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The small signal performance of a multimachine power system is described by a set 
of differential equations of the form x=Ax. The analysis includes the effect of local 

shunt loads and margin of stability defined in the eigenvalue-plane. The construction 

of the A-matrix involves an equivalent circuit of a transmission network, a hybrid re

ference frame and an axis transformation based on Park's transformation. 

Once the A-matrix is obtained, standard computer programs may be used for 
studying the dynamic stability characteristics of the power system. Root-locus analysis 

is adapted to get information on the dynamic stability of a sample model. 

1. Introduction 

Owing to the progress of digital computers with great memory capacity and 

quick processing ability, many excellent works1>, 2 > on the dynamic stability of 

electric power systems have been done recently. 

We have already reported on the relation between the stability margin of a 

power system and its disturbed motion3>,4 >. In that report the analysis and the 

computation were simplified by neglecting the local shunt loads and by making 

certain assumptions. 

The present paper describes the inclusion of local shunt loads in the analysis of 

the power-system stability. The model system contains an arbitrary number 

of synchronous machines and a transmission network of arbitrary topological 

form. Using linear graph theory, the transmission network is transformed into 

an equivalent circuit of the Lagrangian tree form. Even if the network is com

plicated, the necessary set of network equations can be easily obtained from the 

equivalent circuit. 

Transmission lines and impedance loads are expressed in the relation between 

the phase currents and the phase voltages of the transmission network. Synchronous 

machines are expressed with Park's quantities. After both sets of equations are 

obtained, the quantities of the transmission network are projected into the frames 
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fixed to the rotors of every synchronous machine. This set of axis-transformations 

projects the phase quantities onto the direct and the quadrature axes of a synchro

nous machine and enables the whole system to be expressed with Park's quantities. 

In addition the displacement angle of a rotor, o j, and the difference of the 

displacement angles, o,j, are introduced in order to represent the mechanical 

performance of synchronous machines and the power-flow relations in the system, 

respectively. In this way, the representation of the effect of damper windings and 

the governor action, as well as the axis transformation, mentioned above, becomes 

simpler. 

Once a general linearized set of differential equations describing the small 

signal performance of a multimachine system with local shunt loads is obtained, 

the dynamic stability of the system is studied by the root-locus analysis. 

A typical use of this procedure is demonstrated by a simple study of a 3-

machine system. 

2. Development of Equations for Multimachine Systems 

Equations describing the performance of the entire system are derived on 

the basis of a hybrid reference frame. Each individual synchronous machine is 

described by Park's equations in the frame fixed to its rotor. The complete 

description includes governor and excitation systems. 

network and local impedance loads are stated in terms 

Machines are connected to the network at the specified 

The interconnecting 

of phase quantities. 

nodes, where voltages 

and currents in the two reference frames are related to one another by axis 

transformation. 

Axis Transformation 

The axis transformation used in the present paper is mainly based on Park's 

transformation and its inverse transformation. The angular position of the j-th 

rotor-pole with respect to a stationary reference is expressed with 8 i as follows: 

8j = cuof+oj 

cuj = p8j = cu0 +paj 

a,;= 8,-8 j = o,-oj 

where cu0 is the synchronous speed. 

( 1 ) 

( 2) 

( 3 ) 

In steady state, the operation angle o i does not change, the operation angle 

difference o,j holds constant, and poi becomes zero. Therefore, the angular 

velocity of the j-th machine cu i equals cu0 • In transient state, the operation angle 

o i changes depending on the unbalance of torque, and cu i differs from cu0 • 
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Let Waj be the column vector of phase quantities at the j-th bus, and wdij be 

the column vector of their Park's quantities with respect to the rotating frame of 

the i-th machine. Then, the relationships between Waj and wdjj become: 

A. 

Wdjj = P(0j)Waj 

Waj = p- 1
(0j)Wdjj 

( 4) 

( 5) 

A combined transformation matrix and its derivative are introduced as: 

T(o;i) = P(0;)P- 1(0j) 

T'(iJ--) = _ _3_T(o--) = P(0-)_!_P- 1(0-) 
'J aa.. '1 

' ae . 1 
'J J 

( 6) 

( 7 ) 

The elements of the foregoing transformation matrices are shown in Appendix 

The application of the transformation matrix T(iJ;j) to wdii gives: 

( 8) 

By using this set of axis-transformations, the phase quantities are projected onto 

the rotating frames. 

Network Equations 

Any interconnecting network can be transformed into the equivalent circuit 

that has the simplest form of the Lagrangian tree, as shown in Fig. 1. (See 

Appendix B.) All nodes, to which no shunt loads nor power sources are connected 

may be eliminated, and only those nodes that should be formulated in the necessary 

set of equations may remain in the equivalent circuit. A shunt load consists of a 

resistor, an inductor and a capacitor, as shown in Fig. 2, and conventionally 

includes the capacitance between the transmission lines and the ground. 

Fig. I. Equivalent Circuit of 
Lagrangian Tree Form 

itaj 

i
1

aj 
~ 

0

Gaj ! iLaj 

Lj Gj 

Fig. 2. Local Shunt Load 

Cj 



Stability Calculation of Power Systems Having Shunt Loads 521 

Choosing the n-th node as a voltage reference node, the equivalent circuit of 

Fig. I yields the following set of equations: 

n 

n ·I 

Vaj-Van = ~ (Rjk+Ljk"P)i~k 
k=I 

An additional shunt load at each bus may be expressed as: 

iaj = i~j+iLaj+icaj+iGaj 

LjpiLaj = Vaj 

icai = Cipvai 

iGaj = Gjvaj 

The application of the axis transformations gives: 

( 9) 

( 10) 

( 11) 

( 12) 

(13) 

(14) 

~ T(oni)i~i = 0 (16) 
j=! 

idi =i~i+iLarf--icai+icai (17) 

wiLiT'(0)iLaj+LiT(0)piLdi = Vai (18) 

icdj = wiCiT'(0)vaj+CiT(0)pvdj (19) 

icai = Givdi (20) 

Now eqns. ( 15) ,...._,(20) are a set of first-order differential equations describing 

the behavior of the balanced-phase network. Their transient solution, by the 

definition of 0 i as the angular velocity of the j-th machine, depends on the transient 

performance of the rotor. 

These equations contain zero-sequence equations, but because the model system 

is restricted to the case of balanced-phase parameters, their extra complexity is 

omitted from the analysis. Therefore the order of all vectors and transformation 

matrices T(o;i) and T'(o;i) are reduced by one. 

Further, the transients occuring on the transmission network and on the shunt 

loads are oflittle interest in dynamic stability studies because of their short duration 

in comparison with even the shortest lived transients occuring in the machine 

windings. Therefore, for the purpose of obtaining a boundary condition here, their 

transient solutions may be neglected to give: 
n·I 

vdj-T(ojn)Vdn = ~ {Rjl, T(o11,) +0kLjk T'(oj1,)}i~,, 
k=l 

j = },...._,(n-1) (21) 

(22) 
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(23) 

where 

(24) 

It is evident that some of the quantities equal to zero allow eqns. (21) "-'(23) to 

be used to describe the performance of several networks of simpler form. Let 

n=2, Rjf,=Gi=l/Lj=Cj=O, and let the 2-nd node be the infinite bus. Then, 

the familiar equations for a one-machine infinite bus system may be given: 

(25) 

For convenience in later manipulations of equations, let Y ' ( w i) be introduced 

as: 

(26) 

Description of Synchronous Machine 

Complete description of the small signal performance of the synchronous 

machine requires consideration of its electrical and mechanical characteristics 

as well as those of associated control systems. Restricting the modes of operation 

to the cases that do not require zero-axis variables, Park's model describing the 

dynamic characteristics of a synchronous machine in per-unit form is summarized 

in the following paragraphs. Time is scaled by multiplying 2ir Jo so as to make w0 

be unity. Explanation of the symbols is listed at the end of this paper. 

Induced Voltages in Armature Circuits: 

vdj = -(r j +Ldjp)idj + (V°fqj+L~jiqj)po j+M fjpifj 

vqj = -(r j+Lqjp)iqj+(-r fdj-L;idj)po j+Mgjpigj 

Change of Flux-linkage in Field Circuits: 

Wfdj = {Efdj-Yfdj-(Ldj-L;j)•idj}Jnoj 

fffqj = {-,frfqj+(Lqj-L~j)•id/T~oj 

Mechanical Equations: 

(27) 

(28) 

(29) 

(30) 

(31) 

Voltage Regulator: A widely used model for the continuously acting voltage 
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regulator may be described by: 

(32) 

where 

Speed Governor: The effect of the conventional speed governor may be 

represented by: 

(33) 

The foregoing equations are similar to those used in other papers.5> 

If desired, any other model for the voltage regulator or speed governor can be 

easily introduced. 

3. Linearized Equations for Perturbed Motions 

First, network equations (21) "-'(23) are rewritten for small perturbations from 

a fixed operating point. The absence of zero-sequence equations allows voltage 

vectors and current vectors to be denoted by the complex variables. Choosing the 

rotor-pole axis as the real axis, transformation matrices T(o;j), T'(o;j), and the 

admittance matrix Y ( w i) together with its derivative Y ' ( w i) are denoted with 

complex values T;j, T';j, Yi and Y'j, respectively, for their representation in 

steady state: 

T;i = exp ( -joijo) 

T~i = exp {-j(o;i0 -n/2)} =jT;i 

Yi= Gi-j(w0Ci-l/WoLi) 

Y; =j(l/w~Li+Ci) 

Then the equations for the perturbed motions become: 

n -1 

= zJ {Zjk 0 Tjk(Llidk-Yk•Llvdk)-jZjk" Tjk•i;ok" (Lloj,.-Llokn) 
k=I 

(34) 

(35) 

(36) 

(37) 

+ (jw0Ljk" i~0k-Zjk" Y~ •Vdok) • Tjk•Llwk} j= l "'-(n-1) (38) 

iJ (-Tnj-Yj•Llvdj+Tnj•Llidj-Tnj" Y;•Vdoj•Llwj+jTnj•i;oj•Llojn) = 0 (39) 
j=l 

Lli;i = Llidi-Yi•Llvdi-Y;·vdoj,:Jwi j = l"'-(n-1) 
where 

Similarly, machine equations are rewritten for small perturbations in the case 

of the j-th machine. 

From eqns. (27), (28): 
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Jvdi = J,/fjqj+x~i•Jiqj+vdoj•Jwi 

Jvqj = J,frfdi-x~i•Jidi+vqoj•Jwi 

From eqns. (2), (3), (29) ,...__,(33): 

pJo jn = (J) j-(J)n 

p.:1,frfdj = {JEfdj-J,frfdj-(xdj-x~j)•Jidj}/T~0 j 

pJ,frfqj = {-J,frfqj+(xqj-x~j)•Jiqi}/T~0i 

pJwj = {JTMj-ifrdoj"Jiqj-iqoj•J,frdj+ifrqoj•Jidj 

+idoj •.:1,frqj-D j • Jw) /Mi 

pJEfdj = -{LJEfdi+Kfj(Vqoj .Jvqj+vdoj•Jvdi)fvtoj} / Tfi 

pJTMj = -(JTMj+Kci.Jwi)/Tci 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

Finally a set of equations (38),...__,(47) are rearranged to give matrix equation::;. 

Let a pair of vectors x, y be defined as: 

X = [Join, L1,frfd1' LJ,frfq,; L1Efd1' LJw,, JTM,, ···, 

Jocn-1)n, J,fr fd(n-ll, LJ,fr fq(n-1), JE fd(n-1), Jwcn-ll, LJ T MCn-1), ... , 

J,fr fdn, J,fr fqn, JE fdn, Jwn, J T Mn] T 

y = [Jvd,, Jvq,, Jid,, Jiq,, ···, Jvdn, Jvqn, Jidn, Jiqn]T 

where x has the order of (6n-l) and y the order of (4n). 

Then, eqns. (38),...__,(41) become: 

A3x = A4 y 

Similarlly eqns. ( 42) ,...__,( 4 7) are rearranged to give: 

px = A,x+A2 y 

Inversion of A4 and insertion of y to eqn. ( 49) gives: 

px =Ax 

4. Root-locus Analysis and Margin of Stability 

(48) 

(49) 

(50) 

Once the system is described by a set of differential equations in the state

space form as eqn. (50), the small performance of the whole system may be studied 

via several standard computer programs. 

In the present paper, the coefficients of the characteristic polynomials are 

calculated through the Frame method after constructing the A-matrix. Then the 

Newton method or the Hitchcock-Bairstow method is used to compute the roots 

of the characteristic equation. 
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The eigenvalues of a linear dynamical system correspond to its natural modes 

ofresponse, with each real part giving the reciprocal decay-time constant or damping 

coeffecient of a mode, and with each pair of imaginary parts giving the natural 

angular frequency. 

The necessary and sufficient condition for dynamic stablity is that all the 

eigenvalues have negative real parts. The forcing frequencies which could lead 

to hunting problems may be determined by examination of the imaginary parts of 

the eigenvalues. Thus, the dynamic stability may be directly checked with the 

real parts of the eigenvalues. 

Further, a form of quantitative information on the relative stability of the 

system may be obtained by plotting the variation of the eigenvalues as system 

parameters are varied. Such plots are usually made on the complex plane so 

that the requirement for stability is that all the eigenvalues fall on the left half-plane. 

Those states of operation, however, that are close to the critical states can easily 

lose their stability. In actual fact, the practical operation of a power system 

always requires some margin of stability. 

For the inclusion of a stability margin in the analysis, the eigenvalues are 

restricted so that all of them may lie on the left half-plane apart from the imaginary 

axis. The eigenvalue nearest to the imaginary axis, which corresponds to 

the dominant mode in the performance of the disturbed system is forced to fall 

within the left half-domain restricted by the line a= I/ TD, as shown in Fig. 3. By 

this restriction of the area of the eigenvalues, the critical condition of the operation 

contains the dominant mode whose decay time is TD at longest. 

///////// <:ti: 

• 
ci, 
0 
E 

~ ~ _ 1// P=d+jtJ 

~! 
Real 

0 Q 

I 

~ /, 
ct=_I__ i To 

~ ~///f/i/: 
///////, 

Fig. 3. Domain of Eigevalues Restricted 
by a=I/Tn 
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5. Initial Conditions 

Before the dynamic stability of the system is studied, it is necessary to find 

the initial values of pertinent variables. Prior to a disturbance, either the active 

power out-put and the terminal voltage, or the active power out-put and the 

reactive power out-put are known for each machine. 

After load flow calculation, the operation angle o jo is determined according to 

the phasor diagram of Fig. 4. Once the angle o jo is known, initial values of 

other variables may be determined and transformed into the rotor-pole frame of 

every machine by multiplying exp (-j o1j 0). 

Oj - axis 

Fig. 4. Phasor Diagram for Initial Values 

i! ·= [ 0.01 + j 0.251 , 0.01 + j0.126 ] 

0.01 + j 0. 126 , 0.01 + j0.439 

Fig. 5. Model of 3-machine System 

6. Sample Application to a 3-machine Problem 

A multimachine power system contains an extraordinarily large amount of 

system-parameters. It would be confusing and also outside the scope of this paper 

to study all their effects. Hence, a simple model of a 3-machine system as shown 

in Fig. 5 is studied to demonstrate the effects of the load flow and of the local shunt 

loads on the stability. In this example, it3 machine is equipped with neither 

voltage regulators nor governors. The parameters of the synchronous machines, 

the transmission network and the shunt loads are shown in Table 1. The data for 

the machines are taken from Kimbark6 >, and typical values are used for the control 

loops. The equivalent circuit yields the impedance matrix of the order of 2 X 2 

as shown in Table 1. 

Underexcited or leading power factor operating points have been chosen. 

They are the conditions where small signal performance and asymptotic stability 

¥e of most interest. 
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Table I. System Date for Sample System. 
,. 

Machine constants 

I 
#I-Machine I #2-Machine I #3-Machine 

Xd I.JO 1.10 I.JO 

xa' 0.23 0.23 0.23 

Xq 1.08 1.08 1.08 
X , q 0.23 0.23 0.23 

r 0.05 0.05 0.05 

Tao' 9.5 sec. 9.5 sec. 9.5 sec. 

Tqo 
, 

1.7 sec. I. 7 sec. I. 7 sec. 

M 5.0 sec. 5.0 sec. 5.0 sec. 

D IX J0-6 IX J0-6 
I 

I xJ0-6 

A VR constants 

I #I-Machine 
I #2-Machine 

Kf 

I 

40 

I 
40 

Tf 4 sec. 4 sec. 

Governor constants 

I 
#I-Machine I #2-Machine 

Kg 

I 
3 

I 

3 

Tg I sec. I sec. 

Table 2. Typical Listing of Eigenvalues for Sample System. 
-

P=0.35 Q=0.55 

I 
-0.05202 -0.20536 -0.25590 -0.26896 -0.38629 

Real: 
(-5.10 sec.) ( -1.29 sec.) (-1.04 sec.) ( -0.99 sec.) ( -0.72 sec.) 

I Complex: -0.04507 + j0.14328 (-5.89 sec., 0.086 Hz) 
' 

-0.13228 + j0.10199 (-2.00 sec., 0.061 Hz) 
I 

-0.05322 + j0.23066 ( -4.99 sec., 0.14Hz) 

-0.07523 + j3.36466 (-3.53 sec., 2.02 Hz) 

-0.10565 + }3.64286 (-2.51 sec., 2.10 Hz) 

Table 2 shows a typical listing of the eigenvalues for the model system and 

their corresponding values in seconds and in Hz in brackets. The eigenvalues 

are listed in order of increasing magnitude, so the mode associated with the slow 

permanent droop action of the governors and with the rotor oscillations appear 

first. The other groups of the rapidly damped high frequency modes are associated 

with the armature circuits. 

Fig. 6 shows the loci of two dominant eigenvalues as the power out-put of # 1 

machine, W, =P, +JQ, is varied. Either of the two eigenvalues approaches the 
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0.19 

! 
P2=0.25 l P=a+j/3 

(To"' 5sec. 7sec. 10sec. 25sec T 
---------Y! __ J I I I 

Real 
• 

0.05 0 a x,o-=? c ;/rad.) 

Fig. 6. Loci of Two Dominant Eigenvalues as W1 varies 

imaginary axis as (-Q1 ) increases. Consequently the system becomes less stable. 

On the other hand, its frequency rises as P 1 increases. The other eigenvalue almost 

moves in the opposite direction. 

The domain of stability on the P, -Q1 plane may be obtained by knowing the 

values of P1 and Q1 at the intersection of the root-loci and the imaginary axis. In 

the same way, the domains of operation allowing for margin are obtained against 

various values of T0 , as shown in Fig. 7. The boundary of the domain takes rather 

diverse shapes depending on the value of T 0 . This fact points out the difficulty of 

finding some physical meaning in the widely used margin, which is specified only 

with critical power out-put 7>. Fig. 8 shows the similar domains of operation while 

the active power out-put of#2 machine is varied. 

Holding all the parameters fixed, only the shunt load at the terminal of #1 
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Active Power 

Fj ---

P2 = 0.25 

Fig. 7. Domains of Operation as Margin TD varies 

f1 

To= °" 
T0 = 25 sec. 

Fig. 8. Domains of Operation as P2 varies 

machine is varied to know its effect on the stability. The power factor (cos <p) 

and the percent consumption (p.c.) of the load with respect to the absolute value 

of the power out-put from the ~l machine are varied at the operating points A, B 

and C of Fig. 6. Fig. 9 shows the loci of the two dominant eigenvalues as the 

shunt load varies. It is clear from the figure that leading power consumption at 

~l generator, which is feeding leading power to the system, makes the system less 

stable, and that excess lagging reactive power consumption also makes the system 

less stable. 
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0.20 

IO I 

I Real 

p =<1.+j/3 

P2 = 0.25 

0 

p:.B (P1=C?O, 0 1=-0.55) 

-+---
-0.10 -0.05 

0.10 

T Real 

0 d.Xl0-2 (1/rad.) O a x,o-it(1/rad) 

Fig. 9(a) Loci of Two Dominant Eigenvalues 
as Shunt Load varies 

Fig. 9(b) Loci of Two Dominant Eigenvalues 
as Shunt Load varies 

p =O.+jf3 

P2 = 0.25 O 

pt.c ( P1 =0.15, 0 1=-070) 

-o 10 -0 05 

g11 
E -

"' 'o 
x 
<Q. 

0.20 

0.05 

J Real 

0 c( x10-2 (.1/rad.) >-

Fig, 9(c) Loci of Two Dominant Eigenvalues 
as Shunt Load varies 

p.c.: percent power consumption of shunt load ( c.f. section 6) 
({) : power factor angle (c.f. section 6) 
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7. Conclusions 

This paper has presented the method of calculating the small signal dynamic 

stability of a multimachine electric power system. This method has the following 

advantages over other analysis of power system small signal dynamics. 

I) It is not limited to single machine or pairs of machines but can handle a number 

of machines connected to a network of any form. It also considers the effect of 

local shunt loads. It is limited only by the memory capacity of the digital computer 

used in its implementation. 

2) It uses the model of a salient pole synchronous machine and includes re

presentation of the governors and the voltage regulators. Further, it allows the 

inclusion of any alternative governor or voltage regulator that acts continuously. 

3) The "state space form" of eqn. (50) enables the use of any technique of modern 

multivariable linear control theory such as Liapunov functions, frequency response, 

or state space formula. 

In addition, this paper has demonstrated the "margin of stability" by restricting 

the domain of the eigenvalues. It has been shown that the margin specified only 

with the critical values of power out-put has less physical meaning than the margin 

proposed here. 

Nomenclature 

vdi =direct axis voltage of#j machine 

Vqi =quadrature axis voltage of#j machine 

idi =direct axis current of #j machine 

Zqi =quadrature axis current of#j machine 

,fr fdi =direct axis field flux linkage of#j machine 

,fr fqi =quadrature axis field flux linkage of #j machine 

xdi =direct axis synchronous reactance of#j machine 

Xqi =quadrature axis synchronous reactance of#j machine 

xt =direct axis transient reactance of#j machine 

x~i =quadrature axis transient reactance of#j machine 

T;0i =open-circuit field time constant in direct axis of#j machine 

T~oj =open-circuit field time constant in quadrature axis of#j machine 

Mi =inertia constant of#j machine 

Di =damping coefficient of #j machine 

T Mi =prime mover torque of#j machine 

Kfi =voltage regulator gain of#j machine 

Tfi =voltage regulator time constant of #j machine 
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Kgj =governor gain offj machine 

Tg; =governor time constant of#j machine 

Subscript zero denotes initial operating condition. 
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Appendix A Transformation Matrices 

[ 

cos 0 i 

P(0.) = 2 -sin 0. 
J 3 J 

1/2 

[ cos 8;; 
T(o;j) - -sin o;j 

0 

cos (0;-120°) 

-sin (0;-120°) 

1/2 

sin a;; 

n cos a.-; 
0 

[ sin o,; - cos a;; ~] T' (o;i) = cos o,-j sin o;i 

0 0 

cos (0j+l20°) l 
-sin (0;+120°) 

1/2 

: l 

Appendix B Equivalent Circuit of 3-phase Transmission Network 

in State space 

Only those cases of transmission networks are considered here which consist 

of 3-phase lumped parameter transmission lines interconnecting buses, and which 
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have no capacitive elements. Capacitances between the lines and the ground and 

series capacitances for the compensation of reactive power or those for the im

provement of transient stability must therefore be approximately expressed with 

capacitances at the buses in order that the inductive and conductive elements 

can be separated from the capacitive elements for consideration as a group. 

A 3-phase transmission line is separated into inductive and conductive parts. 

Two parts are represented with oriented single lines named inductor-edge and 

resistor-edge respectively. A set of vectors and matrices corresponding to the 

edges is introduced: 

V = [va, vb, vc]T; edge voltage vector consisting of phase voltages 

l= [ia, ib, ic]T edge current vector consisting of phase currents 

R; 3 X 3 diagonal matrix consisting of phase resistances of the i-th 

line 
3 X 3 symmetric matrix consisting of self- and phase to phase 

mutual inductances of the i-th line 

3 X 3 matrix consisting of the J-th line to the i-th line mutual 

inductances, since the mutual inductances are reciprocal, M;i= 

Mf; holds where i =I= J. 
Supplementarily, let: 

]-bus bus to be contained in the equivalent circuit 

]-edge additional edge inserted in the D-graph for the formation of the 

D-graph 

ND-graph 

n1 

equivalent circuit 

graph formed by single line representation of the transmission 

network 

composite graph of the D-graph and the ]-edges 

the number of ]-buses 

These notations are from Reed8>. Also let the stored energy of an inductor-edge be 

a vector whose components are the stored energies of phase inductors. 

First the equivalent circuit of a tree-formed transmission system is considered. 

The stored energy of an inductor-edge is a function of the inductor-edge current. 

Thus, if the stored energies of a set of inductor-edges are dependent, the inductor

edge currents are necessarily dependent, and the inductor-edges must therefore 

form a cutset. Conversely, if a set of inductor-edges does not form a cutset, their 

stored energies are independent. Thus, only when a transmission network does not 

contain any loops, that is, only when its form is a tree, is it possible to insert ]

edges across the ]-buses in such a way that any combination of the ]-edges with 

inductor-edges forms a cutset, whereas any combination of the ]-edges alone does 

not form a cutset. (where the number of the ]-edges becomes (n1 -l)) 
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Let an arbitrary positive orientation be allocated to the current through each 

edge of the ND-graph. Then take the corresponding positive orientations for 

the edge voltages to be such that simultaneously positive current and positive 

voltage for an inductor-edge corresponds to the absorption of power by the edge. 

A set of fundamental independent loops may be formed by insertion of the ]-edges 

into the D-graph one at a time. (D-graph considered here is a tree.) For the 

D-graph, let a correspondent transformation matrix T be defined as having elements: 

T;i=+l; if the positive orientation of current in tree branch i and the positive 

orientation of current in ]-edge j are in the same direction in the loop formed by 

the insertion of ]-edge j into the tree 

T;i=-l; ifthe positive orientation of current in tree branch i and the positive 

orientation of current in J-edgej are in opposite direction in the loop formed by the 

insertion of ]-edge j into the tree 

T;i=O; if the tree branch i does not lie in the loop formed by the insertion of 

]-edge j into the tree 

where T;i is a 3 X 3 submatrix, I is a 3 X 3 unit matrix, and O represents a null 

matrix of all orders 

If a set of composite vectors, Vr, V1, V1 , Ir, 11, 11 are introduced whose 

components are tree-branch-resistor, tree-branch-inductor and ]-edge voltages 

and their currents respectively, the application of Kirchhoff's node and loop laws 

for current and voltage variables and partitioning the transformation matrix T 
gives: 

0 

0 

-T[ 

0 

0 

Then, the relationships of edge-voltages to edge-currents give: 

Vr =RTr Vr = Mtf1 
where 

[: 
0 =] [ L, 

M12 =] R= R2 M= M21 L2 

(B-1) 

(B-2) 

To obtain the relationship between V1 and 11 from eqns. (B-1) and (B-2), the 

vectors V1, Vr, 11 and Ir are eliminated to give: 

(B-3) 

Since the relationship of V1 to 11 is obtained so that the Kirchhoff's law of 
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eqn. (B-1) may pertain to the ND-graph, the effect of the currents flowing in the 

D-graph is completely countered by the effect of 11 , and the voltages across the 

]-buses are conserved in V1 . Therefore, the relationship between the currents 

which counter 11 , i.e. ( -11 ) and V1 may represent the transmission network 

precisely. 

In the case of the transmission network containing loops in its structure, there 

necessarily exist some cutsets among the fundamental system of cutsets that cut 

simultaneously a combination of the ]-edges and the two edges contained in a 

loop. Consequently, it is impossible to express all the currents flowing in the 

transmission network with only the ]-edge currents. It is necessary to divide the 

]-bus contained in a loop into two ]-buses in order to get the intermediate tree

formed network. After constructing its equivalent circuit, the short circuit of 

the separated ]-buses gives the equivalent circuit of the transmission network. This 

procedure may be applied also to the network, in which some loops do not contain 

any ]-buses, by changing a bus contained in the loop to a ]-bus. However, when 

the division of all ]-buses is needed to form the intermediate tree formed network, 

this algorithm cannot be used. Even if this is the case, considerable simplification 

may be expected in the application of this algorithm to the tree-part of the trans

mission network having no mutual inductances between the tree-part and the 

remainder. 


