) d
2!~t) = p(t, i:(t)-0)-p(t, i:(t) +O) , ,;(O) =0 

where x=i:(t) is the piston path, and we can assume by appropriately normalizing 

that the piston mass is unit. 

The boundary condition being satisfied at the position of the piston is 

u(t, ,;(t)-0) = u(t, ,;(t) +O) = d,;(t) . 
dt 

Furthermore we have the following boundary condition at the right end wall 

(x=xw): 

As initial conditions we suppose that the initial static states have uniformly 

constant density and pressure in each chamber. 
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3. The Modified Godunov's Scheme 

For solving the above problem we must make up algorithms m the neigh­

borhood of the piston, in that of the wall and through the inner region respectively. 

First we consider the scheme through the inner region. 

One wants such schemes as reproduce especially shock waves which are 

discontinuous solutions. Such schemes, as far as we know, are devided into two 

classes. One is of the method using "artificial viscosity" and the other depends 

on "the decay of the discontinuty". An example of the former is the Lax­
Wendroff's scheme5 >, 7> and that of the latter is the Godunov's scheme4 >. Both 

are known to be excellent methods, but according to our experiments for the Riemann 

problem it seemed that the modified Godunov's scheme6> is a little better than the 

L-W7> scheme, and we shall use mainly the modified Godunov's scheme. 

Now we will show briefly the Godunov's scheme and the modified one. On 

a time level we consider the grid function as the step function having discontinuities 

at the half-integer points. First we shall solve the decay of the discontinuities and 

secondly calculate the mean values around each grid point on the next time step. 

So formed grid functions are used to take th~ next step, and so on. 

In order to proceed to such an algorithm we had better use the following 

integral formula instead of the original differential equations (2 .1) : 

f pdx-pudt = 0 

(3.1) f pudx-(p+pu2)dt = 0 

f p(e+ ;
2

)dx-pu(e+ ;
2 

+ ! )dt = 0 

In the Fig-2 we want to know the unknown value at the grid point A. Then 

we take the integral contour CEFD. For example, we have for the first equation 

of (3.1) 

C A E 

.1X 

Fig. 2. 
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(3.2) 

so that we can konw the mean value 15 A around the grid point A if we know 

pu's on the lines EF and CD, which are obtained by solving the decay of dis­

conuities at F, D respectivly. For solving the decay of discontinuties we must go 

through an iteration process. In order to avoid it we shall use below the modified 

Godunov's scheme, in which the waves are supposed to propagate to right and 

left along characteristics. This assumption is valid only for the case in which 

quantities of jump are small. Thus we have the following algorithm: 

(3.3) 

Pj = piJ.iRj+1/2Uj+112-Ri-1!2Uj-1/2) 

pjui = P iui- J.(P i+112+R j+112Uj+1122 - p j-112- R j-1/2Ui-1t/) 

pi(ej+½(ui)2) = Pj(ei+½u\) 

-J.{Ri+112Uj+112(Ei+112+ 
2

1 
Uj+11/+PRJ+it2) 

J+t/2 

-R j-112 uj-,12 ( E j-112+.l_uj_,,/+ P J-,12) 
2 RJ-1/2 

). = Lit 
Llx 

where the lower suffix inidicates the x-position on a time level t=t 0 , and the 

upper indicates ones on t=t0 +Llt. 

The auxiliary values are calculated as follows: 

PT+,/2 = (r+l)PJ+112+(r-l)p3 P. 
(r-l)PJ+112+(r+l)p3 

1 

Pf+,/2 = (r-l)PJ+,12+(r-l)PJ+1p.+1 
(r+l)PJ+112+(r+l)PJ+, 

1 

Consequently we have the following four cases for large capitals U, P, R and E: 
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UJ+1/2 = U1+1/2' P1+1/2 = P1+1/2' R1+1/2 == Pf+1/2 

and EJ+i/2 
PJ+1l2 

(r-l)R1+112 

By the linear stability analysis it is known that this scheme is stable under 

the C.F.L. condition. 

4. The Algorithm in the Neighbourhood of the Piston 

Next we consider the neighbouhood of the piston. Since the piston moves 

across the net, the algorithm becomes complicated. In order to compare quanti­

tatively the various methods, we had the numberical experiments of the piston 

problem for the linear wave equation in which the piston was to be moved with 

constant acceleration. And we have arrived at the method having the comparati­

vely small errors (see Appendix-I). This method can be also applied to the nonli­

near equation of the fluid dynamics. In our experiment this method gave good 

results (see Appendix-II). Here we are to interpret the method when the piston 

moves to the right, the piston path are drawed on the net in the following two ways 

for sufficiently small .Jt. (Fig. 3) 

In the Fig. 3-a,b we suppose that the values of u, p, p at the mesh points 

mesh points A,B,C,D etc. and that at the point P of the piston are known. Then 

we desire those values at the points A', B', C', D', and P' after .Jt. For this we 

ti. B' p' c' o' 

A B C M2 D 

Fig. 3-a. 
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B' o 

A B p D 

X 

Fig. 3-b. 

again use the integral formulas (3.1). If we integrate along the contour P'Mz'M2P 

in the Fig. 3-a, we can have the integrated values (consequently the mean values) 

on the P'Mz' using the integrated values on the Mz'M2 , M 2P and PP'. Therefore 

we shall first calculated the mean values on the Mz'M2 and PP'. Supposing that 

the mean value are kept constant on the PM2 and that the piston runs along PP' 

with a known positive constant speed we can decide the state in front of the piston 

by using the Rankine-Hugoniot's relation across the shock wave generated at 

the point P; we find first the shock speed U 

2 r-1 
µ=--

r+I 

where flt, is the piston speed (the suffix p and the bar means here and just below 

the mean values on the PP' and "+"-in front of, "-"-at the back of) and the 

barred values fl and C' means the mean values on the PM2 of the velocity and the 

sound velocity respectivly (the bars mean here and blow the mean values on the 

PM2) and furthermore we find 

(4.1) 

P+ = fi{(l+µ2) (U-;:fl)
2 

µ2} 

P+ = Pp,,+µ2p 
p+µ2pp 

The desired values on the M 2 'M2 are calculated by the decay of the disconti­

nuity at the point M2 as we have done above in the interior region. Hereafter we 

have the mean values ; on the P'M2 ' as follow: 

15 = ap-fi(pu)M2M/ 

(4.2) ~ = apu-fi {(p+pu2)M2M21-Pt,} 

--------p(e+ ;2

) = ap(e+ ~)-!i[(pu(e+ ;
2 

+ ! ))M2Mz'-(pu)t,] 
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where a=PM2 /P'Me', f3=Jt/P'M/ and ( • )M2M/ indicates the mean values on 

the M 2M 2 '. On the other hand under the same hypothesis of the piston motion 

the expansion wave propagates backward. 

(4.3) 

We can also decide the state at the back of the piston as follows: 

- ~[ 7-} u,,-u]2Y/CY-1) 
P- = p I--2-T 

- -[ 7-} U"-U]z/cY-1) 
p_=p 1-----

2 c 

where the doubly-barred values show the mean values on the M 1P. The desired 

mean values on the M 2 'P' are calculated by using again the integral formulas 

(3.1) along the path M/P' PM1• Contrarily when the piston moves with a known 

negative constant speed, we have the shock wave to the left and the expansion 

wave to the right. Then we can calculate the mean values on the M 1 'P' and 

P' M/ in similar way. While in the case of the Fig. 3-b, we shall decide the states 

the front of and at the back of the piston just in the same way as in the case of Fig, 

3-a, the values at the point D' are calculated by the interior formula. Thus we 

have the mean values in the neighbourhood of the piston, and furthermore we 

can calculate the desired values at the grid points by the interpolation between 

the coresponding mean values and the states at the piston. 

So far we supposed that the piston speed was to be known in advance, but in 

reality it is unknown beforehand and is the quantity to be desired. If we know 

the states at both sides of the piston, we can know the piston speed by integrating 

the equation of the piston motion. Approximately we have the following the 

formula: 

(4.4) 

up'= up+Jt(p_--P+) 

u _ u,,'+u,, 
p - --2-

Hence in order to know the states of both sides at the piston and the speed of the 

piston, we can not but use the iteration scheme among the formulus (4.1), (4.3) and 

( 4.4). It is easily seen that this iteration scheme converges for small Jt. 

5. The Algorithm in Front of the Wall 

We suppose that the net is set in front of the wall as Fig. 4, 

We shall construct the scheme which gives the relevant values at the mesh point 

E' and at the point Won the wall using the values at E and F etc.. For this along 

the same line as in the neighbourhood of the piston we consider the reflection of 
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w' 
---+------+----,-----+-----!~ 

at w / Woll 

t 
\ I F M E w 

L_ -- ~x ~~ ~ 

ax .4X 

Fig. 4. 

the shock wave at the point W on the wall and ask the state on the wall using the 

Rankine-Hugoniot relation, and furthermore apply the contour-integral (3.1) along 

M'W'WM so that we have the relevant values at the mesh point E'. Here, 

of course, it is supposed that we have a uniform state along MW and we calculate 

the decay of the discontinuity at the point Mas in the interior region. Consequently 

this algorithm is put in order as follows: 

CE= . /rpE 
'V PE 

Us = 2 ( t::_ µ2) -~ c};+ (2 ( t::_ µ2) y 
Pw = PE { (I +µ2)(~)2-µ2

} 

rp-Pw= --- w 
2 r-1 cE--

2
-uE(2u8 +uE) 

6. An Experiment 

In order to check our method we use the following data as an example: the 

length of the barrel between the initial position and the closed end is 3.5 m, the radius 

is 3.7 cm, the pressure in the barrel (the right chamber) is 2.8 kg W/cm2, that in the 

resevoir (the left chamber) is 66 kg W/cm2, the initial sound veloci~y in both chambers 

is 331 m/sec and the piston weight Wis 0.005 kgW. These data depend on that of 

the hypersonic gun tunnel at the Kyoto University constructed in 19623>. We 

carry out, as usual, to nondimensionalize as follows: 

u 
u-u=-

Co 
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- p 
P-P=T-

Po 

where Wis the piston weight, A0 is the cross area of the barrel and g is the gravi­

tational acceleration. 

The zero suffix of the other values means the initial values in the right chamber. 

Thus we have the equations of hydrodynamics (2.1) and the equation of the 

piston motion (2.2), where the bar is omitted. And the above initial data are 

reduced to the following non-dimensional quantities; 

Po= 1 

P1 = 23.57 

Po= 1.4 U0 = 0 

P1 = 13.37 U1 = 0 

and the length of the barrel is 1.88. 

(in the right chamber) 

(in the left chamber) 

In our experiments Jx=0.094, 2=0.2 which satisfies the C.F.L. condition'> 

in our data and results. In Fig. 5 we see how the pressure in the chambers varies 

as time passes. In the Fig. 6 we see the piston path (the real line) and the aspect 

of the propagation of the shock waves. The pressure at the end wall varies as in 

Fig. 7. This pattern agrees fairly with the experimental result. 3> 

Fig. 5. The pressure history. 

kg'"/cm2 
p 

60 

40 

20 
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(open) (closed) 

Piston 

___ ......_ _______ _. ________ ..__ _______ -'------'0 

0 2 3 3.5m 

Fig. 6. The piston path (the real line-by the Eulerian formula, the broken line-by the 
Lagrangian formula) and the propagation of the shock wave. 

P kgw/cm2 

70 

60 f------f----

50 1------+---

20 

/--i---------1 
I 
I 
I 
I 

10 15 
msec 

Fig. 7. The pressure history at the wall ( the real 
line-by the Eulerian formula, the broken 
line-by the Lagrangian formula). 

P Kg"/cm2 

70 

60 I 
I 
I 
I 

50
1 

I 
I 
I 
I 

40 \-

' I 
I 
I 

30 

20 

10 

-

I 
I 
t·-
1 
I 
I 
I 
I 

I 
I 
I 
I 

0'-----j___ ____ j___ ___ __J 

0 5 10 15 
msec 

Fig. 8. The pressure histories in the front of 
(the real line) and at the back of the 
piston (the broken line). 
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Futhermore the pressure histories in the front of the piston (the solid line) and at the 

back of (the broken line) are shown in Fig. 8. In order to check our result we shall 

compute the theoretical pressure and the one of our numerical experiment at the 

back of the forward shock wave while the piston runs with constant speed. The 

former was 3.94 (with no dimension) and the latter was 3.96. 

Appendix I 

We shall consider the piston problem for the wave equation 

x>X(t), t>O. 

Initial conditions: 

u(O x) = 0, v(O x) = l.O, x > 0 

Piston path: 

X(t) = O.lt2 

Boundary condition: 

uix-XCtl = 0.2t 

And we shall try to compare the various algorithms in the neighbourhood of the 

piston. 

We shall approximate the differential equation by the following difference 

equation (the Godunov's scheme): 

n+l _ n + ). ( n n ) + ). ( n 2 "+ " ) Uj - Uj 2 VJ+1-VJ-l 2 UJ+1- UJ UJ-I 

(1-2) 

Now when the net is fixed, the piston path runs across it in the following two ways: 

A D D 

B C B Cz 

Fig. 9-a. Fig. 9-b. 
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The problem is to detiermine the relevant values at the points A and D using those 

at the point B, C, etc., 

(i) Method-I First we shall introduce the most formal method. In the case-a 

We shall put 

and 

In the case-b 

We shall put 

and 

/ 
/ 

/ 

B 

A D 

:\ / ' ' / 
/ ' I \ / ' I 

I 
I / 
i/ 

/ 
/ I 

I 
I 

A' 

/'<., 
\ 

\ 
\ 

C 

Fig. 10-a. 

F 

' ' ' ' ' ' ' ' ' ' ' ' 
E 

BA': A 'C = a : /3 BC : CE = a' : /3' 

(a+fi=a'+/3'=1) 

Un = a'uE+ /3 'uB + .3.!_ (vE-vB) 
BE 

Vn = a'vE+fi'vB+~ (uE-uB) 
BE 

A 

,1 ', 
/I ', 
I I ' 
I I ' 
I I ', 
/ I ' 
I I ', 

D 

I I ' 
/ I ', 
I I , 

B 
' I ' 

C1 A' 

Fig. 10-b. 

(a+fi=l) 
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The relevant values at Dare calculated by the formula (I-2) 

The experiment by this method is shown in Fig. 11, where ..l= 1.0, Jx=0.2 and the 

parameter on the curve means the time. 

The broken line shows the exact solution of the problem (1-1). (These conven­

tions are com{llon among the following figures.) 

0.4 -....:: 

0.0 
1.0 2.0 3.0 

V 

0.8 

0.6 

0.4 

0.2 
0.0 1.0 2.0 3.0 4.0 X 

Fig. 1 I. Method-I. 

(ii) Method-2 In the result by the Method-I the values at the piston become 

far from the exact ones and its effects are propagated to the right. In order to 

determine the values better we shall use the characteristics, that is, use the property 

of the solution that u+v remain constant along the line dx = - l. 
dt 

A D F 

' ' ' ' ' 
' ' ' ' ' ' ' 

C A E 

Fig. 12. 
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Draw the characteristic AA' ( ~; = -1) through the poi~t A and determine 

the position A' as Fig. 12 and set 

Ifwe determine the values VA' and UA' by interpolation between C and E, we have 
the value vA (uA is given). 

The method to determine the values at the point D is as Method-I. By this 
algorithm we have the experimental results in Fig. 13. This result is certainly 
better than that of Method-I and shows the aspect of the exact solution nearly in 
spite of the coarse mesh width .::lx=0.2. A defect is, as we see in the Fig. 13, the 
notable difference of the values at A, D when D is colse to A. This means defect of 
the way calculating the value at D. 

u 

00 1.0 2.0 3.0 4.0 X 

Fig. 13. Method-2. 

(iii) Method-3 Another defect of Method II is that when it is applied to fluid 
dynamics, we must repeat the iteration process (even in the case where the piston 
motion is known in advance) to determine the relevant values at A. 

Here we consider the way which does not use the characteristics as above. 
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It depends on the idea of "decay of discontinuity" and "integral formula", by 

which Godunov's scheme also was constructed in the internal region. 

First we write the integral formula for (I-1), 

(1-3) 
f udx+vdt = 0 

f vdx+udt = 0 

Hence we have the jump condition 

i.e. 

(1-4) 

[u]s+[v] = 0 

[v]s+[u] = 0 

s = ±1, [u] = ±[v] 

where s is the slope of the discontinuity line, and [ •] means the quantity of the 

jump. In this case the discontinuity line coincides with the characteristics. 

We consider the case a and b: 

D F F D 

C E B E 

Fig. 14-a. Fig. 14-b. 

In both states we consider that the integral mean values uBE, vBE are kept con-
I I 

stant between Band E, and that the mean value uM=-(uA+uB), vM=-(vA+vB) . 2 2 
are kept constant between A and B. Then the discontinuity line BB1 (s= 1) is 

generated from the point B and along it we have by the jump condition (I-4) 

From this formula vM, and thus v A are determined. 

In the case-a we take the integral path ABEFA and write down (1-3) in order 

to determine the state of D, 



Difference iHethods for the Piston Problem 

ilAF = uBEBE+{VE-(uM2 +vM)}Lft 

vAF = vBEBE+{UE-(uMvM+uM)}Lft 

299 

where AF and BE mean the lengths of the intervals AF and BE respectively. The 

large characters UE and VE mean the states in the region E1 EE2 which are 

produced by the decay of the discontinuity at the point E. i1 and ii are the mean 

values between A and F. Considering them as the value at the middle point 

of AF, we can calculate ones at D using also the values at A by interpolation or 

extrapolation. In the case-b, the values at D are determined by (I-2). The 

experimental result by the method is shown in Fig. 15 and is very good. 

u 

0.6 i------~1---------"._+--------I----------< 

00 1.0 2.0 30 4 0 x 

Fig. 15. l\'Iethod-3. 

In order to compare the above three methods we calculated the sum e of the 

absolute value of the differences between the exact solution and the numerical at 

mesh points in the right of the piston on each line t=const. These errors are 

shown in Fig. 16. 
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e 

Metho -1 

2.0 --r>---t---->----< 

I. 5 f------tt------+---+------< 

Fig. 16. The evolution of the errors. 

0.5 

1.0 2.0 3.0 4.0 

Appendix II 

Here we shall report the numerical expriments for the equation of fluid 

dynamics (2. l) in which the constant accelerated piston motion ( on the half way, 

and then constant-speed-motion) is treated by several methods. The piston path is 

given by the equation 

Initial conditions are 

l t--
2 

I ~t. 

u(0, x) = 0, p(0, x) = 10.0 p(0, x) = 2.0. 

(i) Method-I We shall again consider two cases: 

In both cases we use the formulas, fox example, 

PA-PA'+ (pu)c-(Pu)B = o 
Lit BC 

Pv-Pc+ (pu)E~(pu)B = 0 
Lit BE 
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A D F F 

11\ . / \ 

'i\ / 
/ 

'\ \ 
' \ / 

\ t1 i ·x- \ ~Ii .;( 
' Q.? · / \ \ j/ ' ' \ , \ §,) ' , I . ' .... ' \ '\ 

' fr/! \ '\ 
" ----- ---------

E C E 

Fig. 17-a. Fig. 17-b. 

p 

15 

p 

10 r ·--~-

15 0 
0 0 :.,i 

;t '<i' 9 °' 
(JI 

... ! (JI 
I\) 

"'' (JI 

10 5 

~ 
__ , 

0 
in 
N 

"' I 

0 I --- ----- -

' ~ f 40 l - t -- ----
' ' 

I' 0 ' 0 ; 0 

. 0 ;{,l .. ' 40 20 

;~' ! 
' ! 

20 _L_ --0 

0 
u 

u o.a r 
0,8 

0.6 ,_ 

0,6 0 
:.,i 
(JI 

0.4 

~ 9 9 
0 a, 

N "' 
(JI I\) 

"' '\~ --l (JI 

0_2 0.2 
0 "' 

-- (JI 

"'"' I 0,0 0.0 ~- _j 

0_25 0,5 0,75 1.0 0.25 0,5 0,75 1.0 1.25 1.5 X X 

Fig. 18. Method-I. Fig. 19. Method-2. 



302 'rATsuo Nom 

Analogous construction is done for the rest equations. 

The numerical result by this method is shown in the Fig. 18. 

(ii) Method-2. Instead of the last equation in the Method-I we use the following 

formula, 

Pv-Pc+ (pu)E-(pu)B = 0 
.:It BE ' 

see the Fig. 19 

(iii) Method-3 This method is that of §2. Here we have put 

p 

15 ----

IO -- -

- - - ----- - ----,----,------, 

i 
! 

' 
' 0 0 . 

201~--

10.1 ' 
0 ~----· 

0.8 

0.6 -

0.4 -- -

0.2 

0.25 0.5 

0 
c.i 

0 
(J) 

0.75 

0 
iD 

Fig. 20. Method-3. 

N 
o 

1.0 1.25 1.5 ) 
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(see ( 4.1)) 

where the prime means the values at A. 
The result by this method is shown in the Fig. 20. The calculation overflowed 

and stopped half way. 

(iv) Method-4 This method also is that of§2. But we put 

p 

1.0 

0 

u 

0.8 r-·---+ .. , .... _ 

0.2 f-4.-+---+--+---' 

0 0 --
0 25 

p~ =P+ 
(see ( 4.1)) 

~-.J___;_ - -------

"' 

--·m,...·--··-.-- N 0l 

-- -- - -- -- -- -

0 N 

0.5 0.75 1.0 125 1.5 X 

Fig. 21. Mcthod-4, 
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Its results is shown in the Fig. 21. 

This result is best. 

(v) Method-5 In addition we shall report the calculation in which the Lax­

Wendroff's viscosity method 4 > in the interior region. First in the neighbourhood 

of the piston -we use the same method as Method- I. The result is shown in the 

Fig. 22. 

p 

15 

10 

5 

20 

0 

u 

0.8 

0.6 

0.4 

0.2 

0.0 

I\ ~ 

\ \ 
\ 0 

01 

~ll' 

0/s=, \ \_ ~ \... '--

I\ -------... 

~ ~~ 
'\ 

0 

'-"s-
~"' '- \_ \_ 

~ 

!\ 
\ 

\ 
\ 

\ 

\ 0 

'"' 9 ..., 
01 (JI 

\ 

' 
0 

'"" \"' "' 
0.25 0.5 0.75 

Fig. 22. Method-5. 

I 

u 

9 0 
'--l 

0) (JI 
N 
(JI 

-
r---..... 
9 

"-.... ......., 
0 

0) :.-i N 
01 

(JI 

L-

,/ 

0 ..., 
01 

0 
0) 

"' 01 

1.0 1.25 1.5 X 

(vi) Method-6 As above we use the L-W's method. But in the neighbourhood 

of the piston we use the same method as Method-2. 

The resµlt is shown in the Fig. 23, 
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Fig. 23. Method-6. 
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Appendix III So far we considered the problem in the Eulerian form, but we 

can treat it also in the Lagrangian form. In this case the fundamental equations are 

av au 
---at aq 
au= _ap 
at aq 

a( e+f) = 
at 

Here q is the Lagrangian coordinate and Vis the specific volume ( = ~ ) . The 

other values are difined as in §2. 
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The equation of piston motion is given as follows: 

du - = p(t, -0)-p(t, +O), 
dt 

at q=O. 

We shall show the result in which the practical problem of §6 was solved 

by the exact Godunov's method. (see §3, in detail see 4)). The calculation method 

in the neighbourhoods of the piston and the wall is analogous to that in §§4, 5. In 

this calculation the mesh width ilq in the left region to the piston is 0. 7897 and 

that in the right is 0.4387. The time internal ilt is 0.02. 

The piston path and the pressure history at the wall are shown in Fig. 6 and 

Fig. 7 respectively by the broken lines. This result seems to be closer to the ex­

perimental one3> than our result by the Eulerian form. But this comparison is not 

fair since the above mesh width ilq corresponds to the finer Jx. 
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