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The spectral representations for isotropically correlated two l,- and /2-vecotr random 
fields are given generally in terms of /-vector harmonics and random measures, where 
/-vector denotes a (2/+l)- dimensional vector in the irreducible representation space of 
weight l of the rotation group, l=O being a scalar and l= I an ordinary vector. The 
representation is derived by making use of the multi-dimensional moving average and the 
previous work on I-vector functions. The three special cases of interest are discussed in 
detail; namely, two scalar random fields, two vector random fields and a scalar and a 
vector random field. 

I. Introduction 

In the foregoing papers [l], [2] (the latter will be referred to as I) the author 

has discussed the spectral representation of a homogeneous and isotropic scalar 

random field and that of vector random field. The representation is given in 

terms of solid scalar or solid vector harmonics and orthogonal random measures. 

In the present paper we concern ourselves with simultaneous spectral representations 

of random fields having isotropic correlations among them; for example, temperature 

and density fields of atmosphere, pressure and velocity fields of turbulent flow, 

electric and magnetic fields in the black-body radiation etc. We deal with two 

such fields simultaneously, but the case of three or more can be discussed analogously 

if necessary. As above examples, the following three cases are of interest to us 

from the point of view of physics and engineering; namely, the case of two scalar 

fields, that of a scalar and a vector field and that of two vector fields. To give a 

unified description of these cases, we will generally deal with [,-vector and [2-vector 

random fields simultaneously; [-vector means a (2l + 1 )-dimensional vector defined 

in the space D 1 of the irreducible representation of weight l of the 3-dimensional 

rotation group, a scalar corresponding to l=O and a vector to l= 1 [3]. Concerning 
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various definitions, notations and formulae related to the theory of rotation group 

and !-vector functions, we draw freely from a previous work of the author on the 

addition theorems of spherical Bessel functions and vector harmonics [ 4], to which 

we will refer as II. We will see that the 71 X /2-tensor addition formula of a gener

alized spherical Bessel function plays an important role in the isotropic correlation 

between the two random fields. As in the previous works, we derive the spectral 

representation in a somewhat formal manner from a multi-dimensional moving 

average; therefore we leave the general proof of the spectral representation to a 

future work. The main theorems of the present paper have been reported in ref [5] 

2. Homogeneous [-dimensional random field 

Just asap-dimensional normal (Gaussian) random measure is defined in I, we 

define a p-dimensional random measure B(A) on a 3-dimensional space R3 , A 

denoting a set on R3 of finite measure m(A). Let eu denote sample point in the 

sample space Q, and E() the average over Q/ We often delete eu from notations 

for simplicity. A p-dimensional random measure 

B(A) = B(A, eu) = {B'"(A, eu), a= I, 2, ... ,p} (2.1) 

is a system of p random variables depending on a set A in such a way that 

(2.2) 

where ocr,fl denotes the Kronecker symbol. For mutually disjoint sets An, n= 

1, 2, ···, we can write 

(2.3) 

which means 

(2.4) 

Then the 'complete additivity' holds in the sense of mean convergence; 

= = 
B ( ~ A,.) = ~ B (A,.) . 

n::..-::} n=1 

We define a p-dimensional vector space Va in which, for any pair of vectors 

h={h'"} and g={g'"} (a= 1, 2, , .. , p), the scalar product 

p -
(h, g) = ~ h'"g'" (2.5) 

Q',=1 

and the square length (h, h) are defined. We denote by L 2 (R3) a Hilbert space of 

Vu-valued vector functions f(x)={f'"(x)EL2 (R3 ), a=l, •··, p}, with the inner 

product 
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(f, g) = ~R
3 

(f, g)dx = .t (j'», g .. ), 

and the square norm llfli2=(f, f), where 

defines the inner product in L2 (R3). 

(2.6) 

(2. 7) 

Asp-dimensional Wiener integral defined in I, we can define a p-dimensional 

stochastic integral off EL2 (R3) with respect to B(A): 

/(f) = ~R/(x)dB(x, w) = ,t LJ .. (x)dB .. (x, w), 

where we have put B(dx) =dB(x) and B .. (dx) =dB .. (x). I(f) 

properties: 

/(af+hg) = al(f) +hl(g), 

E(/(f)) = 0, 

E(/(f)/(g)) = (f, g), 

E(II(f)l 2
) = 11£112. 

has 

(2.8) 

following 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

A homogeneous [-dimensional random field I;(x), i=l, 2, •··, l, on R3 can be 

represented as a !-dimensional moving average in terms of l p-dimensional stochastic 

integrals off;(x)EL2 (R3), i=l, 2 ,···, l: 

I;(x) = f f;(x-x')dB(x') = ± f Jt(x-x')dB .. (x') , (2.13) 
.)R3 '"=l .)R3 

which, by (2.11), has the correlation matrix 

As shown in J §3, the moving average (2.13) has the spectral representation 

I;(x) = f e2"'Cx,u)dM,(y, w), i = 1, 2, ···, l, 
h3 

(2.15) 

where dM,(y) = M,(dy) and M,(S), S denoting a set on R3 , denotes the [-dimensional 

random spectral measure having properties 

E(M,(S)) = 0, 

E(M,(S)M;(S')) = f F,;(y)dy, 
.lsns' 

(2.16) 

(2.1 7) 

(2.18) 

The matrix-valued spectral density F;;(Y) is Hermitian non-negative definite and 
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FHy) is the Fourier transform ofjf (x.): 

jf(x.) = f e2"icx,g) Ff (y)dy, F~(y) = FH -y) . 
JR3 

The correlation matrix R;i(x) has the spectral representation 

with the inversion formula 

Since F;i(Y) is non-negative definite Hermitian matrix, we have 

A /-dimensional random field I;(x) is called degenerate if 

det (Fii) = 0 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

holds for almost ally, and the largest rank of (F;;) for which the set ofy has non-zero 

measure is called the rank of the spectral density matrix, which turns out to be the 

degree of freedom of I;(x). For F;;(Y) given by (2.18), the rank r is equal to 

that of FHy). Hence, if p<l, (2.15) is always degenerate. If r<l, l-r functions 

from among l p-dimensional vector functions F';={F1, a=l, 2, •··, p} can be 

expressed as, say, 

and hence, 

where a;;(x) denotes the Fourier transform of A;i(y). Thus 

I;(x.) = t f a;;(x.-x.')l;(x.')dx.', i = r+l, ···, l; 
j=l JR3 

(2.24) 

(2.25) 

(2.26) 

that is, when a homogeneous /-dimensional random field is degenerate with rank 

r, its l-r components can be derived from other r by means of a linear operation 

commuting with spatical translations. In what follows, we put l=p without loss 

of generality. 
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3. Isotropically correlated two random fields 

In the following sections we consider /-vector random field defined in the 

representation space D 1 • A /1 -vector and a /2-vector random fields have (2/1 + 1) 

and (212+ 1) components respectively. When viewed differently, these two /-vectors 

together can be regarded as a (2/1 + 1) + (2/2 + I )-dimensional vector in the sum

space of representation D11 +D12 , which we call /1 +!2-vector for convenience. 

The correlation function of this random field, therefore, is a tensor in the product 

space 

The canonical component' of the correlation tensor in each subspace 

DAX D,,,(J.., µ = Li, /2) is defined by 

R£~(x.) = E(/cA)m(x.)lu,.Jn(0)) 

m= -J.., ... ,J.., n= -µ, .. •,µ, (3.2) 

The correlation tensors of /1 - and /2-vector random fields themselves are defined in 

in the first and the last space on the right-hand side of (3.1), while the mutual 

correlation tensors are defined in the second and the third space. 

When the mutual correlations are isotropic tensor fields2, then we say that the 

two random fields are isotropically correlated. In the following we deal with 

homogeneous and isotropic random fields which are isotropically correlated, 

and hence the correlation tensor of the /1 +!2-vector random field is an isotropic 

tensor field in the product space (3.1). 

Applying Lemmata 2 and 3 of II, Appendix II, to (2.20) and (2.21), we obtain 

the following result: 

THEO REM 1. ( Spectral representation of correlation tensor) For the homogeneous 

and isotropic /1- and /2-vector random fields which are isotropically correlated with 

each other, both the correlation tensor R~: and the corresponding spectral density 

tensor F~,,, are isotropic Jxµ-tensor fields in JJAxD,,. (J.., µ=li, l2). They are 
mn 

represented as 'diagonal' matrices in canonical components: 

1 See II, Appendix I. 

R~1;(x.) = om,.R~IL(r) ' 

F~:(y) = DmnF~fL(t) ' 

r =Ix.I, 

t = IYI' 
(3.3) 
(3.4) 

2 For definition of isotropic tensor field, see I, §4. General form of isotropic tensor field as well 
as its Fourier transform are given in II, Appendix II. 
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where F !"' is a non-negative definite Hermitian matrix with respect to the indices 

,l, µ. R>.."' and p>--µ. satisfy the following symmetries 

R;t(r) = (-1)>..-,,.R~~(r) , 

F!"'(t) = F~>-(t), F!>-(t) ),0. 

(3.5) 

(3.6) 

The correlation tensor has the following spectral representation m terms of the 

generalized spherical Bessel function3 

R;t(r) = 4n-.t\ [ j':,.~(2n-tr )F!"'(t)t2dt, 

m = -L, ... ,L 

with the inversion formula 

F~"'(t) = 4n-mtL [ j':,.~(2n-tr)R;t'(r)r2dr, 

n = -L, .. ,,L 

where L denotes the smaller of ,l and µ, 

(3. 7) 4 

(3.8) 

The random fields have the following representations in terms of solid !-vector 

harmonics5 and random spectral measures. The derivation of the theorem will 

be given in section 5. 

THEOREM 2. (Spectral representation of random field) The above random 

fields have the following simultaneous spectral representations: 

>. oo / foo 
Ic>.i(r, e, <p) = v 4n-.~>,. ~S~/ Jo Ji~)n(2n-tr, (}, cp)dM[t)n(t, w), (3.9) 

,l = !1 , !2 , 

where dM[t)n(t)=M/X)n(dt) and MUln(A) denotes the random spectral measure 

defined on the half-line T, 0,;;;; t < oo, having properties 

E(M/t)n(A)) = 0, 

E(Mtt)n(A)M/;f~,(A')) = Dnn1Dtt'Os/4n- ( F~"'(t)t2dt' J An A
1 

(3.10) 

(3.11) 

A and A' being any intervals on T. 

3 For definition, see II, §2.2. 

4 According to II, (A. 46), the Fourier transform of a ;r xµ-tensor R>:"' is given by iµ.->.p~1•. 
mn mn 

However, we take F1~ as the spectral density tensor to supress the useless factor i >.-µ. without 

affecting the Hermitian property. For 2=µ=1 1=1, (3.7) reduces to I, (4.12) for a single 
vector random field. 

5 For definition, see II, §3. 
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The spectral representation of correlation tensor (3. 7) can be immediately 

obtained from (3.9): We multiply two expressions for arbitrary observation 

points and take the average using (3.11). We then recover (3.3), (3.7) on making 

use of the tensor addition theorem given by II, (4.1). In particular when J..=µ= 

l1 =l, (3.9) agrees with the formerly obtained result I, (5.17) for a single vector 

random field. 

4. Examples of isotropically correlated random fields 

We write down the above obtained result for the three cases individually, 

which are of interest to us as mentioned in the introduction. 

4.l. Scalar-Scalar (!1 =l2 =0). We descriminate the two scalar fields by the 

indices J.. =I, 2, instead of lu [2 both of which equal 0 in the present cases. There 

would be no confusion in doing this. The representation (3.9) can be written 

in terms of solid scalar harmonics6
; 

l>..(r, 0, <p) = V 4ir ~ ,t, [ }15 (2irtr, 0, cp)dM/fi(t, cv), 

J.. = I, 2, 

( 4.1) 

(4.2) 

(4.3) 

An example of two such scalar fields is furnished by the temperature and density 

fields of atmosphere which are statistically correlated with each other. The random 

fields in this case may be considered as nondegenerate. 

4.2. Vector-Vector (!1 =12 = I). As above, the two vector random fields are labelled 

by J.. =I, 2. The corresponding spectral representation is given by (3.9) with 

!-vector harmonic J/tm replaced by vector harmonic J~•, n= -1, 0, 17
• The 

isotropic correlation tensor 

R1~(x) = ommR~µ,(r), m, n = -1, 0, I, J.., µ=I, 2, (4.4) 

when expressed in the matrix with row and column numbered by n=-1, 0, I, 

corresponding to the canonical bases in D 1 +Du has the form 

6 For definition, see II, (5.20). 
7 See II, §5. l. 
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Rll 
-1 

'. Rl2 
: -1 

R22 
-1 

The corresponding tensor has the spectral representation 

(4.5) 

wherej:,.,,.=.j:,.1;.8. An example of isotropically correlated two vector random fields 

is given by the electric and magnetic fields in the black-body radiation. A vector 

random field 12 =rot 11 was already discussed in I, §6.3. When I, and 12 are con

sidered simultaneously, the corresponding spectral density tensor has the matrix 

form 

-211:t I F-1 I 2 

0 

(4.7) 
-211:tlF-11 2 l2n:tF_1l 2 

0 0 

2n:tlF,l 2 1211:tF,1 2 

for which det IF mn I =0, showing the degeneracy of 6-dimensional random field 

I1+I2. 
4.3. Vector-Scalar (l1 =l, l2=0). Representations (3.7) and (3.9) may be written 

down separately for two fields: 

I(r, fJ, <p) = y' 4n:nt, ~ St/ r J;'(2n:tr, fJ, <p)dM;'(t), 

I (r, fJ, <p) = y' 411: ~ :t, r ]'5 (211:tr, fJ, <p)dM15 (t) , 

E(Mf'(!:,,.)M;~''(!:,,.')) = onn'ou'os/4rc f ,I Fn(t) l
2 t2dt, .L.nt. 

E(M15 (!:,,.)M 1151 (!:,,.')) = o//'s/4n: r ,IF(t)i 2 t2dt, J t. nt. 

(4.8) 

(4.9) 

(4.10) 

( 4.11) 

8 For explicit representation, see II, (5.2). It is called the spherical Bessel vector function. Se 
also I, §4.2. 
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( 4.12) 

where we have put F1;1(t)=IFn(t)1 2 and F 22 (t)=IF(t)l 2
• Then nonvanishing 

components of the correlation tensor have the representations 

Rm(r) = 4nj:;j~ j;.,.(2n:tr) I Fn(t) I 2t2dt, m = -I 0, I , 
R(r) = 4n: [j0 (2n:tr)IF(t)i 2t2dt, 

M(r) = 4n: [j1 (2n:tr)F12(t)t2dt, 

the correlation tensor having the matrix form 

M R 

( 4.13) 

( 4.14) 

(4.15) 

An example of correlated vector and scalar random fields is given by the velocity 

and the pressure fields of atmosphere. Degenerated examples are provided by 

I 1 =grad I, 12 =1 and 11 =1, l 2 =div l; the former case was discussed in I, §6.1. as 

potential random field. The corresponding spectral density tensors have the forms 

respectively 

0 

I 2n:tF 1
2 

0 

2n:t IF I 2 -2n:t I F0 I 2 I 2n:tF0 I 2 

5. Derivation of the spectral representation 

We denote k= (211 + 1) + (2l2+ I) in the following. In this paper we derive 

the spectral representation (3.9) from a k-dimensional moving average (2.13), 

where p=k as mentioned at the end of section 2. The procedure essentially follows 

that of I; the argument used for a vector is now applied to a 11 +l2-vector. Hence 

we describe the procedure briefly. 

The spectral density tensor (2.18) is an isotropic tensor field having the form 

(3.4). Therefore, we must find k V0 -valued (k-dimensional) vector functions 

{F':,(y), a= I,···, k} m= -J., ···, J., J.=li, 12 , which satisfy 
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(5.1) 

m=-J., ... ,J., n=-µ,, .. ,µ. 

Let us regard Va as another representation space D1, +D12 , and divide the vector 

components {F~"', a=l, , .. , k} into the canonical components belonging to either 

l,- or /2-vector, which we write as 

F~"'(y) = cpl'-~ (y), µ = l1 , l2 , a= -µ, ... , µ, 
"'"' 

(5.2) 

where the superscript a denoting a covariant component is lowered and dotted. 

Let VR stand for the k-dimensional vector space with respect to the subscript m. 

Furthermore, we regard cp~I'-, with respect to the subscripts m, a and the super-
"'"' 

scripts )., µ, as an isotropic tensor field in the product space VR X Va= (D11 +D1
2

) 

X (D1 1+D12): 

(5.3) 

Then we find that ( 5.2) satisfies ( 5.1) with 

(5.4) 

n = -L, ... , L, 

where L denotes the smaller of). and µ, and that F~P.(t) is a nonnegative definite 

Hermitian matrix with respect to the indices ). and µ. Now that cp>.P:. (y), 
"'"' namely F;::'(y), is an isotropic tensor field, its Fourier transformf~(x) is another 

isotropic tensor field having the representation9 

(5.5) 

J;:(r) = 4n-i>.-µ•tL f p;,.~(2n-tr)cp~1-'(t)t 2dt, 

). , µ = l" l2 , m = - L, · .. , L . (5.6) 

To supress the trivial factor i>.-p,, we replace i>.-p,cp>.p, by cp>..p, and i>..-p,p>..P. by p>.P. in 

what follows. The Hermitian property of p>..p, is never destroyed by doing so. 

In order to integrate the moving average (2.13), we put 

p = x-x', 

P = I x-x' I = v r2 +r'2 -2rr2 cos e, (5.7) 

where 8 is the angle between x and x ', and apply the tensor addition formula 

9 See II, Appendix II. 
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II, (4.1) to the tensor function (5.5): 

= (4n-) 2 ~ ~ ~ f
00 

J/t)n(2n-tr, 0, cp)J~;m(2n-tr', 0, <p 1)<p~"(t)t 2dt 
n l B Jo 

= v4n;,1JL ~.t,[1i:m(2n-tr, {}, <p)dEf:m (t).F'", 

where we have put dE/;l,.(t) = Ef~m(dt) and 

Efi:(A)P;,; = (4n-) 312 L Jf;l,.(2n-tr, 0, <p)<p~"(t)t 2dt, 

(5.8) 

(5.9) 

for any interval A on T. Eq. (5.9) is a µ-vector function and we consider a sum

vector with µ=li, [2 , namely, a l1 +l2-vector function in the k-dimensional vector 

space Va, Then the inner product of two such Va-valued vector functions becomes 

(EU
1
)~(A).f_-'1+EU

2
)n(A)j>'12, EUS,.,(A')J"1

1 +EU;{n,(A')J"12) 

( 5.10) 

by virtue of II, (3.8). The k-dimensional stochastic integral of the V,i-valued 

function10 

then gives a random measure on T having properties 

E(M/:)n(A)M/~:;,(A')) = onn'o"'os/4n- ~ f 
1
<p~v(t)<p~v(t)t 2dt, 

V=/1'/2 ] t. nt. 

:x,, µ = l1, l1 ' (5.12) 

by virtue of (2.11) and (5.10). Consequently, ifwe make a direct-sum of [1 - and 

[ 2-vectors corresponding to JL=l1 , l2 on both the sides of (5.8) and take the k-di

mentional stochastic integral of l1 +!2-vector function termwise, then we obtain the 

spectral representations (3.9). 
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