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With the intention of giving some new ~ontributions to the design theory of the 
magnetohydrodynamic generator duct, first we derive the solutions from the well-known 
basic quasi one-dimensional magnetohydrodynamic equations for the ideal segmented 
electrode Faraday generator with constant velocity in the case, where it is assumed that 
the working plasma fluid has the variable conductivity, which is expressed by a power
exponential formula of temperature and pressure in the state of thermal equilibrium 
ionization, or moreover by a power one of temperature, pressure, current and magnetic 
flux densities in nonequilibrium ionization. Next we introduce the numerically solvable 
differential equations and some solutions from the magnetohydrodynamic equations 
for the linear Hall generator with constant velocity in the case, where the conduc
tivity is expressed by a power formula or a power-exponential one of temperature and 
pressure, and the Hall parameter by the power of one of them. 

1. Introduction 

As is well-known the conductivity of the working plasma fluid m the mag

netohydrodynamic generator is generally a function of the temperature and 

pressure even in thermal equilibrium ionization. Moreover, in nonequilibrium 

ionization due to electron heating, which is being investigated especially in recent 

years, it has been confirmed theoretically and experimentally that the conductivity 

is varied not only due to temperature and pressure but also by the current density 

in plasma flow and the applied magnetic flux density. However in the flow physics 

or design theory of magnetohydrodynamic generator duct, the plasma conduct

ivity mostly has been assumed to be constant, in order to simplify the theoretical 

analysis and numerical calculations except in the case of a few exception1l-5 l, in 

which the solutions of the basic one-dimentional magnetohydrodynamic equations 

are obtained on the assumption that the conductivity is governed by a power law 

of temperature and pressure. 

So in the following section, first, the author tries to seek for the solutions of 
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the basic flow equations in Faraday generator ducts with segmented electrodes 

in the two cases, where the conductivity is expressed by a power-exponential 

formula5>- 7>, which is deduced from, for example, Saha formula with respect to 

equilibrium ionization, and it is the governed by the power law8>- 13> of temperature, 

pressure, current and magnetic flux densities due to nonequilibrium ionization. 

Next he will derive the numerically solvable differential equations and some 

solutions from the basic flow equations for the linear Hall generator in the case, 

where the fluid conductivity is expressed by a power formula or a power-ex

ponential one of temperature and pressure, and Hall parameter by a power 

one 7> of both. 

In this connection, recently the flow physics in Hall generator in the case, 

where it is assumed that the conductivity follows the power-exponential law and 

Hall parameter is a function of pressure only, is discussed6 > quantitatively by 

means of numerically solvable simultaneous differential equations. 

2. Faraday Generator with Segm.ented Electrodes 

2.1 Basic Equations 

As is well-known, the quasi one-dimensional magnetohydrodynamic equations 

pertaining to the segmented electrode Faraday generator duct (Fig. 1) with 

slowly varying cross-sectional area and constant flow velocity are given by 

puA = p0uA0 = constant: continuity equation, 

dp = ]y B: momentum equation, 
dx 

B 

Insulating Spacers 

------J 
Segmented Electrodes 

Fig. I. Sketch of segmented electrode Faraday generator duct. 

( 1 ) 

( 2 ) 
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dT 
pucp- = ]yEy: energy equation, 

dx 

p =pRT: state equation, 

and Ohm law is expressed by 

In these equations and Fig. 1 

A: corss-sectional area of duct, 

p, T and p: gas pressure, temperature and density, 

R: gas constant*, 

c P = Rr / (r-1) : specific heat* at constant pressure, 

T = cp/c0 : specific heat ratio*, 

c0 : specific heat* at constant volume, 

u: gas velocity*, 

a: electrical conductivity, 

tc = Ey/uB: loading parameter*, 

B: magnetic flux density*, 

Ey: electric field intensity* in y-directions, 

]y: current density iny-direction, which is equal to total one, 

Suffix O and 1: shows the quantities in duct inlet and outlet 

respectively, 

* · shows the quantities which are assumed to be constant 

in analysis. 

( 3) 

( 4) 

( 5) 

( 6) 

Now, the electrical conductivity is usually a function of pressure and temper

ature, and it can also be thought to be a function of the total current and 

magnetic flux densities in the nonequilibrium ionization due to strong electron 

heating within monatonic gases seeded with alkali metal vapors. However, up to 

the present, the basic flow equations have been analysed on the assumption that 

mostly 

a = a: mean value about presure temperature et al., ( 7 ) 

and at times and at most, a is expressed with the power law as follows, 

( 8) 

where 

c, m and n: constants. ( 8 )' 
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In this paper, the author will give the solutions of the flow equations on the 

more realistic formula that 

where 

c, m and n: constants (m=-1/2 and n=3/4 if Saha formula 

can be used), 

T; = E;/2k, 

E;: ( equivalent) ionization energy, 

k : Boltzmann constant, 

( 9 )i 

for thermal equilibrium ionization without elevation of electron temperature, and 

where 

a, b, c, m, n, µ, 11: constants, 

J : resultant current density } 

(10) 

( 10)' 

for the nonequilibrium ionization due to electron heating. Here, from the experi

mental data given in the reference 12), the author pressumed the dependence of 

a on Bas expressed in Eq. (10). But, of course, (aB+b)" become a constant, when 

Bis ass.urned constant as in this paper. 

2.2 Solutions 

(i) When a=cpmTnexp (-T;/T) 

As above mentioned, here we shall solve the one-dimensional magnetohydrody

namic equations with the scalar conductivity a =cpm T" exp ( - T;/ T). 

Now using Eqs. (2) and (3), we obtain 

dT = rKT 
dp p 

or non-dimentionally 

dT* = rKT* 

where 

dp* p* 

rK = (r-I)JC/r, 

T*=T/T0 , 

P* = PIPo · l 
( 11 )2 

( 11 )' 
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We can easily obtain the solution of Eq. (11 )i or (11 )2 as follows. 

(12) 

This result does not depend on the conductivity a and it is quite identical with the 

one in the case where a is assumed constant. Further, using Eq.s (1), (4) and 

(12) we get 

(13) 

These relations, too, come into existance whether a 1s constant or variable. 

Next substituting Eq. (5) into (2), we have 

dp = -auB2(l-.t) . 
dx 

As we can modify the expression (9) 1 as follows, 

a = a
0
p* m+nyK exp {- Tf (p*-y•-1 )} 

where 

Eq. ( 14 )1 is transformed into the following equation. 

dp* _ 1 

where 

dx* - F(p*)' 

x* = x/l, 

l = Po(I -pf) duct length obtained when a =a, 
auB2 (l -.t) 

pf= Pi/Po· 

The solution ofEq. (14) 2 becomes 

( P* 
x* = Ji F(p*)dp*. 

(14)i 

( 9 )f 

(14 )f 

(15) 

Henceforth by integrating numerically this equation about p*, we can obtain the 

numerical values of x* to evaluate the x*-p* characteristics in the generator duct. 

(ii) When a=cpmTnj,,.(aB+ht 

In the case of the nonequilibrium ionization, too, we can obtain Eq. (11) 1 to 
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(13), because they are not dependent on the conductivity. Now substituting 

Eq. (10) into (5) gives 

J; = cpmTnj;,''(aB+WuB(l-,c), (16) 

where 

( I 6)' 

So, if we express the inlet current density with ] 0 , neglecting the so-called inlet 

relaxation, we have 

lo= J;o = cp'(;T~J;~(aB+WuB(I-,c) . 

From Eq.s (16) and (I 7), we can derive 

where 

J;* = -]; = -]y/Jjo, l 
m,,. = m/(I-µ), 

n,,, = n/(I-µ) . 

By means of Eq.s (2) and (18), we can introduce 

where 

dp* = 
dx* 

];* = J;u;o' 
]; = - JY : mean current density. } 

Solving Eq. (19), we have 

{I -(m,,,+n,,,r K)} (l -pf)x*]1-cm,,.+n,,.-iK) 

J;* . 

( I 7) 

(18) 

( 18)' 

(19) 

(19)' 

(20) 

As is able to be presumed from Eq .s ( 5), (8) and ( 18), this solution has the same form 

as the one in the case where a is given by Eq. (8). p* in this case is obtained as 

follows1
). 

3. Hall Generator 

3.1 Basic Equations 

(21) 

As is well-known, the plasma flow in the ideally segmented electrode Hall 
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Fig. 2. Sketch of segmented electrode Hall generator duct. 

7 

generator duct (Fig. 2) with constant velocity is decribed by the following set of 

equations. 

puA = p0uA0 : continuity equation, 

dp = ]yB : momentum equation, 
dx 

dT JE . puct>- = x x : energy equation, 
dx 

J,,A = J,,0A0 : current continuity condition, 

p = pR T : state equation, 

J = _a_ (E +f3uB) = a/3uB(l-,r,h) 
X I+/32 X l+/32 ' 

J _ _ a_ (/3E -uB) _ auB(I +JCh/3
2
) 

y-1+, X - 1+, 

In these equations and Fig. 2 

/3 : Hall parameter with respect to electron, 

/Ch= -E,,//3uB : loading parameter, 

E,, : electric field intensity in x-direction, 

J,, : current density in x-direction. l 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

The other symbols show the same as the ones defined in Eq.s (6). Here, 

we can assume that /3 is expressed as follows. 

(30) 

where 
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m' and n': constants (m' = -1 and n' = 1 /2 for inert gas seeded 

with alkali metal). (30)' 

In the following analyses, we shall employ this formula for the Hall parameter. 

Some analyses and numerical discussion are already done in regard to the case, 

where a and (:J are assumed constant. In the references (2) and (3), the basic 

equations in the case, where a and /3 are expressed by Eq.s (8) and (30) respectively, 

are a little discussed numerically. Moreover in refrence (6), the case, where a is 

expressed by Eq. (9)1 and /3 is assumed as follows, 

(31) 

where 

). ' and m' : constants, (31 )' 

is numerically discussed. 

So in this section, from the above basic equations we derive the differential equations 

of the first order, of which the numerical solution can be obtained by the Runge

Kutta or the other digital calculation methods, for the case, where a is expressed by 

Eq. (8) or (9), and /3 by Eq. (30). 

Moreover we shall introduce the solutions of the basic equations in the case, 

where about Hall parameter we can assume as follows. 

(32) 

(33) 

In this connection, when only /3 2
);, 1 can be assumed, it is very difficult that 

we derive the solutions of the basic equations, and we so must tre-it the differential 

equations to obtain the numerical solution as in the case, where Eqs. (32) and 

(33) are not able to be presumed. 

3.2 Solutions 

(i) When a=cpmyn 

Using Eq.s. (22) to (28), we can get the following differential equation. 

where 

dT _ r'1eh(I-1eh)T 
dp - (/3- 2 +1eh)P > 

/Ch= 1 /3fxoPTo (l+P-2), l 
auBp0 T 

r' = (r-1)/r. 

(34) 

(34)' 
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Substituting Eq.s (8) and (30) in (34) yields 

~T** = r 'J,,tp*-m+mt T*-n+nt (l +,B-2) [l +,a-2 /{l - J.tp*-m+mt+1 T*-n+nt-1 

. 'jJ X (1 +,a-2)}]-1 

= r' {1-J.tp*-m+mt+1 T*-n+n'-1(1 + ,a-2)} (J."t,-1p*m-ml T*n-nl -p* T*-1) (35) 

where 

J,,t = lxofaouB//3o, 

,B = /3oP*m'T*"', 

,Bo = J.Bp';''Tt. l (35)' 

Eq. (35) can be numerically solved by a digital calculation method, and so we are 

able to determine the quantitative relations between p* and T* i.e. the local gas 

pressure and temperature. 

Next, the substitution of Eq. (28) in (23) gives 

dp* 1 
dx* = Fh10 (p*, T*)' 

where 

7: duct length6>14> obtained when CJ=ii. 

under the support of the other basic equations. 

From Eq. (36), we have 

f P* 
x* = Ji Fh10 (p*, T*) dp* . 

(36) 

(36)' 

(37) 

By using the numerical relation between p* and T*, which is acquired by Eq. (35), 

we can carry out digitally the integration ofEq. (37) and ascertain the quantitative 

relations between p* and x* moreover x* and T* in the generator duct. 

After we obtain the numerical solutions of p* and T* vs. x*, we can get the 

digital relation of, for example, A* vs. x* by the following equation 

(38) 

which is derived from Eq.s (22) and (26), (35) and (37). 

Next, when we can assume that /32'5?> I and Kh/32'5?> 1, Eq. (35) are simplified as 

follows. 
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Then the solution of the equation becomes 

(40) 

Moreover although the form of Eq. (36) is not transformed even in the case, where 

/3 2
');, 1 and tch/32 ')> 1, Fh10 (p*, T*) becomes the function of only p* due to Eq. 

( 40), namely 

where 

dp* -
dx* -F --h1-, (_p_*_) ' 

Fhu (p*) = {l*p*m T*n(l _ J,,tp*-m+m'+' T* -n+nl-1)} , 

T*: given by Eq. (40). 

Solving Eq. ( 41), we have 

(ii) when a=cpmrn exp (-T;/T) 

(41) 

(41)' 

(42) 

From Eq.s (9) 0 (30), (34), we can derive the following differential equation. 

~;: = r'J,,tp*-m+m'r*-n+n'(l +P-2) exp {Tf(T*-1-l)} 

X [l +P-2/{l - J,,tp*-m+m'+I T*-n+n'-1(1 + P-2) exp ( rt T*-'- 1 )}r' 

= r'[l - J,,tp*-m t-m'H T*-n+n'-1(1 +P-2) exp {Tf( T*-1- l)}] 

By substitution ofEq. (27) in (24), we have 

dp* 
dx* = Fh20 (p*, T*)' 

where 

Fh 20 (p*, T*) = -[l*p*mT*" exp {-Tf(T*-1-l)} 

(43) 

(44) 

X {1-J,,tp*-m+m'+1 T*-n+n1-i exp (Tf Tf-1- l)}]. (44)' 

Hence we can obtain the following solution 

(45) 
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By means of Eq.s (43) and (45), we can get the quantitative relation between p* 

and T* and the one between p* and x* moreover T* and x* with the aid of ap

propriate digital computations. 

Next, when we can assume the relations in Eq.s (32) and (33), Eq. (43) is 

reduced as follows. 

(46) 

The solution of the above equation is given by 

p* = [1 
Like this, as the solution has been introduced, in which p* is expressed as the 

function of T*, although we can determine the numerical relation between p* 

and x* by utilizing Eqs. (45) and (47), let us derive the relation between T* 

and x* in stead of the one between p* and x*, which are obtained already. So 

transforming Eq. (24), we obtain the following equation. 

where, 

dT* 
dx* Fh21(T*)' 

Fh21(T*) = -[r't* J,,'tp*m'T*"'{I-J,,'tp*-m+m'+1r*-n+nl-1 

(48) 

xexp (Tt T*- 1-l)}r1
' (48)' 

p* : given by Eq. (47). 

Eq. (48) has the following solution. 

(49) 

4. Conclusions 

The author could derive the solutions from the basic quasi one-dimentional 

magnetohydrodynamic equations in Faraday generator duct in the cases, where 

the plasma fluid with constant velocity are in the thermal equilibrium and non

equilibrium ionization states. Next he could derive the numerically solvable 

differential equations and some solutions from the basic equations in Hall 

generator in the case, where the gas is in the state of equilibrium. Although the 

forms of the three kinds of solutions about Faraday generators relatively resemble 

one another, in particular the forms of the solutions with respect to the non-
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equilibrium ionization are similar to the ones in the case, where the conductivity is 

governed by the power law in the equilibrium ionization. Especially in Faraday 

generator, the relation between temperature and pressure does not depend on the 

conductivity of the fluid. On the other hand, in regard to Hall generator, the 

relation between temperature and pressure is very complex and troublesome, 

as it depends on not only the conductivity but also Hall parameter. However 

the author could find the numerically solvable differential equations and some 

solutions from the basic equations for Hall generator with constant flow velocity. 
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