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On a Semilinear Dispersive Equation 

By 

Takaaki N1smA * 

(Received December 5, 1969) 

The semilinear dispersive equation, 

fFy/ot 2 =op(oy/ox)/ox-o'-y/ox4 

is investigated in the region Osxsl, Ost, where the initial and boundary values are 

{ 
y(O, x)=yo(x), oy(O, x)/ot=y1(x) 0 s X s I, 

y(t, O)=y(t, l)=oj,(t, O)/ox2=oj,(t, l)/ox2=0 Ost. 

This is an equation of a vibration of a nonlinear model string-beam. It is shown that there 

exists a unique smooth solution in the large (t ;:=:: 0), and a certain finite difference scheme 

related to it is investigated. 

I. Introduction 

In this paper we consider the following semilinear dispersive equation: 

O::;;x::;;I, 0::;; t, 

where the initial and bonudary values are 

(2) {
y(O, x)= yo(x), ay(O, x)/at= y1(x) 0::;; x::;; I 

y(t, O)=y(t, I)=ay(t, O)/ax2 =ay(t, I)/ax2 =0 o::;; t. 

The equation 

(3) 

is assumed to be a quasilinear hyperbolic partial differential equation in the region 

yx>a=const. Some of the examples are provided by taking 

(4) 

(5) 

(6) 

P=yx+(yx)3 

P= Yxl {I +(}'x)2
) t 

P=yx+(yx)2
, 
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where subscripts denote differentiations with respect to the variables. The case (5) 

corresponds to a force given by a nonlinear (i.e., before linearization) potential of 

a string. This quasilinear hyperbolic partial differential equation has, in general, 

not been solved concerning the global existence theorem. In 2) the equation of 

parabolic type 

(7) 

was investigated concerning the existence, uniqueness and stability of the solution­

The term Yxtx may be considered as an added dissipation of equation (3). In 

equation ( 1) the term Yxxxx may be considered as an added dispersion to equation 

(3), which is compared with the equation considered in 3). The equation (1) can 

be treated as a nonlinear perturbation to the linear equation: 

(8) Ytt+ Yxxxx=O, 

that appears in a vibration of a beam. 

It will be shown that the problem (1), (2) has a unique smooth solution in the 

large for every initial datum (the function space is mentioned later) for cases such 

as (4) and (5), but in cases such as (6) we get an analogous result, ifwe restrict the 

initial datum. For these purposes we shall make use of a theory of some nonlinear 

perturbation to a linear evolution equation (4-6) and so on), and Sobolev's lemma, 

for the latter case such as (6) we also use an idea in 7). In § 3 a finite difference 

scheme is mentioned concerning a solution of the problem ( 1). 

The paper 10) treats an analogous problem by a method of approximation 

to equation ( 1) by a sequence of systems of ordinary differential equations, where 

the equation is assumed to have the property that the potential energy has its absolute 

minimum such as (4), and the initial condition is given periodically. 

2. Existence and Uniqueness 

Let us consider a global existence of a classical solution of the problem (I). A 
general theory of a global existence of a weak solution for semilinear second order 

evolution equations, which may be treated as a nonlinear perturbation of a linear 

evolution equation, gives the following. (for example Segal 6) ). 

B is a selfadjoint operator in a Hilbert space H, J is a locally lipschitzian trans­

formation from the domain Ds of the operator B to H. (metrized relative to the 

inner product (x,y)v 8 =(Bx, By)H), where we assume Ds is complete with respect 

to the norm 1/·llvs=(·,)vs½• 

Theorem 

If yo ED s, y1 EH, then there exists e > 0 such that for O ::;; t::;; e the equation 



(9) 

On a Semilinear Dispersive Equation 137 

sin Bt (1 sin B(t-s) 
y(t)=cosBryo+-Jj-y1+ Jo B j(y(s))ds 

has a unique continuous solution in Ds. If in addition there exists a 

nonpositive differentiable functional E on Ds (relative to II· llo8 ) such that 

'oE/'oy=R.(j(y), ), then the foregoing solution exists globally. 

This gives at first a local existence theorem of a weak solution for the problem (1), 

that is, ifwe take the operator B= -d2/dx2 in H=L2(0, 1) with the definition domain 

Ds= {yE W22, y(O)=y(l)=O) = W.2, where W,t is the Sobolev's space of the func­

tions which have square summable /-th order derivatives in (0, 1), then the operator 

B is a selfadjoint operator and the transformation j(y): y-+p(yx)x is locally lips­

chitzian from D s into H, because 

IIJ(y1 )-j(y2)11H= jjp'(y1xD'1xx-P'(y2x)y2xxll:,;; 

:s;;maxjp'(y1 ,,)-p'(y2,,) I· llfxx!I +maxlp'(y2,,) I· !ly1xx-f xxl!:s;; 

:s;;C(!ly%, lly21!z)·lly1-y% 

=C(lly1llos, llfllos) · l!y1-y2llos, 

where we used Sobolev's lemma, i.e., ifyE W.2, theny is bounded continuous with 

its first derivative and also 

(10) 
llyll2=IIByll+ ly(0)I + ly(l)I =IIByll=llyllos 

(llyllz=IIYllw,', !lyll=IIJ'IIL2
) 

In order to obtain global existence of the weak solution of (1) for all data (2) 

we restrict the function p( •) such that the potential energy 

(II) 
I fl 

PE= 2 ;
0 

[(yxx)2+2P(y,,)]dx 

has the absolute minimum at a point voE W.2, where P( ·) is an integral of p( · ). 

Corollary 

If the nonlinear term p( •) has the property mentioned above and yoE W.2, 

y, E L2, then we have a unique weak solution of the problem (I), which is 

y(t)EEt°(W22)nE,1(L2) in the large for all t, where y(t)E(;/(U) denotes the 

vector valued function such that y(t) is k-times continuously differentiable in 

a vector space U with respect to t. 

Now we proceed to the problem of smo_othness of the weak solution obtained above. 

Ifwe take the space H= W22(llyllH=IIByll) in the theorem and the definition domain 

of the operator B= -d2/dx2 as Ds= {yE W.2, ByE W.2) = W2', (llyll.C=llyllw,') 

=IIByl!+ !By(0)j + jBy(l)I + ly(0)I + jy(l)I =IIByll=IIByllH=llyllo8 ), then the nonli­

near transformation J(y) is also locally lipschitzian from Ds into H and so for 

yoE W2', y1E W22 the weak solutiony(t) belongs to Et°(W2')nEi1(Wz2) locally. But 

in this case the equation (9) is twice continuously differentiable in the space L2 
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with respect to t, because J(y(t)) is continuously differentiable in L2: 

dj1(t)) lim {p'(yx(t + At))yxx(t+ At)-p'(yx(t))yxx(t)} / At 
t 4/ .. 0 

=lim{l!Jyx(t+ At)-P'(yx(t)) yxx(t+At)+ 
4t+O At 

+ p'(yx(t))Yxx(t+A!~-y,,x(t)} 

= P''(y,,(t))y,,,,(t)j,,,(t) + p'(y,,(t))j,,,,,(t). 

Thus y(t) belongs to f, 2(L2) locally. Furthermore a global estimate may be obtained 

in the following way. The energy conservation of the weak solution, 

lly(t)ll22+ llj(t)ll2+ fo 1

2P(y,,(t))dx= llyoll22+ lly1ll2+ fo 1

2P(yo,r)dx 

together with the equation 

j,(t)= -B sin Bryo+cos Bry1 + Jo' cos B(t-s)j(y(s))ds 

gives 

11s_,;ct)llsllB2yoll+IIBy1ll+IIB J.1 

cosB(t-s)J(y(s))dsll -

s llyoll, + llydl,+ llsin BtJ(yo)II + 11J.
1 

sin B(t-s)j(y(s))dsll 

sllyoll, + lly1II,+ IIJ(yo)II + J.1 

(IIP"(y,,).y,,,,j,,11 + IIP'(y,,)j,,,,,ll)ds 

sC(yo,y,)+ J.1 

C(llyll2)IIByllds, 

IIBy(t)II s C(yo, y1) exp {C(yo, y1)t}, 

that is y(t)Ef,1(W22) globally. Therefore 

llj(t)II s l!Bj,oll + IIBy1II + IIJ(y(t))II + 11J.
1 

B sin B(t-s)J(y(s))dsll 

sCexp(Ct), 

IIBy(t)II sllji(t)II + IIJ(y(t))II sC exp(Ct). 

In order to obtain a smooth solution of the problem (I), we may take 

H= W2'= {yE W2', y(0)=y"(Q)=y(l)=y''(l)=0}, 

DB= {yE W2', ByE W2'} = W26, yoEDB, y,EH 

in the above theorem, then we obtain a solution y(t)EE,0(W26)nEt1(W2') locally. 

In this case j(y(t))EE,1(W22) because 

j(y(t)) = p"(y,,(t))y,,,,(t)j,,,(t) + p'(y,,(t))yxx(t) E Et°( W.2) 

Thus in the analogous way as before 
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IIBy(t)II =II-B3 sin Bty+B2 cos Bty+ 

+B sin Btj(yo)+ J.' B sin B(t-s) dj(Is(s)) dsll 

sllB3yoll +IIBy,ll+CIIByoll+ f.' IIBj(y(s))llds, 

Bj(y(s)) = P" "(y,,)(y,,,,)y,,+ 3 P" '(y,,)y,,,,y,,,,,,j,,,+ 

+ 3 P'' '(y,,)(y,,,,)7,,,, + 3 p"(y,,)y,,,,_j,,,,,, + 

+ 3 P"(y,,)y,,,,,,y,,,, + P''(y,,)j,,,y,,,,,,,, + P'(y,,)j,,,,,,,,,, 

IIBj(y(s))llsC(max{ly,,I, ly,,,,I, ly,,,,,,I, ly,,I}, 

11.Yull, IIY:mll)(l + 11j,,,,,,,,,ll)=C(yo,y1)· IIB7(s)II, 

where we used y(t)EEt°(W2')nE,1(W.2) globally. Therefore 

I IB7(t)II sllB3yoll + IIBy,11 +CIIByoll + 

+ f. 1 

C(yo,y,)IIB7(s)llds, 

IIBji(t)II sC(yo,y,)exp C(yo,y,)t, 

then 

IIBj(y(t))II sCIIB~t)II sC exp Ct, 

IIB3y(t)II s IIB3yoll + IIBy,11 + IIB2j/ sin B(t-s)J(y(s))dsll 

::;; C+ II/.' B cos B(t-s)j(y(s))dsll sC exp Ct, 

I IBji(t)I Is I IB3y(t)I I+ 1 IBJI I 

::;; C exp Ct+ CIIByll s C exp Ct. 

Theorem l 

139 

If yoE W26
, y, E w.• and the nonlinear term is such that the potential energy PE has 

the alsolute minimum at some function Vo E W22 > then a solution of the problem ( f) 

exists uniquely and belongs to 

E,0
( 14'2

6
) n E,'( W2') n El( W22) 

in the large, which is also a smooth solution because of sobolev's lemma. 

Now we consider the case in which the potential energy has no absolute minimum, 

but has a local minimum at a point OE W22. Following Sattinger 7) we define 

depth of a potential well by 

(12) 

where Xo=Xo(y) is the value such that the function PE(Xy) begins to decrease with 

respect to X~O for fixed yE W22. We call the potential well W: 

W= {yE W22, PE(Xy)<d, 0 s X s l}. 
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Theorem 2 

If y 0 E W2 6
, y1E W2• and 

l (I 
KE+PE='l j 

O 
[(y1)2+(f,x)2+2P(f,,)]dx<d, 

then a solution of equation (]) exists uniquely and belongs to 

Et°(W26)nEt2(W22) in the large. 

Proof. 

A weak solution of equation ( 1) exists locally by the theorem. If we assume 

that the solution goes out of the potential well W, then there exists a to such that 

PE(y(to))=d, which contradicts the energy conservation of the weak solution of 

equation (1), that is, 

KE+PE I =KE+PE I <d. 
t=to t=O 

The smoothness of the weak solution can be seen in the same way. 

3. Finite Difference Scheme 

Let k='1t and h='1x be the time and space mesh length, respectively. We use 

the notation: 

ym.=y(m, n)=y(mk, nh) 

y,(m, n)=(ym+1.-ym.)Jk,y;(m, n)=y,(m-l, n) 

Yx(m, n)=(ym •• 1-ym.)Jh, yr(m, n)=yx(m, n-l). 

Hereafter for the sake of simplicity, we discuss case ( 4) only ( the other cases ( 5) and 

(6) may be treated analogously): 

(14) a7 + a7 = ~( ay + ( ay )s) o :,;; x ::,;; l , o :,;; t ::,;; v T' 
at2 ax• ax , ax ax 

where the initial and boundary values are the same as (2). We replace 87/at2 

by the ordinary difference scheme y 1; (m, n), but for other derivatives we use the 

follwoing implicit scheme: 

a7 1 
ax• ~2 {yx;;x;;(m+l, n)+yx;;x;;(m-1, n)) 

87 1 ax2 ~2 {yx;;(m+l, n)+yx;;(m-l, n)) 

:x ( ix Y ~ ! { yx(m+ 1, n)3 +yx(m+ 1, n)7x(m-l, n)+ 

+yx(m+ l, n).yx(m-1, n)2 + yx(m-l, n)3
};; • 

By these replacements we obtain the finite difference scheme: 
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y,,(m, n)+ ~ {YxrxzCm+ I, n)+yxx,.~m-1, n)}= ~ {y,.(m+ f, n)+ Yxx(m-1, n)} 
(15) 

+ ! {yx(m+ l,n)3+yx(m+ l,n)yx(m-1,n)+yx(m+ l,n)yx(m-l,n)2+yx(m-l,n)3)i. 

In order to obtain an energy estimate we multiply (15) by {y,(m, n)+ y,(m, n))kh 

and sum up over all m, n such that Os ms T/K=M, 0 s n s 1/h=N. 

Summing up by parts and using the boundary condition y(m, O)=yxx(m, O)=y(m, 

N)=yx;;(m, N)=O, we get 

N-1 

.l [y,(M+ 1, n)2+ ~ {y,;(M+ I, n)2 +yx;.(M, n)2 + 
n=O 

(16) 
+ ~ {yx(M+l, n)2 +yx(M, n)2

} + ! {yx(M+l, n)'+yx(M, n)') ]h 

N-1 

= _l [y,(O, n)2 + ~ {yx;;(l, n)2 +yx;;(O, n)2
} + 

n=O 

This a priori estimate is an energy conservation and gives a solvability of the above 

implicit difference scheme by an interation for small k/h2
, using lym.l sC (inde­

pendent of k, h) by Sobolev's lemma for the finite difference. 8). Furtheremore 

from (16) it follows that {ym.) o<hs:ho has the following properties: 

(17) {

N-l }t 
lly,(m, • )IIL2 = ~/1(m, n)2h sC, 

llyx(m, · )%•, llyx.;(m, · )IIL•SC, 

where C is a constant independent of h > 0, t ::C: 0. 

By means of this estimate, Sobolev's lemma for the finite difference and the D­

compactness argument in 9) the difference scheme ( 15) gives a weak solution of the 

problem (14) as a limit of an appropriate subsequence of (15) (h-0). The limit 

(the obtained weak solution of (14)) has the estimate: 

(18) 
(

y is bounded, continuous in G, y(t, O)=y(t, 1)=0, 

y(t, ·) is Lipschitz continuous in L2[0, l] with respect to t, 

yx(t, •) is continuous in L2[0, l] with respect to t, 

y,(t, x)EL2(G), yxEL00(G), yxxEL2(G), where G= [O, T] X [O, I]. 

Next we remark the finite difference scheme: 

(19) 

I I 
y,,(m, n)= 2 {yx;;(m+l, n)+yx;;(m-1, n)) + 4 {yx(m+l, n)•+ 

+yx(m+ I, n)yx(m-1, n)+yx(m+ I, n).yx(m-1, n)2 +yx(m-l, n)3}i. 
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It does not contain the term corresponding, to Yzxzx, and therefore corresponds 

formally to the hyperbolic equation (3) with p given by (4). For the scheme (19) 

with the same boundary condition as (2), an energy conservation also holds, namely, 

N-1 

l [y,(M+ 1, n)2 + ~ {yx(M+ 1, n)2 +yx(M, n)2
} + 

n•O 

(20) + ! {yx(M+l, n)'+yr(M, n)'}]h= 

N-1 

= l [y,(O, n)2+ ~ {yx(I,n)2 +yx(O,n)2
} + ! {y.,,(l, n)'+yx(O, n)'} ]h 

n=O 

It follows from this energy conservation that the difference scheme ( 19) does not 

generally approximate the weak solution of the hyperbolic equation (3), because 

equation (3) has not, in general, the energy conservation of the form (20). The 

difference scheme (19) approximates rather the system of the ordinary differential 

equations which was considered by Fermi-Pasta-Ulam (cf. 3) ). 
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