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The present paper is concerned with the theoretical determination of stresses and de

formations around a tunnel with an arbitrary cross section excavated in anisotropic elastic 

ground under a three-dimensional stress state. In the first part general methods are 

proposed for determining these phenomena based on the use of comformal mappings, and 

in the second are given the numerical results of computation of some typical cross sections. 

1. Introduction 

175 

In order to understand the earth pressure phenomena, it is of importance to 

analyze the stress distribution around underground tunnels taking into account the 

fact that the undisturbed ground is generally in a three-dimensional stress state. 

It is not easy to clarify the stress distribution under every conditions, since it is 

affected by the initial stress conditions of ground, shapes of tunnel, mechanical 

properties of rock and so on. 

On the hypothesis that the rock is homogenious and isotropic elastic body, 

Hiramatsu and Oka 1>, and Fairhurst2> analyzed theoretically the stress distribution 

around a circular tunnel under a three-dimensional stress state. And further, 

Hiramatsu and Oka investigated experimentally the stresses around a tunnel with 

several shapes of cross section using a method of the photoelastic technique'>. 

For the purpose of extending the above results, the authors have attempted to 

analyze theoretically the stress distribution around a tunnel with an arbitrary cross 

section under a three-dimensional stress state. In the present paper, we make the 

assumptions that 

(a) the rock is homogenious and anisotropic elastic body, 

(b) the stresses in the undisturbed ground do not vary along the generator of 

a tunnel, that is, the three-dimensional stress state is uniform over the 
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wide region as compared with the diameter of a tunnel, and 

(c) body force is absent. 

Assumptions (b) is a reasonable one when a tunnel is excavated in considerable depth 

far from the ground surface. This assumption also has been adopted by the above 

investigators. 

2. Statement of the Problem 

The tunnel is considered to be an opening of arbitrary cross section with its 

axis coincided with the z-axis of a rectangular cartesian coordinate system (x, y, z). 

In this case, principal elastic axes of the body assumed that the surrounding material 

is homogenious and anisotropic elastic body, incline to arbitrary directions against 

this coordinate system. 

The principal stresses 0-1°, 0-2° and o-a 0 in the undisturbed ground applied at 

infinity from arbitrary orthogonal directions inclined independently with .not only 

the directions of principal elastic axes but also the axis of a tunnel, can be divided 

into six components of stress along the axial directions of coordinates (x, y, z) as 

shown in Fig. 1 (a). Then owing to the assumption that the ground is perfect 

elastic body, the stress distribution in Fig. 1 (a) can be divided into the stress 

distributions in Fig. 1 (b) and in Fig. 1 (c). The former is the case where the 

(a) (bl (cl 

Fig. I. Anisotropic elastic body with a tunnel under a three-dimensional stress state. 

external stresses o-x0, o-9 °, o-,0 , -rx, 0
, -r9 ,

0 and -ru0 equal to the ones in Fig. 1 (a) 

apply to the same body without the tunnel, and the latter is the case where the 

stresses X ., Y ., z. apply on the contour of the tunnel and the concentrated 

force Wo acts at the origin of the coordinates (x, y, z). Where X., Y., z. 
are the stresses equal and opposite sign on the virtual contour in which a tunnel 

with an arbitrary cross section would be excavated under the stresses of the undis

turbed ground, and W o is equal to the concentrated force corresponding to the 

weight of rock mass eliminated by excavation of the tunnel. The stresses X., Y., 
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z. and the force Wo can be easily obtained. Therefore, it may be reduced to the 

problem to determine the stresses and displacements around the tunnel in anisotropic 

elastic ground, when the stresses X., Y., z. and the concentrated force Wo apply 

at the contour of the tunnel. 

3. Theoretical Foundations 

3.1 Basic Equations for Anisotropic Elastic Body 

From the assumptions (b) and (c) of chapter l and the coordinate system as 

shown in Fig.l, equilibrium equations of stress are expressed as* 

a.,.,, + &r,,y =O 
ax ay ' 

aTry + ao-y =O 
ax ay ' 

aT.,, aTy, 
0 ~+a_y=. 

(3.1) 

For anisotropic elastic body, there exists generally the following relations between 

stresses and strains, i.e. the generalized Hooke's law. 

8,, =a110-,,+a120-y+a1s<T,+aaTyz+ a1sTu+a1&Try, l 
Sy =a120-,,+a220-y+a230-,+ .................. +a2&Trv, 

................................................... 
'Yry=al6<Tr+a2&<Ty+as&<Tz+ ••••••••••••••• +as&Try, 

(3.2) 

where the coefficients in above relations au, au, ...... , a&s are the elastic constants 

of anisotropic body. 

The equilibrium equations (3.1) may be satisfied by introducing to the two stress 

functions F(x, y) and ,p(x, y): 

a2F a2F a2F 

l o-,,= ay2' o-y= ax2 ' Try= - axay' 

- a.p a.p 
Tu- ay' Ty,=-~ 

(3.3) 

Having to satisfy the compatibility conditions of strains, we obtain the following 

systems of the basic differential equations for these stress functions, 

L.F+Lcf,=0, LsF+Lcf,=0, (3.4) 

in which L, Ls and L. are the differencial operators of the second, third and fourth 

orders which have the form: 

• Theoretical aspects considered to body forces will appear in reference (10). 
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a2 ~ ~ 
L2 =(3,. Bx2 - 2(:J"BxBy +f3ss By2' 

a• a• a• a• 
La= -(3,. ax• +(f32s+f3,s)ax•ay -(f3u+f3ss)axBy2 +f3s1 ay•, 

a• a• a• a• a• 
L,=/:322 Bx' -2/:32s Bx•ay +(2/:312+(:Jss) ax•ay2 -2/:31s Bxaya+f:311 ay•-, 

a;aa;a 
(:J;;=a;;--a-' 

33 
(i, j= 1, 2, 4, 5, 6). 

(3.5) 

(3.6) 

Therefore, by solving the equations (3.4), we can culculate the components of stress 

from equation (3.3), and the displacements from integrations of equation (3.2) and 

some reductions. Lekhnitskii has given the general expressions for the components 

of stress and displacement by terms of three analytic functions as follows•i. 

Ux = 2Re[µ1 2cf,r'(z1)+ µ2 2cf,.'(z2)+ µ.2:\acf,a'(za)], 

uy = 2 Re [ cf,1'(z1)+ cf,.'(z2) + :\acf,a'(za)], 

T xy = - 2 Re [µ1cf,r'(z1) + µ2cf,.'(z2) + µ3:\3cpa'(za)]' 

Tzx = 2Re [µ1:\1cf,1'(z1) + µ2:\2cf,.'(z2) + JJ,acf,a'(za)]' 

Ty,= -2Re[:\1cf,r'(z1)+ :\2cf,.'(z2)+cf,a'(za)], 

3 

u = 2 Re L pkcf,k(zk)-w'!)'+ Uo, 

3 

v = 2Re L qk<pk(Zk)+roax+vo, 
k-1 

3 

w=2Re L rkcf,k(zk)+wo. 
k-1 

(3.7) 

(3.8) 

Where Re is the notation for the real part of the complex expression, cf,k(zk) are 

analytic functions with argument of the complex variables Zk=x+ JJ,kY (k= 1, 2, 3), 

and JJ,k, A-k, pk, qk, Tk (k= I, 2, 3) are complex constants related to the roots of the 

characteristic equation of anisotropic elastic body and the elastic constants {3;;. 

The real constants roa, Uo, Vo, Wo characterize rotation and rigid displacements of 

the body which are not accompanied by deformation. Therefore these can be 

neglected in the case of our problem. 

Moreover, normal stress u, along the axial direction of a tunnel can be cal

culated from the assumption of plane strain of the z-direction as follow. 

(3.9) 

3.2 Conformal Mappings and Complex Analytic Functions (>k(zk) 

We assume that the external stresses X., Y., z. on the contour of a tunnel with 
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an arbitrary cross section are defined as Fig. 

2. Then the boundary conditions on the 

contour of this cross section are given as 

follows. 

ux cos(n, x)+Txv cos(n,y)=X., l 
Txv cos(n, x)+uv cos(n,y)= Y., 

Tu cos(n, x)+Tv• cos(n,y)=Z., 

(3.10) 

in which n is a unit vector directed to the 

inward normal. 

y 

z 
Using a tangential unit vector s m a 

clockwise direction on the contour, we have 
Fig. 2. Cross section of the tunnel with 

an arbitrary shape. 

dx , dy 
cos(n, x)= dn = -Ts, (3.11) 

By substituting equations (3. 7), (3.11) in equation (3.10) and integrating with respect 

to the arc-length s from an arbitrary initial point to the variable point s, we can 

write these conditions in the following way. 

2Re[cf,,(z,)+c/>2(Z2)+A,cf,a(zs)] = fo'Y.ds+C,, 

2Re[µ,cf,,(z,)+ µ2cf,i(z2)+ µ,Asc/>lzs)] = -1o•x.ds+C2, 

2Re[?-,1c/>1(z,)+;>..2cf,2(Z2)+cf,,(zs)] = - fo'z.ds+Cs. 

(3.12) 

Where C,, C2, Cs are constants which can be fixed arbitrarily on the contour which 

bounds the region; particularly, without loss of generality with respect to our 

problem we can set these constants equal to zero. 

We refer the body under consideration to a coordinate system (x, y, z) where 

the origin lies at the center of gravity of an arbitrary cross section of a tunnel, 

and the z-axis is directed along the axis of the tunnel. We consider an infinite 

anisotropic elastic body with the tunnel, the contour of which is given by equations: 

xo=aocos0+ ,l(a,.cosm0+f3,.sinm0), 
m-1 (3.13) 

yo=ao sin0 - ,l (a,. sinm0-f3,. cosm0). 
m-1 

In which 0 is a parameter varing from O to 2 1t in a counter-clockwise direction on 

the contour, a,., /3,. (m=l, 2, ...... , v) represent the real constants to be decided by 

the cross section of a tunnel, and v is a finite integer with plus sign. For example, 
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itmaybesetam=flm=0, (m=l, 2, ...... , v) fora circular opening andf11=am=f1m 

=0, (m=2, 3, ...... , v) for an elliptical one. Moreover, assuming that v=9, fJm=0, 

(m= I, 2, 3, ... , 9), Heller and others4l have calculated the values of the constants 

ao, am together with the variations of radius of the rounded corner of an opening 

with several rectangular cross sections. 

An infinite Zo-plane (zo=x+ry) with the tunnel as given by equation (3.13) 

is conformally mapped onto the exterior of a unit circle 11;" I= I in the /;"-plane. 

The mapping function is 

Zo=ro(/;") =ao/;"+ ,l (am+ifJm)l;"-m. (3.14) 
m=l 

Similarily, we consider the solution of the problem by mapping conformally the 

planes Zk (=x+µky, k=l, 2, 3) onto the exterior of unit circles l/;°kl = I in the /;°k· 

planes, using the complex roots µk of the characteristic equation for anisotropic 

elastic body under consideration. Then the mapping functions may be expressed 

to the form: 

(3.15) 

Each of these functions on the contour of the cross section of a tunnel takes a value 

equal to /;"= /;°k=CT ( =ei8). 

Performing the above transformations, the expressions for the complex analytic 

functions <f,k(zk) may be sought. That is, the expressions on the right-hand sides 

of equation (3.12) as a result of the integration of equation (3.10) are calculated 

as the forms with trigonometric series for the convenience of the sue ceeding 

calculations. Then by solving the basic equations (3.4), complex analytic functions 

<f,k(zk) and their first derivartives <f,/(zk) are finally obtained as* 

(3.16) 

q,/(zk)=- ,//k •fmI'km/;°k-<m+I). 
m-1 

* Complex analytic functions corresponding to the force W O are given in Appendix. 



Stress Distribution Arowid a Tunnel with an Arbitrary Cross Section Excavated 181 

I',m =(µ2 - µaXill,2)am + (X2Xa- l)bm + Xa(µa- µ2)Cm, 

I'2m =(µaX,Xa- µ,)am+(l -X,Xa)hm+ Xa(µ, - µa)Cm, 

I'am =(µ1X2- µ2X1)am +(X1 -X2)bm +(µ2- µ,)cm, 

.d = µ2 - µ1 + X2Xa(µ1 - µa)+ X1Xa(µa - µ2), 

lk= -~~: , (k= 1, 2, 3). 

(3.17) 

In which am, bm, Cm are the complex constants determined by the stresses of the 

undisturbed ground and the shape of a tunnel. When the components of stress 

ux0, uy°, u,°, Txy°, -ry,0 and -ru0 along the axial directions of the coordinates (x,y, z) 

represent the stresses in the undisturbed ground applied to three-dimensional, these 

constants are determined by the following expressions. 

Q1= ~ [ {uy0(ao+a1)--rxy0,8i) -i{Txy0(ao-a,)-uy0,8,} ], 

b,= ~ [ - {-rx 9°(ao+a,)-u,,0,8,} +i(u,,0(ao-a,)--rx 9°,8,}], 

Ci=~ [ - {-r9 ,
0(ao+a,)--r,x0,8,} +i{-r.,,0(ao-a,)--r9 ,

0,8,}] 

iim= ~ {(uy0am-Txy0,8m)+i(-rxiam+uv°,8m)}, 

bm = ~ { (-rxv°am -ux0,8m)-i(u,,0am +-r,,,°,8m)}, 

Cm= ~ {( Ty, 0am --rzx0,8m)+ i( -r,x0am +-ry,0,8m)}. 

(m=2, 3, ...... , v) 

(3.18) 

According to above expressions, we can find theoretically the components of stress 

and displacement along the axial directions of the coordinates (x, y, z). Hence, 

components of stress and displacement in a system of orthogonal curvilinear coord

inates (a, 0, z) are obtained by the form•>: 

(3.19) 

Where ua and Ua are normal stress and displacement along the normal to the contour 

of the tunnel, uo and uo along the tangential to the contour, and Tao is shearing stress. 

The symbol of upper bar represents the conjugate complex variable of the complex 

one without the symbol of upper bar. Components of stress and displacement on 

the right-hand sides of these equations can be obtained by equations (3. 7) and (3.8). 
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Moreover, for shearing stress -re, acting along the out-of-plane and displace

ment w, of the .;:;-direction, we can determine as 

-re,= --rzx sin 0' +-r9 , cos 0', 

w,=wtan0', 

0' = -tan-1
( 1;). l 

4. Stress Analysis 

4.1 Transformations of Elastic Constants 

(3.20) 

The elastic constants which are appeared in expressions of the generalzied 

Hooke's law (3.2) of an anisotropic body depend on the direction of the axes of the 

coordinate system. If the direction of the axes changes, then the elastic constants vary. 

Hence, we must consider the relations between the elastic constants expressed in 

one coordinate system and the corresponding constants in another arbitrary coo

rdinate system. 

Let the elastic constants for the system (x"', y'", z'") be known and consider 

the anisotropic elastic body being inclined to the following (see also Fig. 3) against 

the axis of the tunnel. 

z"• 

\ y \ 

a/11 ,/ ¢ 
/ ;1 

z· z' !? 
1 z ( axis of o tunnel ) 

X 

x• 

X"' (£,) 

Fig. 3. Angles of rotation a, f3 and r from the three principal elastic axes. 

( 1) a : angle of rotation around the x'"-axis -+ coordinates (x'', y'', z'') l 
(2) /3: angle of rotation around they''-axis -+ coordinates (x', y', z') (4.1) 

(3) 'Y : angle of rotation around the .;:;'-axis -+ coordinates (x, y, z) 

In this case, the position of the new coordinate system (x, y, z) with respect to the 

first one (x'", y'", z'"), is defined by the Table 1. 
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Table I Relations between the rectangular cartesian coordinates (x,y, z) and (x"',y"', z'"). 

~I X I y I z 

x''' cos f3 cos r -cos /3 sin r sin /3 
--- --

y"' sin a sin /3 cos r+cos a sin r cos a cos r-sin a sin /3 sin r -sin a cos f3 
---

z"' -cos a sin f3 cos r+sin a sin r sin a cos r+cos a sin f3 sin r cos a cos f3 

The rotations of coordinate axes being such that the angles of rotation a, fJ 
and 'Y take independently any values from O to 21r, we can easily obtain the elastic 

constants in the new system (x, y, z) for all inclinations of axes of elastic moduli6
'. 

Then by solving the basic equations of the anisotropic elastic body in this coordinate 

system, we can calculate the stresses and displacements around a tunnel with an 

arbitrary cross section under a three-dimensional stress state. 

Because we do not have enough space to describe both stresses and displacements, 

we will introduce only a few typical examples being concerned with stresses*. 

4.2 Influence Coefficients of Stress 

Let us consider two systems of rectangular cartesian coordinates (x, y, z) and 

(x, y, z), with the same origin 0. In which the x, y, and z-axes are taken in the 

directions of the principal stresses 0-1°, 0-2° and o-a0 in the undisturbed ground. And 

let the direction cosines of x, y, z-axes be /1, m1, n1; l2, m2, n2; la, ma, na, respectively. 

In this case, components of stress in reference coordinates (x,y, z) are given as 

o-,,0 =/120-1° +!220-2° +la2o-a0, 

o-v° =m120-1° +m220-2° +ma2ua0, 

o-,0 =n120-1° +n220-2° +n.2ua°, 

T,,6° = l1m10-1° +l2m20-2° + lamaua°, 

Ty,0 = m1n10-1° + m2n20-2° + manaua0, 

T,,,0=nil10-1° +ni20-2° +nalao-a0. 

(4.2) 

And further, let the components of stress at any point P along the wall surface of the 

tunnel be defined by a-,,°, o-6°, ...... , T,,,0 as follows. 

a-, =A,,u,,0 + A9o-y0 + A,o-,0 + A,,9T:,:y0 + Ay,Ty,0 + A.,,T.,,0 , 

a-, =B,,u,,0 + Byo-y0 + B,a-,0 + B,,yTzv° + By,Ty,0 + B.,,T,,,0
, 

T,z=C,,u,, 0 +Cyo-y0 + C,o-,0 +CzyTzv° + Cy,Ty,0 + C.,,T.,,0. l (4.3) 

In which A,,, Ay, ...... , C,, and C,,, are constants to be determined by the shape of 

a tunnel, mechanical properties of ground under consideration and the position of 

a point P. For example, coefficients A,,, B,, and C,, represent respectively the values 

• Numerical examples of the displacements around a tunnel with a circular cross section under a 

three-dimensional stress state can be seen in reference (7). 
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of stresses ue, Te, and u, at the point P, i.e. the influence coefficients of stress, when 

the unit normal load ux0 = 1.0 along the x-axis are applied at infinity, and so on. 

If the elastic constants of the ground are known in any way•>, these coefficients can 

be calculated by above described theoretical solution, utilizing high-speed digital 

computer. 

If these influence coefficients of stress are obtained, then we can find the stresses 

in an undisturbed ground such as the manner similar to that of Hiramatsu and Oka•>. 

We will show in next chapter the numerical examples of the influence coeffi

cients of stress for a tunnel with several square cross sections*. 

5. Numerical Examples 

5.1 Calculations of the Influence Coefficients of Stress 

For the sake of simlicity, let us concider the cross-anisotropic elastic ground such 

that the elastic moduli and Poisson's ratios are given respectively by E1 = E2, Ea 

=Ei/3; v2a=va1=0.15, v12=0.25, and the moduli of rigidity are defined by the 

following formula: 

_l_=_l_+_l_+ 2v;; 
G;; E; E; E; ' 

(i, j= l, 2, 3) (5.1) 

These assumptions do not lose in generality for our problem as an anisotropic elastic 

body. In this case, we will assume that the principal elastic axes of the body coincide 

firstly with the coordinate axes of the rectangular cartesian system (x111
, y'", z") 

before doing the rotations of coordinates. 

5.1.1 Effects of a Corner Radius of Tunnel on the Influence Coefficients 

of Stress 

Being related to the stress distribution around an opening, it has been well 

known that the stress concentration factors (i.e. the influence coefficients of stress) 

under an in-plane load change remarkably according to the variations of rounded 

corners p=ro/a (a: width, ro: corner radius) of the opening. Here, we calculate 

the influence coefficients of stress under the in-plane loads ux0, u,°, Txv° and the out

of-plane loads Ty, 0, Ta0 respectively, using the coefficients of mapping function of 

square openings given by Heller and others4>. For the sake of simplicity, the ground 

will be treated as an isotropic elastic body (Poisson's ratio vo=0.25) in this section. 

The influence coefficients of stress for square cross sections are shown in Fig. 4. In 

this figure, the magnitudes of the influence coefficients of stress are plotted on the 

* Numerical results for a circular cir a rectangular cross section (a/h=2.0, h : height of a tunnel) 

have been given in reference (7) or (11). 
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Fig, 4. Influence coefficients of stress around a tunnel having a square cross 

section with various rounded corners. 

development of the wall surface of a tunnel. Although showing only the range of 

0 from O to n/2, coefficient A, is in symmetry with respect to the line equal to 7r/2, 

and coefficients A,,,, C,. are in antisymmetry with respect to this line. Coefficients 

A,, and C,,, for the square cross sections coincide with A, and C,, respectively 

shifted the angle 7r/2 from the point 0=0. 

As is known in this figure, care must be taken that these coefficients are greatly 

affected by the radius of rounded corner of a tunnel. 

5.1.2 Influence Coefficients of Stress in Anisotropic Elastic Ground 

Under the assumption that the ground has the elastic constants to be given as 

in the beginning of this chapter, the influence coefficients of stress, in the case where 

the principal elastic axes of the body incline to in-plane or out-of-plane for the axis 

of the tunnel with a square cross section ( corner radius ro= ! a) are shown in Fig. 5~ 

Fig. 7. (a), (b) of Fig. 5 show the influence coefficients of stress in which the axis of 

the principal elastic modulus E1 (or E2) rotates in-plane with respect to the z-axis, 

that is, in the case which corresponds to an orthotropic elastic plate. Similarly to 

the case of previous section, coefficients A,, and C.,, for this cross section coincide with 

A, and C,. respectively shifted the angle 7r/2 from the point 0=0. (a), (b) of Fig. 6 

show the influence coefficients of stress in which the left half of each figure is equal 

to the case when the principal axes of elastic moduli E, and E2 rotate out-of-plane 

with respect to the y-axis, and the right half to the case where the principal axes of 
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Fig. 5. Influence coefficients of stress around a tunnel having a square cross 

4.0 

2.0 

section with a radius of the corner ro=½a, when the axes of the principal 

elastic moduli E 2 and E 3 are rotated in-plane (i.e. around the z-axis). 

et ½ :1.0 X 

. 

o.o o• 20° 180° 

-2.0 

(a) 
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Fig. 6. Influence coefficients of stress around a tunnel having a square cross 

section with a radius of the corner ro={-a, when the axes of the principal 

elastic moduli E 1 and E 3 are rotated out-of-plane (i.e. around the x-and 

y-axes). 
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(a) 
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Fig. 7. Influence coefficients ofstress Cy, Cxy and Ayz around a tunnel of a 

square cross section with a radius of the corner ro={a. 

elastic moduli E2 and E3 rotate out-of-plane with respect to the x-axis. 

Influence coefficients Cy, Cxy and Ay, in the case of square cross section shown 

in Fig. 7 (a), (b) may vanish when the ground under consideration is an isotropic 

elastic body, and the axes of the principal elastic moduli of the ground coincide with 

the axes of the coordinates (x, y, z) or rotate in-plane with respect to the z-axis. 

These coefficients as shown in Fig. 7 (a), (b) however take the finite values in the 

general case of anisotropic elastic body. 

5.1.3 Effects of Ratio of Elastic Moduli on the Influence Coefficients 

of Stress 

We treated several examples in the previous sections assuming that the ratio of 

elastic moduli e ( = Ei/ E3 = E2/ E3) is equal to 3.0. When the ratios of elastic moduli 

are equal to 1.0 (i.e. isotropic elastic body), 2.0, 3.0, 5.0 and 10.0, variations of the 

influence coefficients of stress are such as shown in Fig. 8 (a), (b). In this case, we 

assume that the moduli of rigidity are defined by formula (5.1) and Poisson's ratio 

are equal to the same values as the case with ratio e=3.0 as treated in previous 

section. It may be understood from these figures that the influence coefficients 

change remarkably along with the variations of the ratio e .. 

We did not treat in the above examples the normal stress u, along the z-

direction, therefore the influence coefficients Bx, Bv, ...... , B,y. These coefficients 

however may be easily calculated by equation (3.9) from the known components 

of stress ux, uy, -rxy, -r9 , and -r,x around the tunnel. 
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Fig. 8. Influence coefficients of stress around a tunnel having a square cross 

section with a radius of the corner ro =½a, when the ratio of the princi

pal elastic mudli e=Ei/E3 (=E2/E3) varies. 

5.2 Stress Distribution around a Tunnel under a Three-Dimensional 

Stress State 

By superposing suitably the results of the influence coefficients of stress as shown 

in previous sections, we can obtain the stress distribution around the tunnel with a 

square cross section under a three-dimensional stress state. Now assuming that the 
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principal stresses ,n°, rr2° and rra0 in the undisturbed ground with prescribed elastic 

constants in section 5.1.1 are as shown in Fig.9, the distribution of principal stresses 

and their directions on the wall of the tunnel with a square or a typical cross section 

are illustrated in Fig.IO (a), (b). In these (a), (b) figures, the magnitudes and 

directions of principal stresses are plotted on the development of the wall surface. 

Solid lines in these figures indicate the distribution of principal stresses and their 

directions for the isotropic elastic body (Poisson's ratio vo=0.25), and broken lines 

3.0 

·~ ~ 2.0 

1.0 

0.0 

-1.0 o• 
( xl 

y 

X 

------------

x y z 

X 64°14 32•43' 71•15' 

y 119°37' 94°20 30°00 

z 41°09' 122°22' 67°27' 

Fig. 9. An:example:or state of stress in the undisturbed 

ground (After Hiramatsu and Oka). 
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Fig. 10. The distributions of principal stresses and their directions around a tunnel with 

typical cross sections excavated in elastic ground (isotropic and cross-anisotropic 

(a=45°, {3=0°, 7=45°)) whose stress state corresponds to that of Fig. 9. 

indicate for a typical example with a=45°, {:1=0°, 'Y=45° as in a case where the 

principal elastic axes of the cross-anisotropic body under consideration have general 

inclined angles. The shape of cross section as Fig. 10 (b) was obtained by 

equation (4.2) in which the integer " set equal to 24. 

6. Concluding Remarks 

Three-dimensional stress analysis of ground with a tunnel has been carried out 

up to the present under the assumption that the ground is homogenious and iso

tropic elastic body. The present paper treats theoretically the stresses and displace

ments around a tunnel under a three-dimensional state of stress, assuming that the 

ground is homogenious and anisotropic elastic body. 

By the adoption of the mapping function with coefficients defined by a finite 

Fourier expansions, theoretical stress analysis can be carried out for a tunnel with an 

arbitrary cross section as well as a circular or an elliptical one. 
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Appendix 

As a concentrated force Wo equal to the weight of rock mass eliminated by 

excavation of a tunnel are applied at the origin O to 

the vertically upward direction, the corrected term 

for complex analytic functions q,k(zk) corresponding 

to the force Wo must be added. Axial directions of 

the rectangular cartesian coordinate system (x,y, z) 

do not always coincide with a vertical direction. 

Thus, when the relations between the coordinate 

system (x,y, z) with the z:,-axis as the center line of 

a tunnel and the force Wo are given as shown in 

Fig. A-1, components of the force along the axial 

directions of the coordinates can be obtained as 

follows. 

z 

y" (Vertical I 

! y 

w, ff 

X 

Fig. A-1. 
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W,,= Wo cos o,, 

W9 = Wo cos 02, 

W,= Wocosoa. l (A.I) 

Where Wo is equal to the weight of rock mass eliminated by excavation of a tunnel 

as given by 
V 

Wo= -wo jyodxo = Won-{ao2
- _lj(a/ + ,6'/)}, (A.2) 

j=I 

and the relation among the angles o,, 02 and oa is formed by 

cos2 o, + cos2 02 + cos2 oa = I. (A.3) 

In which wo is the weight of rock mass per unit volume. 

In the case of such force, the complimentary analytic function cf,. *(z.) must be 

added to the function cf,.(z.) as follows. 

(k= 1, 2, 3). (A.4) 

Where the complex coefficients r. are determined by the simultaneous equations 

modified to the equations given by Lekhnitskii. 

- - - - - - - w,, 
µ,I',+ µ2I'2+ µiA-aI'a-µ1I',-µ2I'2-µsA-aI'a= - 2n-i' 

X1I'1+X2I'2+r.-'5,.,if\-X2I'2-I'a= ~i > 

p,r, +p2r2+p.r.-p,I'i-p2r2-pafa= o, 
q,r, + q2I'2+ q.r.--q,r, -q2I'2-qaI'a= o, 

T1I'1 +r2I'2+ TaI'a-T1I'1 -r2I'2-TaI'a= 0, 

(A.5) 

the values of I',, I'2 and I'a can be easily calculated by the l).bove equations. First 

derivatives </>•*'(z.) of the complimentary functions are given as 

'P•*'(z.)= i. r., (k=l, 2, 3). (A.6) 

From this, we can solve the problem such that the concentrated force Wo 

acts at a point O in an infinite anisotropic elastic body. Thus the steresses and 

displacements due to the weight of rock mass eliminated by excavation of the 

tunnel are determined as the following manners. 

(I) From above mentioned theory, calculate the stresses a-a*, a-o*, -r ao*, -r az *, -re.* 

on the virtual contour in which the tunnel would be excavated in the infinite body. 

(2) Calculate the stresses and displacements around the tunnel under when 

the stresses -a-a*, --r ao*, --r az * apply on the contour of the tunnel. These can be 

obtained by the manner similar to this paper. 

(3) Superpose the stresses and displacements obtained by (I) and (2). 


