
Syntax Directed Analysis and The Compiler Compiler

By

Hiroshi HAGIWARA* and Katumasa WATANABE*

(Received March 29, 1969)

The Compiler Compiler is the procedure to define an input and an output language
as formally as possible, to describe the translation algorithm of a compiler simple and
clear, and to generate compilers in a short time easily by means of a computer.

As one method, we have constructed the Compiler Oriented Language COL suitable
to describe compilers. The compiler described in COL parses an input string in the
manner of the Syntax directed analysis, interprets the resulting syntactic structure and
produces the output string.

In this paper, we discuss two methods of the Syntax directed analysis, Top-down
analysis and Bottom-up analysis, and the Syntax Statement of COL in which the parsing
procedure of a compiler is described.

As a result, it may be said that the resulting compiler described in COL can accept
ALGOL programs and produce the object programs in symbolic language or in machine
language, and that the parsing time is about 50 percent of the whole compiling time on
the average.

I. Introduction

381

A language is considered as a set of strings of symbols. A compiler is a program

which translates the string of the input language LI into the string of the output

language L2. Every string has information as the sequence of symbols and the

information about meaning of symbols. Translation is performed depending not

only on the sequence of symbols but also on the meaning of both languages.

When each symbol "a" of the input language corresponds uniquely to some

symbol "b" or some sequence of symbols b1 b2 ••• b,. of the output language, the

algorithm of the translation is simple. But, in general, the translation algorithm

is more complicated and could be divided into the following two parts:

1. Parsing phase: analyzes an input string (source program) and constructs

a resulting sequence of symbols which represents the syntactic structure of the

string.

2. Translating phase: interprets the resulting sequence and generates the

output string (object program).

* Department of Applied Mathematics and Physics

382 Hiroshi HAGIWAkA and Katumasa WATANABE

For a pair of an input language (generally, procedure oriented language POL)

and an output language (machine oriented language MOL), one compiler is

required. But it takes much time and human work to make a compiler con­

ventionally. As the kinds of POL and MOL increase in number, it is necessary to

make compilers easily in a short time.

So study has been begun on "the procedure to define the input and the output

languages as formally as possible, to describe the translation algorithm of the

compiler simple and clear, and to generate compilers easily and shortly by means

of a computer."

This is extensively called the Compiler Compiler.

Then, besides an input language Ll and an output language L2, the third

language LO in which a compiler is described is mentioned on a compiler. A

compiler is specified as CfLLz• Although we can discuss the Compiler Compiler

from the view point of each language of these three, we classify the Compiler

Compiler in practical way.

a. Converting-type: When we have a compiler C';!.mi which works on a

machine ml, we can generate a compiler C'p!,m2 for POL p which works on the

machine m2 as follows.

1. describe a compiler C$_,_m2 in POL p.
2. obtain C';!.m2 by C';!.m1(C$_,.m2)-

3. obtain the objective compiler C';2..m2 by C';!.m2(C!_,.mz).

b. Bootstrapping-type: Extend the ability of a compiler for a POL p step

by step.

1. make a compiler CPo_,_m for a subset Po of p. i: =0.

2. describe C!(+1_,_m(fiCP;+1CP)-

3. obtain CP;+,-m by C':;_,m(C!;+,_,.m)·
4. repeat the step 2 and 3 with i:=i+l.

c. Describing-type: Define a compiler describing language LO to write

compilers easily (and, if possible, independently of a computer).

1. make a LO processor C'£0_,_m•

2. describe a compiler C;~m-

3. obtain C';_,_m by C'£o_,_m(C;~m).

d. Parametric-type: Given some formal definition of POL p (and MOL m),

construct a compiler C';_,_m with the prepared parsing procedure. The Syntax

directed analysis is an instance of this type.

Based on the type c and d, we define the Compiler Oriented Language COL

to describe a syntax directed compiler. So, we discuss the Syntax directed analysis

and the part of COL to describe an Analyzer.

Syntax Directed Anarysis and the Compiler Compiler

2. String and Rewriting rule

2.1 The properties of strings

383

Definition 1. When Vis a finite set of symbols and V* is the set of strinis cif

symbols belonging to V, V* is defined as follows:

1. If XE V, then XE V*.

2. If aE V* and /3E V*, then the product a/3 is uniquely determined and

a(3E V*.

3. V* contains an element¢ such as a¢=¢a=a for any aE V*. ¢ is called

a null string.

The elements of V* have the following properties:

pro. 1 ifa, (3EV*, then a(3-=t,.(3a.

pro. 2 if a, (3, rE V*, then (af3)r=a((3r),

here, we don't consitler any semantic properties depending on the strength of

association.

pro. 3 ifa, (3EV* and a=/3-=t-¢, then one of the followings is satisfied,

(1) there exist Xand Yin Vsuch that a=XEV, (i=YEVand X=Y.

(2) there exist a 0 a2, /31 , /32 in V* such that a=a1a2, /3=/31/32 and a 1 =/31 -=t-¢,

a2=/32-=t- ¢.

From these properties, it can be said that the algebraic system of V* and the

productive operator is semigroup and monoid.

Lemma 1. For n strings a 1, a2, ···, an ofV*, the product a=a1a2••·an is

uniquely determined without the dependence of the order of the product.

Definition 2. For a=a1 ·••a,. (a;E V*, i=l, •··, n), each a; (1 ;;;,i;;;,n) is a

substring of a and a 1 •·· a j (1 ;;;,i;;;,n) is left substring of a. We denote it a,··· a iE

LS(a).

Lemrna 2. A non-null finite string a (a E V*) can be represented as .
a = II X; , X; E V.

i=l

Definition 3. /(a) denotes the length of the string a (aEV*) and is defined

as follows

l(a)=io
,n

for a=¢ .
for a = II X;, X; E V .

i=l

The elements of V* also have the following property.

pro. 4 (1) l(a/3) = l(a)+l(/3) for a, j3EV*.

384 Hiroshi HAGIWARA and Katumasa WATANABE

/(a,)

Definition 4. For a= II X; (l(a)~ l, X; EV), it is defined that
i=l

LC1,(a) = X,X2 ••• X,. (l ~k~l(a)) ELS(a).

Especially LC,(a) =LC(a) =Xis called the most left character.

Example 1.

(assignment statement):: =<variable): =< expression)

LC(< assignment statement)) = (variable) .

2.2 Context free grammar

We divide the finite set of symbols V into two disjoint sets I and N. I is

the set of terminal symbols and called alphabet. N is the set of non-terminal

symbols.

Definition 5. A string a(aE V*) is called a sents:nce if it consists of only

terminal symbols. Namely, a sentence aEI*E V*.

According to this definition, a language is regarded as a set of sentences

selected by some rules. The rule, which is the basis of the selection, is the grammar.

Here, by introducing the concept of the phrase, we consider the phrase structure

grammar defined with the rewriting rules.

Definition 6. A context free phrase structure grammar G is specified by the

4-tuple (V, I, P, a), where Vis a finite set of symbols and called vocabulary, I is

a finite set of terminal symbols and called alphabet, P is a finite set of rewriting

rules A-a, AEN, aEV*, where N=V-I(NnI=</J) is the finite set of non­

terminal symbols, and a is an element of N and called initial symbol. a does not

appear at the right handside of any rewriting rule.

Definition 7. When G=(V, I, P, a) is a context free phrase structure

grammar,

(1) we write <p9<f for <p, </JEV*, if <p=r,Ar2 , </J=r,ar2 (r,, r 2 EV*) and there

exists A-a in P.

(2) we write <p~</J for <p, </JE V*, if (i) <p=</J, or (ii) there exist finite number of

strings <p; (<p;EV*, i=l, 2, ···, n-1) such as <p;9'P;+, (i=O, 1, ···, n-1) where

'Po='P, 'Pn=</J.
(3) the language L(G) defined by G is represented as

L(G) = {alaEI*,

and called a context free phrase structure language (CF-language). Namely,

CF-language L(G) is defined as a finite set of sentences obtained by applying some

rewriting rules of P to a. The syntactic structure of the programming language

Syntax Directed Ana(ysis and the Compiler Compiler 385

ALGOL is defined by Backus Normal Form (BNF) recursively, then, without

regarding the properties of identifiers, an ALGOL program is a sentence of a

CF-language.

Definition 8. The string of terminal symbols a1a2 ·•·an (a;E.S) obtained

by applying rewriting rules to a non-terminal symbol A is called the terminal

form of A (A E N). For terminal form of A,

LTk(A) = a1 ... ak (1 ~k~n) .

Especially LT1(A)=LT(A)=a1 is called the most left terminal. LT(A) has an

important role in syntax analysis of a program as LC(a) has.

Now, a resulting sentence generated by a grammar G has the information of

the sequence of symbols and the information of the associative relation among

symbols and/or substrings according to the applied rewriting rules. Given the

former information at the parsing phase the compiler deduces the latter information.

It can be represented as a tree structure.

Definition 9. The correspondence between the generation of a sentence

and its tree structure is as follows:

1. The symbol a is the root of the tree and called node a.

2. When a rule AP-XP1XP2 .. •Xpnp is applied, the node AP has n branches and is

connected to nodes Xpi, Xp2 , ···, Xpnp-

3. If Xp; (l~i~np) is a terminal symbol (Xp;E.S), node Xp; 1s called a leaf

and no new branch shoot out from it.

One generating process has only one tree structure, but it is not necessarily

that all the sentences have only one tree structure.

Definition IO. The grammar G is unambiguous if all of its sentences have

unique tree structure.

The rules of ALGOL 60 are unambiguous, and generally it is desirable that

the grammar of the programming language is unambiguous. Although a sentence

is ambiguous, with some restriction we can determine only one tree structure of it.

Definition 11. In a tree the handle is the most left set of leaves X1, ···, Xn

which neighbor with and are connected to the same node Y.

The syntax analysis of the given sentence a E .E* is to seek handles of the

corresponding tree in turn. Namely, if the grammar G has the rule Y-X1X 2 ••·Xn

and X 1X 2 ···X,. is the most left set of leaves of the string a=a1X 1 • .. Xna2 (a 1, a 2 E

V*), then a is replaced by a 1 Ya2 •

Next we discuss two methods of the Syntax directed analysis how a given

sentence is parsed. They are Top-down analysis and Bottom-up analysis.

386 Hiroshi HAGIWARA and Katumasa WATANABE

3. Top-down analysis

Beginning with the root node a of the corresponding tree of a given input

string a=a1a2 ··am the Top-down analysis is the method to recognize the com­

ponents of each node of the tree with referring to the set of rewriting rules P, and

at last to recognize that a is reduced to a. This is similar to the change of states

according to the state diagram of a sequential machine. The set of rewriting

rules Pis given with attention to the following points.

a. The rules with the same symbol at left handside are grouped and every

rules are numbered sequentially one group after another, beginning with the group

which has a at left handside. The number of the rule represents the order of

reference. Then, between two rules

which have the relation of a2 ELS(a1), the former should precede the latter, in

order that the longest string of symbols constructing A could be recognized.

Example 2.

(for list element)-(ae) step (ae) until (ae)

(for list element) - (ae) while (be)

<for list element)-(ae)

where (ae) is (arithmetic expression) and (be) is (boolean expression).

b. When a left 1 ecursive rule

A-Ab

is referred, the parsing process will not go ahead and the syntactic unit A will not

be recognized. Generally, besides the above rule, a rule such as

is contained in the set of rules P, so both are rewritten as follows

A "9 Ab "9 Abb "9 · • • "9 abb · · · b = ab*

A "9 a*{b}

where *{ } means that the elements in { } can be repeated zero or any number of

times.

Example 3.

(block head)- begin (declaration)

<block head)-<block head); (declaration)

Syntax Directed Ana{ysis and the Compiler Compiler

are changed to

(block head)- begin (declaration)* {; (declaration)}

c. The right recursive rules are also modified. With rules

B-aB

B-b

387

the parsing process goes ahead normally and a*b is reduced to B. But, in order to

decrease stack manipulation, they are changed to

B- *{a}b

Example 4.

< compound tail) - (statement) end
(compound tail)~(statement); (compound tail)

are changed to

(compound tail)-(statement)*{; (statement)} end

d. Under the restriction of the condition a, rules in a group are ordered

depending on the frequency of use. It only reduces the parsing time and has no

effect in parsing procedure.

e. Among the rules in a group the rules with common substring at right

handside are modified by one of the following manners.

el. Introduce some new non-terminal symbols.

e2. Change them into the factoring form.

For example, the rules

A - aBC, A - aBd, A - ae

are modified as follows.

e 1. A - aS, S - BT, S - e, T - C, T - d
e2. A-a{B{Cld}le}

It omits that the components which have been recognized are cancelled and

recognized again.

Example 5. (term) is defined as follows.

e 1. (term)-(factor) *{(post factor)}

(post factor) - X (factor)

(post factor)- / (factor)

(post factor)- -;- (factor)

e2. (term)-(factor)*{ X (factor) I/ (factor) I -,-(factor)}

388 Hiroshi HAGIWARA and Katumasa vVATANABE

We suppose that the grammar G has the set of rules P modified according to

the condition a,b,c and el. Namely, each component of the numbered rule

p: AP~ xp,Xp2 ... Xpnp

is an element of V or {or}. To parse the input string a=a, "'lln one stack E and

six auxiliary variables are used.

G represents the goal which is the node being recognized.

REP has the logical value (1,0) and represents whether the component is repetitive

or not.

r points the rule being referred.

k points the k-th component at the right handside of the rule r.

J points thej-th symbol ai of the input string.

The result of parsing is given as the sequence of the numbers of the applied rules

and m points the m-th symbol of the output string. The stack E memorizes the

sets of values of these variables in first-in-last-out manner and is manipulated by

the following push-down operations.

RESER VE E(II) : push down E and store the values of I1 in E. Where II

means some or all auxiliary variables.

REWRITE E(Il) : rewrite I1 with the values stored m E. Stack E is not

changed.

ERASE E: pop up E to erase the set of values stored lastly.

With these background, given input string

is parsed according to the following procedure. As the result the sequence of

numbers P; of the applied rules

is obtained.

Step A : set the initial value of each variable

(G, REP, r, k,j, m): = (a, 0, 0, 0, I, 1).

Step B : in the order of the numbers, search the rule p such as Ap=G and set

(r, k, REP) :=(P, 0, 0).

Step C : k: =k+ I and examine the component Xrk

I. if XrkEL) then examine the input symbol aj

if aj=Xrk• thenj:=J+ I and repeat Step C,

otherwise go to Step D.

2. if Xrk E N then set xrk as a new goal

Syntax Directed Anarysis and the Compiler Compiler

i.e., RESERVE E(G, REP, r, k,j, m); G:=Xr,,

and go to Step B.

3. if Xr1,="*" then k:=k+l and set the repetitive state

i.e., RESERVE E(G, REP, r, k,j, m); REP:= 1

and repeat Step C.

389

4. if Xr1,="}" then add the indication to the output sequence that the

repetitive component is recognized and m:=m+l. Repeat the recognition

of the repetitive co~ponents

i.e., k:=E(k); E(j, m) :=(j, m)

and repeat Step C.

5. if Xr1,=</>(i.e., k>nr) then, because all the components of the rule r have

been recognized, add the rule number r to the output sequence and m: =m+ I. And

if G=a then parsing is completed successfully, otherwise the goal Ar is accom­

plished and the previous goal is restored

i.e., REWRITE E(G, REP, r, k); ERASE E

and repeat Step C.

Step D : when the component Xr,, is not recognized

l. if REP= 1 then skip over to the component "}"

i.e., (REP,j, m) :=E (REP,j, m); ERASE E

and k:=k+l until Xr1,="}", then go to Step C.

2. if REP=O then give up the current ruler and refer the next rule

if Ar+1=Ar then r:=r+l; k:=k-1 and go to Step C,

otherwise it results that the node Ar could not be recognized, so if G=a then

parsing stops unsuccessfully

otherwise restore the previous state

i.e., RESTORE E(G, REP, r, k, j, m); ERASE E

and repeat Step D.

If LT(Xr1,) (or LT;(Xr,,), i> 1) hav~ been examined beforehand for Xr1,EN,

then the parsing time could be reduced slightly. Because, without setting the

new goal Xr,,, it can be known in Step C2 that the node Xr,, has not the possibility

to be recognized when ai$.LT(Xr,,) (or ai•••ai+i-i$.LT;(Xr1,)).

4. Bottom-up analysis

The Bottom-up analysis is the method to set the node a as the largest goal

and to recognize that an input string a=a1 .. ·a,. is reduced to the node a, as the

390 Hiroshi HAGIWARA and Katumasa WATANABE

Top-down analysis is. But, contrary to the Top-down analysis, in the Bottom-up

analysis the first input symbol a1 is read, and the rule q

q: Aq - a,Xq2 • • • Xqnq

which has a1 as the first component of the right handside is referred without regard

to the current goal a. Each component Xq; (2;;:;;;i;;;;;nq) is examined to find out

whether the rule q is applied or not. In the case that the rule q is applied, if

Aq=a then parsing is completed successfully, otherwise the rule q'

q': Aq, - AqXq,2 ••• Xq'nq'

which has Aq as the first component is chosen and parsing is continued. For

example, consider the case to parse the input string "cd" with the set of rules

P: 1. a-AB

2. a-CD

3. A-a

4. B-b

5. c-c
6. D-d

In the Top-down analysis the first rule a-AB is applied, but cancelled with the

unrecognition of A. Next, the second rule a-CD is applied. "c" is reduced

to C and "d" is reduced to D, and a is recognized successfully. On the other

hand, in the Bottom-up analysis, the first input symbol "c" is read and it is reduced

to C according to the rule 5. Next, the rule 2, which has C as the first component,

is applied, and the goal a is attained with the recognition of the second com­

ponent D.

In the Bottom-up analysis, because the rules are selected regarding input

symbols, the parsing process could be gone ahead more effectively when each

terminal symbol has the proper meaning.

To simplify the parsing procedure the rewriting rules are written in the form as

Xq,Xq2 • • • Xqnq - Aq .

The rules which have same first symbol are grouped and are numbered with

consideration of the condition a.

Example 6. The set of rules P to generate (assignment statement) is re­

presented as Ptop for the Top-down analysis and Pbot for the Bottom-up analysis.

Ptop Pbot

1. (as) - (lejt)(e) 1. (lejt)(e) - (as)

2. (e) - (t)*{(ap)(t)} 2. (e)(ap)(t) - (e)

3. (t) - (p)*{(mp)(p)} 3. (t)(mp)(p)- (t)

4. (p)-1 4. (t) -(e)

5. (p)- ((e)) 5. (p) -<t>
6. (left)- I:= 6. /: = - (left)

Syntax Directed Analysis and the Compiler Compiler 391

7. (ap) .._ + 7. I -(p)

8. (ap)- - 8. ((e)) .._ (p)

9. (mp)- X 9. + -(ap)

10. (mp>- I 10. -(ap)

11. X -(mp)
12. I -(mp)

Moreover, to make the parsing procedure more effective, the following

character is derived from the set of rules beforehand.

Definition 12. The component Xq; (I ~ i ~ nq) of the rule q has the first

kind of attainability to the goal Aq•

Definition 13. The first component Xq, of the rule q has the second kind of

attainability to the goal Ar, if Aq is the first component of the rule r or Aq has the

second kind of attainability to Xri.

It is obvious that if Xq, has the second kind of attainability to Ar then Xq, E

LC(A,,).

Example 7, We can obtain the following Attainability Table from Pbot

of Example 6.

Table I. Attainability Table.

i~ To I I
_F_ro_m_~--_____:c-'-----_<_as_> _ _,_I - (left) -~_j __ <_t>~_<_P>_ (ap) I (mp)

---·~

(left)
I

I

(e) I

!
I

(t) ' i

(p) 2
i

<aP> i I

, __ <_mP_> __ ~-=--=-===~! __ _
I 2 . 1

I

2 2 I
I

I
i 2 2

+,- I
----------1----

1

____ 1, __ _

__ x_,_/ ______ l----1 .

i

i

i
! 1

I

I
1

I

I means the first kind of attainability.
2 means the second kind of attainability.

392 Hiroshi HAG!WARA and Katumarn WATANABE

Definition 14. Symbol X(XE V) is attainable to the goal A (AEN) if X

has the first or second kind of attainability to A, and it is represented as

otherwise

For example, in Example 7,

T(X, A) = I

T(X, A)= 0.

T((p), (e)) = 1, T((p), (t)) = I, T((p), (p)) = 0.

In the Bottom-up analysis, the Attainability Table, auxiliary variables (G,

REP, r, k,j, m) and one stack E are used. Variable REP is used to indicate whether

a recursive rule is being referred and the goal G has been attained once or not. In

order to correspond the longest substring to the goal, in place of the repetitive

representation of the rewriting rules, the goal is repeatedly attained in the parsing

procedure.

For example, the input string "a+b+c" once attains to the goal (e) with the

substring "a+b" by the rule 2 of Pbot. And refering again the rule 2 which

has (e) as the first component, "a+b+c" is reduced to (e). So, for the Bottom­

up analysis, rewriting rules could be left recursive.

In the following parsing procedure it is supposed that no rule contains either

the repetitive component or the factoring form.

Step A': set the initial values of each variable

(G, REP, r, k,j, m): = (a, 0, 0, 0, I, 1). (1)'

Step B': read the next input symbol aj, search the rule q such as Xq1=ai in the

order of the number and

if Aq = G or T(Aq, G) = I

then (REP, r, k,j):=(0, q, l,j+l) and go to Step C',

otherwise repeat the same test (2)' with q:=q+I.

(2)'

When there exists no rule q which satisfies the condition (2) ', go to Step E' with

the possibility of some syntactic error in the input string.

Step C' : k:=k+I and examine the component Xr,.,

1. if XrkEZ then examine the input symbol ai

if ai=Xrk thenj:=j+l and repeat Step C',

otherwise go to Step F '.

2. if Xr,.E N then examine the input symbol ai

if T(aj, Xr,.)=I (i.e., aiELT(Xr,.)) then set Xrk as the new goal

i.e., RESERVE E(G, REP, r, k,j, m); G:=Xrk

and go to Step B',

Syntax Directed Ana/ysis and the Compiler Compiler M3

otherwise go to Step F ', because the left substring of a j"" • an has no possibility to

be reduced to Xrk·

3. ifk>nr then, because all the components of the ruler have been recognized

and the node Ar has been attained, add the rule number r to the output sequence

and m:=m+l. And

if Ar= G then try to attain to the goal G repeatedly

i.e., E(j, m): = (j, m); REP: = l

and go to Step D',

otherwise (i.e., Ar=!=G) go to Step D'.

Step D' : If the attained node Ar is a then the parsing procedure stops successfully.

Otherwise search the rule q such that Ar=Xqi, and if

Aq = G or T(Aq, G) = l

then (r, k) :=(q, l) and go to Step C',

else repeat the same test (3)' with q: =q+ l.

When there exists no rule which satisfies the condition (3) ',goto Step E'.

(3)'

Step E' : In the case that no rule has the same first component as the next input

symbol ai or the attained node Ar,

l. if REP= 1 then, because the goal has been attained once,

RESTORE E(G, REP, r, k,J, m); ERASE E

and go to Step C'.

2. if REP=O then stop the parsing procedure because there exists some

syntactic error in the input string.

Step F' : In the case that the component Xr,.(k "?;_ 2) could not be recognized,

examine the following rules of the rule r. If there exists the rule (r+i) for any i

such that

Xrl = Xcr+ill (l= 1, 2, ···, k-1), Xr1,=l=Xcr+ilk,

and Acr+;i = G or T(Acr tn, G) = 1

then r:=r+i; k:=k-1 and go to Step C'.

Otherwise give up the current goal

i.e., RESTORE E(G, REP, r, k,j, m); ERASE E

and go to Step C' when REP= 1 or repeat Step F' when REP=O.

(4) I

The main difference between the Top-down analysis and the Bottom-up

analysis is how to choose the next referring rule in Step B and Step B' and D'.

The former chooses it according to the node of the subtree (i.e., the current goal) and

the latter to the most left branch of the subtree (i.e., LC(G)).

394 Hiroshi HAGIWARA and Katumasa WATANABE

As seen above, the parsing procedure needs not be changed for various sets

of rewriting rules (i.e., for various input languages).

5. Parsing procedure of COL

As an example' of the Compiler Compiler, we define the Compiler Oriented

Language (COL) to describe compilers. The COL System is a programming

system to generate compilers by means of a computer and consists of the language

COL and COL Processor. COL is the language for a compiler builder to instruct

various actions on the compiling process to a computer. The parsing phase of a

compiler is described in Syntax Statement and the translating phase in Semantic

Statement. In order that the compiler can work on a computer, these COL

statements must be translated into the sequence of machine instructions. It

1s the COL Processor to perform this transformation.

The generated compiler is divided into two parts:

1. The Analyzer, which is described in the Syntax Statement, parses the

string of input symbols and constructs its M-structure.

M-structure represents the syntactic structure of the corresponding string.

2. The Translator, which is described in the Semantic Statement, interprets

the result of the parsing and produces the sequence of the object symbols.

That is, a compiler is defined as follows:

(COMPILER)::= *{Syntax Statement} ENDMARK *{(M-routine)} ENDMARK

(M-routine):: = MN AME: *{Semantic Statement}.

As mentioned previously, the Syntax directed analysis is specified with a set

ofrewriting rules P and the parsing procedure II. For various input languages the

corresponding set of rules P is given, but the parsing procedure II is unchanged.

The compiler takes the following basic actions in the parsing procedure.

I. recognizing a "delimiter" as a terminal symbol,

2. editing a basic item such as "identifier", "number" and "string" and

transforming it into an inner representation,

3. recognizing a syntactic unit as a non-terminal symbol,

4. storing and/or restoring the necessary information for the action 3,

5. specifying the next action in the parsing procedure i.e., choosing the rule

referred to next,

6. recording the result of the parsing.

To write an Analyzer the set of rules P of the input language is modified on

the conditions a, b, c, d and e. Then, according to the modified rules, the parsing

procedure is described in the sequence of Syntax Statements defined as follows.

Syntax Directed Analysis and the Compiler Compiler

<Syntax Statement):: = (Label)(Read & Test)?(T. Action) & (F. Action)

(Label) : : = SN AME: I rt,
(Read & Test):: = (Read)(Test)

(Read):: = * I (Read)* I rt,
(Test):: = I IN I GI "delimiter" I (SN AME)

(T. Action)::= (Trans)l*{(Action),}(Trans)

(Trans)::= TRIFRl#SNAME

(Action):: = (Result) I ON I/ I (Error)

(Result):: = (MN AME) I@
(Error):: = E*{letter I digit}

(F. Action):: = (T. Action) I (T. Action), AT

395

The Analyzer has an inner logical variable TEST. TEST is given the value

(true,false) depending on the result of(Test) operation. In a Syntax Statement

(Read & Test) is performed and (T. Action) or (F. Action) is taken in the manner

such as
if TEST then (T. Action) else (F. Action).

Each Syntax Statement is performed sequentially, but the sequence is broken by

a (Trans) operation

Example 8. An input language is defined as follows.

(BLOCK)::= begin *{<D)}(ST)*{; (ST)} end

(D)
(ST)

(EXP)

(T)

(F)

(P)

: : = real I *{, /};

: : =/=*{/=}(EXP)

:: = {-I rt,}(T) *{+(T)l -(T)}

:: = (F) *{x(F)}

:: = (P) *{ ! (P)}

:: = II NI ((EXP))

where / and N represent an identifier and a number respectively. The Analyzer

of this language is specified by the following Syntax Table (Table 2).

A push-down storage has the structure

(head)--(tail)

and the information is stored and/or restored first-in-last-out manner through the

head. The Analyzer has three push-down storages whose heads are called IP, OP,

STP.

IP points the position of the input symbol which is examined.

OP indicates the number of symbols in the M-structure.

STP points the Syntax Statement which is performed.

396

BL:

· BD:

BS:

EE:

D:

DI:

ST:

LEFT:

Hiroshi HAGIWARA and Katumasa WATANAllll

*" 0 BEGIN°"

(D)

(ST)

*" ·"
'

"
0 END 0

"

*"&"

Table 2. Syntax Table.

? (HEAD)

? (DH), :jj:BD

? (STE)/:i!'BS

? (END)/

? TR

*" 0 REAL 0
" ? (REAL)

I ? (I)@

*"," ? ~DI

";" ? (TD)/TR

(LEFT) ? :jj:ST

& :jj:BL

&

&

&

& EIO0,AT

& :ifEE

& FR

& EI0I

&

& EI02, AT
-------- -· ---

&

(EXP) ? (RITH) /TR & (DUMY) TR --~-['

? (P)@ & FR

_______________ ?_(L_E_F_T_)_T_R ____ &_F_R _______ I

EXP: *" ,,

(T)

EPI: (T)

EP2: *" +"

? (NEG):lfEP2

& ON,tEPI

& (NUL) :lfEP2

& FR

& :i!'EP3

'

·---------'

(T) ? (ADD):i!'EP2 & E201, (NUL) AT

EP3: & ON,TR

(T) ? (SUB):i!'EP2 & E202 (NUL) AT

T: (F) & FR

Tl: *"*" & ON,TR

(F) ? (MUL) & E203 (ONE), AT

F: (P) ? & FR

Fl: *"!" & ON, TR

(P) ? (EXP):i!'Fl & E204 (ONE) AT
1---------------

P: 1 ? (P)@, TR &

[----------- ---~-"("-- : (N)@, TR
&

& FR ----- ------ ------ -----------~ -----
(EXP) ? &

*") H ? TR & E205, ON, TR

SYNTAX END

Syntax Directed Analysis and the Compiler Compiler

~
_ll ________ ~---

input string

Fig. I. The mechanism of the Parsing phase.

They are manipulated by the push-down operation.

RESERVE (E) push down tail E and head E-tail E.

RESTORE (E) head E+-tail E and pop up tail E.

REWRITE (E) head E+-tail E. tail E is unchanged.

LOSE (E) pop up tail E. head Eis unchanged.

ERASE (E) erase the whole information in tail E.

Now, each operation of the Syntax Statement has the following meanings.

1. Read operation *
Analyzer has INPUT register and a logical variable RF.

if RF= on then RF:= off.

397

ifRF=offthen IP:=IP+l and put the next one symbol of the input string into

INPUT.

2. Basic item test operation I, N, G

Test operation I (or N, G) examines whether an identifier (or a number, a

string) is found at the next position of the input string. If the specified basic item

is not found then TEST is set to false, otherwise the basic item is edited in IN

TABLE, its inner representation is set in the register a and TEST is set to true.

3. Terminal symbol test operation "delimiter"

This operation corresponds to Step Cl or Step C'l, and examines whether the

specified "delimiter" is found at the next position of the input string. If it is

found then TEST is set to true, otherwise TEST is set to false.

4. Non-terminal symbol test operation (SNAME)

This operation corresponds to Step C2 or Step C'2, and recognizes whether the

left substring of the remaining input string is reduced to the specified syntactic

398 Hiroshi HAGIWARA and Katumasa WATANABE

unit or not. After the execution of

RESERVE (IP, OP, STP); STP: = SNAME,

the parsing procedure is continued from the specified Syntax Statement.

5. <Trans) operation

a. The operation ~ SN AME transfers the parsing procedure to the Syntax

Statement with the specified SNAME

STP: = SNAME.

b. The operation TR is used to reply that all the components of the syntactic

unit specified in 4 are recognized, and to return to the calling point with execution

of
LOSE(IP, OP); RESTORE(STP); TEST: =true.

c. The operation FR is used to reply that the syntactic unit specified in 4 can

not be recognized and to backtrack to the calling point with execution of

RESTORE(IP, OP, STP); TEST: =false.

6. (Result) operation

This is the operation to construct the M-structure representing the results

of parsing. M-structure is formed with name of M-routines and the inner repre­

sentation of basic items.

a. (MNAME) specifies a M-routine name to be inserted in the M-structure

OP:= OP+ l; (OP):= MNAME.

b. @ requires that the inner representation of a basic item, which 1s the

result of the operation I, N or G, is inserted in the M-structure

OP:= OP+l; (OP): =a.

7. RF set operation ON

This instructs the logical variable RF to be set "on".

8. Operation AT

This operation is permitted only in (F. Action) and indicates to perform

< T. Action) in the same Syntax Statement. Operation AT is used to simplify

the denotation of a Syntax Statement when < T. Action) and (F. Action) have the

common operations or to continue parsing procedure after processing of a syntactic

error of the input string.

9. Error indication operation E

The string of letters and digits following the letter E is printed to indicate

the syntactic error of the input string or the state of parsing. When a syntactic

error is found, parsing procedure should be continued after processing the error

rather than be stopped.

Syntax Directed Analysis and the Compiler Compiler 399

I 0. Compile operation /

The compile operation means pausing of parsing phase and beginning of trans­

lating phase. This operation is instructed at the end of the context which has no

anxiety of backtracking of the parsing. This is called an Incremental Unit(IU).

As to ALGOL, one statement and one declaration becomes an IU, and also an

(actual parameter) or a (for list element) could be an IU. By performing

parsing and translating mutually for an IU, it is not necessary to obtain the large

editing area for M-structure, and translation is done effectively with some in­

formation from various parts of the M-structure.

Example 9. The M-structure of the language of Example 8 is defined as

follows:

(p)

<J>
= [P]al [N]al(ae)
= (p) *{(p)[EXP]}

= (J) *{(j)[MUL]}
(ae) = (t){[NEG] I¢} *{(t)[ADD] !(t)[SUB]}

(st) = [P]a[LEFT] *{[P]a[LEFT]}(ae)[RITH] /

(d) = [REAL][I]a *{[I]a}[TD] /

(block) = [HEAD] *{(d) [DH]}(st) *{[STE]/ (st)}[END] /

where the symbol "/" represents the pause of IU and the name in the bracket is

MNAME. The part of expression is represented in reverse polish form in M­

structure.

In translating phase the M-routines, whose MNAMEs are specified in the

M-structure, are performed and generate the sequence of output symbols (object

program). After the interpretation of the M-structure of an IU, parsing phase is

restarted and Analyzer parses the input string corresponding to next IU.

6. Results of experiments and conclusion

Four compilers were described in COL and generated by COL Processor.

Their input languages are ALGOL or subset of ALGOL and output languages are

three-address symbolic language or machine language.

The resulting compilers can accept ALGOL programs satisfactorily. The

rate of the parsing time to whole compiling time depends on the context of the

input string and it is about 50 percent on the average. Since the COL-parsing is

based on the Syntax directed analysis, the parsing time of a string depends on the

depth of the node of the corresponding tree structure and the order of referred rules.

For example, Table 3 shows the compiling time and parsing time of some statements.

As a result, it may be said that the Syntax directed analysis is one basis of the

400 Hiroshi HAGIWARA and Katumasa WATANABE

Table 3. Compiling time and parsing time.

x:=(z);

x:=((z));

x:=y t z;

x:=yxz;

x:=y/z;

x:=y+z;

x:=y-z;

x:=A[i];

go to LI;

if x=y then P;

if x=y then go to LI;

if x=y then x:=y else x:=z;

for i:=l step I until n do x:=y;

compiling time

9.0

12.5

16.0

11.0

12.0

12.3

12.5

12.8

18.0

6.0

17.8

18.8

32.2

29.6

Compiler Compiler.

parsing time

5.0

8.5

12.0
5.3

5.9

6.1

6.5

6.8

11.8

2.0

8.2

9.5

17.0

14.5

(sec.)

1. Once the parsing procedure II has been made, the Analyzers of various

input languages are easily composed with only the syntactic definition of the

language. That definition is given in the form such as rewriting rules, BNF,

canonic system, or the modified set of rules according to the conditions a,....,e.

Meta 1I£21 , Meta III£31 are its instances. This belongs to the Parametric-type.

But, the more complicated the structure of an input language is, the slower the

parsing speed is, because rewriting rules increase in number and the possibility of

backtracking of the parsing is increased.

2. The parsing procedure is simple and regular. So, in order to generate an

Analyzer, compiler describing language is constructed. The Syntax Statement of

COL and Feldman's Production LanguageC•J are its instances. They specify both

the parsing procedure and rewriting rules of the input language together. This

belongs to the Describing-type.

On the other hand, the translator, which takes different kind of actions from

the Analyzer, is specified depending on the output language and the meanings

of the input language. Any good way is not known to specify them formally.

The describing language is only one well-known method. The Semantic Statement

of COL and Feldman's Formal Semantic Language are its instances.

To develope the Compiler Compiler technology, it is required to find new

methods to generate other parsing algorithms from rewriting rules and to specify the

semantics formally.

Syntax Directed Ana£vsis and the Compiler Compiler 401

References

I) H. Hagiwara and K. Watanabe; J. Inform. Proc. Soc. Japan, 9, 187 (1968)
2) D.V. Schorre; Proc. ACM Nat. Conf. 19, DI. 3 (1964)
3) F.W. Schneider and G.D. Johnson; Proc. ACM Nat. Conf. 19, DI. 5(1964)
4) .J.A. Feldman; Comm. ACM 9, 3 (1966).

