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On a Generalized Problem of Disc Electrodes, II. 

By 

Takeshi K1v0No*.and Masaaki SHIMASAKI* 

(Received May 14, 1969) 

A formal solution of a· set of quadruple integral equations is given. The integral 
equations are reduced to a pair of simultaneous integral equations of Fredholm type which 
may be solved by a method similar to that used for a single equation. As an example, the 
problem of a circular plate condenser with guard rings is considered. It is shown that 
all the well-known disc electrode problems may be treated as special cases. 

1. Introduction 

Mixed boundary value problems often arise in electrostatics and other.mathe

matical physics. A certain class of mixed boundary value problems may be reduced 

to dual or triple integral equations. General and systematic investigation of 

multiple integral equations, originated by Titchmarsh1J, has been promoted ex

tensively in recent years and numerous problems have been solved in electrostatics, 

elastostatics and heat conduction problems. To extend the applicability of the 

theory, it is desirable that more complicated systems may be solved. 

In this paper we consider a circular plate condenser with guard rings. The 

problem may be described as quadruple integral equations with Hankel kernel of 

0-th order. However in section I, we discuss quadruple integral equations in a 

generalized form. Although the closed form solution cannot be obtained, the 

integral equations are reduced to a pair of Fredholm integral equations. Since a 

pair of Fredholm integral equations can be solved by a method similar to that used 

for a single equation, one may consider that the problem is "solved" by the present 

paper, in the sense of Cooke3J, who says: "In the old days a problem was considered 

to be solved if it could be 'reduced to a quadrature'. Nowadays one can surely 

consider that a problem is solved if it can be reduced to an integral equation 

which can be solved by well-tried procedures." 

After the general discussion of integral equations, the specific problem of 
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electrostatics, that is, the problem of a circular plate condenser with guard rings is 

discussed. 

Our analysis is purely formal and we don't justify the change of the order 

of integrations and other limiting processes. 

2. Integral Equations 

In this paper we consider the set 

r u- 1{I+h,(u)}A(u)J..,(pu)du ~f,(p) 

r A(u)J..,(pu)du = 0 

r u- 1{1 +h3 (u)}A(u)J..,(pu)du = f 3 (P) 

[ A(u)J..,(pu)du = 0 

1 11>-2. 

a<p<h 

c<p 

( 1 ) 

( 2) 

( 3) 

( 4) 

Functionsf;(p) and h;(u) (i=l, 3) are known functions and the problem is to 

determine the unknown function A(u). We assume that p'fi(p) and p'"f3(P) are 

continuously differentiable in [O, a] and [b, c], respectively and that h;(u) have 

properties necessary for integrations. We shall use the method due to Noble 2 > and 

Cooke3 >. The following lemma is due to Noble2 >. 

Lemma 1. 

L(p,y) = [ J..,(pu)J~(yu)du 

= 2(py)-v rmin(P,Y) . ~2'"ds 

TC Jo .· V (p2~s2)(y2-s2)' 
( 5) 

1 where 11> - 2 . 

We define the quantity I(t, u, a) by 

l(t u a) = !!_ )t yH'J..,(yu) d/ 
' ' d . / 2 . .2 • t "' V t -J . 

It should be noted that I(t, ~' a) satisfit;s the integral equation 

2_ f" (Y I(t, u,,a) dt = J..(yu). 
TC J"' V y2-t2 . 

( 7 ) 

From Eqs. (2) and (4), we may write 
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A(u) = u [yg1 (y)Jv(yu)dy+u ~>ga(y)Jv(yu)dy. ( 8) 

From Eqs. (5) and (8), we have 

[ u- 1A(u)j.,,(pu)du = [ yg1 (y)L(p,y) <!r+ [yg3 (y) L(p,y)dy. ( 9) 

(10) 

( 11) 

which are equivalent to 

( 12) 

and 

( 13) 

respectively. 

At first, we consider Eq. (1). 

Ifwe substitute Eq. (5) into the right hand side of Eq. (9) and invert the order of 

integration, we have 

(14) 

and 
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Fig. 1. The field of integration in Eqs. 
(14) and (15). 

where the field of integration is shown in Fig. l. 

Substitution ofEqs. (9), (14) and (15) into Eq. (l) gives 

where 

M(p) = p°'fi(p)-[ h,(u)p'J,(pu)du [yg,(y)J~(yu)dy 

551 

-r h,(u)p~j,(pu)du ~>g3 (y)J~(yu)dy. (17) 

For the reduction of Eq. (17), we give the following lemma. 

Lemma 2. 

~
a 2 ia yg, (y)J,(yu)dy = - G, (t)I (t, u, 0) dt 
0 ~ 0 

!c 2 ic yg3 (y)J,(yu)dy = - G3 (t) I (t, u, b)dt. 
b ~ b 

We now give the proof. From Eqs. (7) and (10), we have 

Eq. (19) may be verified in a similar manner. 

Now substitution ofEqs. (18), (19) into Eq. (17) gives 

(18) 

(19) 
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Considering Eq. (16) as an integral equation and solving it, we have 

From Eqs. (20), (21) and (6), we arrive at the integral equation 

where we have written 

K11 (s, t) = ! [ h1 (u)/ (s, u, 0)/ (t, ~, 0)du, 
I, 

(20) 

(22) 

(23) 

(24) 

We now consider Eq. (3). It may be reduced to an integral equation in a 

similar way to that used in reduction of Eq. (1). From Eq. (5), we have 

2 
~

a 2V fa -V+l ( ) = - -v s ds y g1 y d 
p ./2 2 ./2 2ry 

7r: o V p -S s V y -S 

- 2. -via s
2
VG1 (s) d - - p ~~"=- s 

1r: ovp2-s2 
(25) 

and 

where the field of integration is shown in Fig. 2. 

Substitution of Eq. (9) into Eq. (3) with Eqs. (25), (26) gives 

~ ( p s2VGa(s) ds = pvfa(p)-2 (a t2\f GiCt) dt -.2 fb t2Vdt re fv+'ga(Y) dy 
7r Jby p 2 -S

2 
7r Joyp2-t2 

7r Joy p 2 -t2 Jb Vy2-t2 
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(27) 

where lemma 2 is used. If we denote the right hand side of Eq. (27) by N(p), 

we have 

(28) 

An elementary computation shows that 

d (s t2vp t2vsy b2-t2 

ds Jby (s2-p2)(p2-t2) dp = (s2-t2)V s2-b2 · 
(29) 

In exactly the same way that Cooke3
l has used in his reduction of triple integral 

equations into a Fredholm integral equation, one may show 

(30) 

Substitution of Eqs. (29), (30) and (6) into Eq .. (28) gives the final result 

2v )a ) c - d ! s p H'.fa (p) s G3 (s) + K 31 (s, t)G1 (t)dt+ K 33 (s, t)G3 (t)dt - - V dp, 
o b ds b s2-p2 (31) 

where we have written 

(32) 
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(33) 

Thus the quadruple integral equations (1)-(4) are reduced to a pair of Fredholm 

integral equations (22) and (31). 

3. Electrostatic Potential 

We consider the problem of a circular plate condenser with guard rings. This 

problem is important in electrostatics in its own right but it is all the more important 

because all the well-known problems involving disc electrodes may be treated as 

·special cases. As shown in Fig. 3, we consider a uniform plate of thickness 2r- and 

of dielectric constant '°i- At z= ±r-, this plate is bounded by uniform medium 

of directric constant c2• We use the cylindrical coordinates of Fig. 3. On this 

Fig. 3. A plate condenser with guard electrodes. 

plate, we arrange two identical conducting discs with flat guard rings. Suppose 

that the radius of the disc is a and that inner and outer radii of the flat ring are 

b and c, respectively. We maintain discs and flat rings at z= ±r- at prescribed 

potentials V0 and µV0 , respectively, where µ=l or -1. We attempt to find the 

distribution of electric potential in the whole space. We denote potential functions 

for z>r-, -r-<z<r- and z<-r- by v+, Vand v-,respectively. Then potentials 

must satisfy Laplace's equation in appropriate regions and boundary conditions to 

be satisfied at z= ±r- are as follows: 

v+ = V= V0 Z=T o;:;;;p;:;;;a, b;:;;;p ;:;;;c 

} v- = V= µV0 Z = -T o;:;;;p;:;;;a, b;:;;;p-;;;,c 
(34) 

av av± 
Z= ±T a<p<b, c<p. E1- = E2--

az az 
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In view of symmetric setup of the problem, we may assume 

v+ = Va [ u-1v(Z-T)U +µe-cz+T)"}B(u)Jo(Pu)du 

V = V
0 

[ u-1{eCZ-T)" +µe-cz+T)"}B(u)J
0
(pu)du 

v- = V
0 

[ u-1{eCZ-T)U +µiz+T)"}B(u)J
0
(pu)du 

µ=±I. 

These functions have the property at z= ±r 

v+ = V = Vo [ u- 1 (1 +µe- 2TU)B(u)Jo(Pu)du 

v- = V = µV0 [ u- 1 (1 +µe- 2T")B(u)j0 (pu)du 

and 

av+1 = -Vo r (I +µe-ZT")B(u)Jo(Pu)du 
az lz=T 0 

::1z=T = V0 [ (I -µe-
2
T")B(u)J0 (pu)du 

::1z=-T = -µV0 [ (I-µe-
2
T")B(u)J0 (pu)du 

av-1 r= ~ z=-T = µV0 Jo (l +µe-
2
t")B(u)J0 (pu)du. 

We define following quantities by 

and 

c1-cz 
Ii-=--

Ct +c2 

h U - µ(,r,+l)e-2,u 
( ) - l -2tU • -µ,r,e 
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(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

Substitution of Eqs. (36)-(40) into Eqs. (34) gives the set of integral equations 

[ u- 1 {1 +h(u)}A(u)J0 (pu)du = l 0~p <a 

[ A(u)J0 (pu)du = 0 

[ u- 1 {1 +h(u)}A(u)J0 (pu)du = l 

[ A(u)J0 (pu)du = 0 c<p. 

(41) 
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By the use of the result of section 2, the set of integral equations ( 41) may be reduced 

to a pair of integral equations 

G1 (s) + ~: ~11 (s, t)G1 (t)dt+ ~.: K13 (s, t)G3 (t)dt = 1 , O<s<a, (42) 

G3 (s)+):131(s,t)G1(t)dt+):K33 (s,t)G3 (t)dt v/_y' b<s<c. (43) 

Since v =0, we have from Eq. (6) 

I(t, u, 0) = __ti_ \tYJo(yu) dy 
dt Jovt2 -y2 

== cos tu. 

Kernels of the integral equations ( 42) and ( 43) are given by 

2 ioo K11 (s, t) = - h(u) cos su cos tudu 
1C 0 

1 
=. 1 -{Fe(s-t) +Fe(s+t)} 

V 21e 

Fe(f) =j' ~; [ h(u) cos f udu 

i 
, 2 tv7T2 2 ) 00 . 

K13 (s, t,_0 = - 2 2 
;-: 

2 
+- h(u)I(t, u, b)cos sudu 

;- 1e ( t -s ) t - b 1e o 

\ 2 . sv b2 
- t 2 2 ~ 00 

K31 (s, t) = - V +- h(u)I(s, u, b) cos tudu 
1C (s2 -t2

) s2 
- b2 1e o 

2 1 { . /s2-b
2 

s+b . /t 2
-b

2 
t+b} 

K 3a(s,t) = 1e"(s2-t2) t'Yf-bzlogs-b-s'Y 52_b2logt-b 

2 )00 +- h(u)I(s, u, b)I(t, u, b)du, 
1C 0 

where Fe(f) denotes Fourier cosine transform of h(u). 

It should be noted that K13 (s, t) =K31 (t, s). 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

We denote the charge density at·i=r:, the charge on the inner disc at .z=r 

and the charge on the guard ring at z=r by a(p), Q,1 and .Q,3, respectively. 
. !• 

From Eqs. (37)-(40), we have 

= (e 1 +e2)V0 [ A(u)j0 (pu)du. (50) 

From Eqs. (8), (10), (11) and (50), we have 
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Q, = ~: 2rcpa (P )dp 

= 2rc(c,+c2)aV0 r u-'A(u)J,(au)du 

= 4( c1 +c2 ) V0 [ G, (s)ds 

Q3 = I:Zrcpa (p )dp 

= 2rc(c1 +c2) V0 [ u-'A(u){cj,(cu)-bj,(bu)}du 

~

c sG
3
(s) 

= 4(c1 +c2) V0 V ds, 
b s2-b 2 

where use is made of formulas such as 

) P]0 (Pu)dp = : J,(pu) 

\: J0(au)J,(Pu)du ~ l : a>/3 

a=/3 

a</3. 
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(51) 

(52) 

(53) 

It is remarkable that Q1 and Q3 may be determined only by G,(s) and G3 (s), 

respectively. If we denote capacity between disc electrodes by C" we have from 

Eq. (51) 

C1 = Q1 /2V0 

= 4.,2 fa G,(s)ds. 
1 -IC Jo (54) 

If electric field between the t_wo disc electrodes is uniform and charge on the upper 

side of disc electrode at z=, is negligible, then the capacity is given by 

(55) 

The ratio of C1 to C0 is given by 

(56) 

4. Special Cases 

We now show all the well known problems of disc electrodes as special cases 
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only by changing parameters of h(u). This is important not only from theoretical 

point of view but also from practical point of view, because a single computer 

program is necessary. 

a. A charged disc 

This is a classical problem solved by Weber. We may treat this problem 

by putting .t=-l*, r=0, µ=land b=c. Substitution of .t=-l into Eq. (40) 

givesh(u)=0. Therefore from Eq. (42), we have G1 (s)=l. One may easily verify 

that g1 (y)=2 V 1 and A(u)=2 sin au which are identical with Weber's 
11: a2-y2 11: 

result. Of course we can treat a charged disc of radius c by putting .t = - l *, r =0 

. 2 ~a2-s2 µ=land a=b. In this case one may venfy that G1 (s)=-tan-1 
-

2
~-

2 
71: C -a 

(0~s<a) and G3 (s) = l (a<s<c) satisfy integral equations (42) and (43). 

b. A charged annular disc 

Cooke3
) has solved this problem by reducing triple integral equations to a 

Fredholm integral equation. We may treat this problem by putting .t = - l *, 

r =0, µ= 1 and a=0. Eq. ( 43) may be reduced to a Fredholm integral equation 

identical with that of Cooke. It should be noticed that a problem of two parallel 

flat rings may be treated as a special case. 

c. A circular plate condenser 

This problem has been studied by Nicholson4>, Love5>, Nomura6>, Cooke1>, 
Sneddon8

) and others. We can treat this problem by putting .t=0 and b=c. 

The integral equation ( 42) becomes identical with that derived by Love. The case 

µ= 1 corresponds to a problem of two equally charged discs and the case µ= -1 

corresponds to that of two oppositely charged discs. We also treat a circular plate 

condenser of radius c by putting .t =0 and a=b but we must treat a pair of integral 

equations (42), (43). Substitution of "'= 0 into Eq. (38) gives c1 =c2 • Thus 

"'=0 corresponds to an air condenser. From the practical point of view, the 

case ,t=f=0 is quite important. Of course this may be treated by Eq. (42). 

d. The problem of two disc electrodes applied to an infinite plate conductor 

We now consider a problem of steady current. We consider an infinite plate 

of thickness 2r and of finite electrical conductivity a. This plate is bounded by 

vacuum at z= ±r and to these planes two identical perfectly conducting discs of 

radius a are applied as electrodes. Between these electrodes, we force a constant 

* .t=-1 corresponds to s1 =0, but in the special case where r=O and µ=1, there is no dif

forn:nce .t=-1 and .t=O (c1=s2). 
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current I to flow. It is required to find the potential in the plate and to compute 

the resistance between these electrodes. This problem was studied by Riemann. 

Kiyono et al9J10J showed that the Riemann's solution quoted in the well-known 

book of Gray and Mathews"J gave only a first approximation and that the exact 

solution could be obtained by solving dual integral equations. Numerical result 

of this problem is given in our former report12l. We can treat this problem 

by putting ,ii;=l (replacing c1 and e2 by a, and a2 , respectively and putting a2 =0), 

µ=-1 and b=c. The constant V0 may be determined from the condition that 

the total current flowing from the disc I is equal to Q, in Eq. (51 ). 

5. Numerical Solutions 

Integral equations ( 42) and ( 43) may be solved by a similar method which is 

used for a single equation. Utilizing the Legendre-Gauss quadrature formula, 

the integral equations ( 42) and ( 43) may be reduced to a simultaneous linear 

equations. In order to diminish rounding errors, we adopt the similar variable 

transformation used by Cooke3
l. If we write for b ~ s ~ c, 

s = b,sec fJ 

H(fJ) = G3 (b sec fJ) sec2 fJ 

F(fJ, u) = sin fJI(b sec fJ, u, b), 

then integral equations ( 42) and ( 43) may be reduced to 

(57) 

(58) 

(59) 

O<s<a (60) 

ra r•ec-1 (C/b) 

H(fJ) sin fJ cos2 fJ + Jo T31 (fJ, t)G,(t)dt+ Jo T33 (fJ, ¢)H(¢)d¢ = 1 

O~fJ<sec-1 (c/b), (61) 

where 

2 v b2
-s

2 
2 ~= T, 3(s, 0) = T31 (0, s) = - b2 2 0 2+- h (u)F(0, u) cos sudu 

11: sec -s 11: 0 

(62) 

4 
sec¢ sin2 ¢ log( tan ~ )-sec 0 sin2 

0 log( tan i) 
T

33 
( 8' ¢) = 11:2 _______ s_e_c~2 -c0 ___ s_e_c~

2 
_¢ ______ _ 

2 ~= +-b h(u)F(0, u)F(¢, u)du. 
11: 0 

(63) 

When 0=¢ in Eq. (63), we have by L'Hopital's theorem 
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T33 ({}, {}) = -±(1 _J_ sin2 e) cos{} log(tan!__)-2 cos2 
{} 

71:2 2 2 71:2 

+-_:___b h(u)F(e, u)F({}, u)du. 2 loo 
71: 0 

(64) 

Substitution of Eq. (58) into Eq. (52) gives 

(65) 

We now refer to the computation of kernels of integral equations (60) and (61 ). 

In the previous section, we show that the flexibility of h(u) plays an important 

role from the practical point of view. On the other hand the flexibility of h(u) itself 

prevents infinite integrals involving h(u) from being simplified. In his paper which 

treats triple integral equations, Cooke3
l says that though most important, "it seems 

scarcely practicable" to solve triple integral equations in any specified case of 

h(u) =I= 0. However, since h(u) in our cases decrease exponentially as seen from 

Eq. (40), infinite integrals involving h(u) may be computed quite efficiently by 

the Laguerre-Gauss quadrature formula. As to the evaluation of F({}, u), sub

stitution of Eq. (6) into Eq. (59) and some elementary computation show that 

F({}, u) = J0 (bu)-bu tan{} ~:J1 (bu sec{} cos cp)dcp. (66) 

Thus F({}, u) may be estimated by the Legendre-Gauss quadrature formula. 

Attention should be paid to symmetry of kernels, that is K 11 (s, t) =K11 (t, s), 
T, 3 (s, {}) = T31 ({}, s) and T33 ({}, ¢) = T33 (¢, {}). Symmetry of kernels and the use of 

Gaussian quadrature formulas diminish the amount of computation of kernels of 

Eq. (60) and (61) to a great extent. Thus it is quite practicable to solve Eqs. (60) 

and (61) in an appropriate computer time, though they may appear to be very 

complicated at first sight. 

Several special problems were solved and results were in good agreement 

with those obtained by other methods. We give some results in Appendix. It 
should be noted that those results show the correctness of our quadruple integral 

equations approach. Finally a problem of the plate condenser with guard rings 

was solved to investigate the effect of the guard electrode. Eqs. (60) and (61) 

are solved for IC=0.5, µ=-I, a=l.00 and b=l.01, changing c from 1.01 to 1.70. 

Integrals over [0, a] and [0, sec- 1 (c/b)] are approximated by the Legendre- Gauss 

20- and 15-point formula, respectively, so that Eqs. (60) and (61) are reduced to 

35 linear equations. C1 /C0 vs c for ,=0.3 and ,=0.5 are given in Fig. 4. 

Computations were carried out using computer system FACOM 230-60 at the 
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1.4 

1.2 

1.0 1.0 1.2 1.4 1.6 
C 

Fig. 4. Capacity between.disc electrodes for 
IC=0.5, µ=-l, a=l.0 and b=l.01. 

561 

Data Processing Center, Kyoto University. The computer time used to solve Eqs. 

(60) and (61) for a set of parameters was 40 seconds. 
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Appendix 

We give numerical results of several special problems referred to in section 4. 

a. A charged disc 

Parameters: JC=-1, r=0,µ=l, a=h=l, c=2. 

The total charge on the disc is given by Q, + Q3 • 

Computed 

Exact 

Q +Q 
~

a \sec- 1 cc/b) 
1 3 = G,(s)ds+b J H(O)dO 

4(c,+c2)V0 o o 

2.00000 

2. 

b. A charged annular disc 

Parameters: JC=-1, r=0, µ=1, a=0, h=l, c=2. 

capacity of the annular disc b ~sec_, cc/bl ~- = - H(O)dO 
capacity of a disc of radius c c o 

Computed 

Cooke's value3 > 

0.981007 

0.9810 

c. A circular plate condenser 

I. The problem of equally charged discs 

1.1 Parameters: JC=0, r=0.5, µ=l, a=h=c=l. 

The total charge on the upper disc is given by Q,. 

Computed 0.691207 

1.2 Parameters: JC=0, r=0.5, µ=1, a=h=0.5, c=l. 

The total charge on the upper disc is given by Q, + Q3 • 

Q +Q \a rsec- 1 cc/b) 
1 3 = J G,(s)ds+b J . H(O)dO. 

4(c,+c2)V0 o o 

Computed 0.691205 

1.3 Nomura-Cooke's value8> 0.6912. 

2. The problem of equally charged discs 

2.1 Parameters: JC=0, r=0.5, µ=-1, a=h=c=l. 

The total charge on the upper disc is given by Q,. 
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Computed 1.820787 

2.2 Parameters: JC=0, ,=0.5, µ=-1, a=b=0.5, c=l. 

The total charge on the upper disc is given by Q,1 + Q,3 • 

Computed 1.820786 

2.3 Nomura-Cooke's value8> 1.8208. 

d. The problem of two disc electrodes applied to an infinite plate conductor 

We denote the resistance between the two disc electrodes by R. As a normal-

. . R . b R l 1zat10n constant, we use O given y 0=-. 
2ac 

1. Parameters: JC=l, r=0.5,µ=-1, a=b=c=l. 

C !: G1 (s)ds 

Computed 0.429055 

2. Parameters: JC=l, r=0.5,µ=-1, a=b=0.5, c=i. 

C !: G1 (s)ds+b [c l (C/b) 

H(O)dO 

Computed 0.429054 

3. Kiyono-Shimasaki's value 12 > 0.429057. 


