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In analysing the linear physical systems with many variables, a good method is to use 

the matrix functions and the operational calculus. 

This paper describes the fundamental properties of the operational calculus for the 

matrix functions based on the Mikusinsky's method, and then, presents the method to 

analyse the periodically excited linear systems (periodically interrupted electric circuits of 

second genus). 

1. Introduction 

One of the purposes of modern engineering is to investigate the physical systems 

with many variables. These systems are composed of the physical elements having 

constant or variable parameters with respect to time and space. Electrical networks, 

electro-mechanical systems and electro-acoustical systems are typical examples of 

them. 

In analysing such a system, we must find a mathematical model of the system, 

and then, get the state equations having necessary and sufficient variables (state 

variables). In the case where these equations are linear and time-invariant, the 

operational calculus provides an extremely powerful tool for solving them. The 

operational calculus bases its exposition on the Laplace transform. Mikusinsky 

introduced operators algebraically as a kind of fraction. This method is based on 

Titchmarsh's convolution theorem and is simpler and more general than the 

Laplace transform method1>. 

As stated above, we shall treat many variables when the systems to be analysed 

are very large. In analysing such a very large system, matrix algebra provides 

a systematic method for the manipulation and solution of system equations. Hence 

in the present paper, we shall try to apply the operational calculus to the matrix 

functions. Following to the Mikusinsky's method, we shall present the basic de

finition and the fundamental properties of the operational calculus in the matrix 
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functions, and then, on the basis of these results, consider the linear systems excited 

periodically. 

2. Matrix Functions and Matric Operators 

Here, Mikusinsky's operational calculus is extended and applied to the matrix 

functions, and then, their fundamental properties are given. The functions ( el

ements of matrix functions) to be considered are defined and continuous in the 

interval 0 :'.5:: t < oo. Furthermore, function and value of the functions are dis

tinguished and expressed schematically in the following form. 

{F(t)}: matrix function F(t) 

F(t) : value of the matrix function F(t) at the point t 

2.1 Sum and convolution of matrix functions. For the matrix function stated 

above, sum and convolution are defined as follows. 

Sum: As in the case of the ordinary matrix algebra, when matrix functions 

{F(t)}, {G(t)} and {H(t)} satisfy the following condition, {Hii(t)} = {Fii(t)} + {Gij(t)}, 

we shall express them in the following form 

{H(t)} = {F(t)} + {G(t)}. 

{H(t)} is called the sum of {F(t)} and {G(t)}. 

Convolution: When matrices F(t) and G(t) are conformable and not nilfactors 

(See Appendix), and a matrix function {H(t)} satisfies the following condition, 

{Hii(t)l={~ .. f F;.(t-T)G.;(-r)d-r}, we shall express them in the following form 

{H(t)} = {F(t)} {G(t)}. 

{H(t)} is called the convolution of {F(t)} and {G(t)}. 

For the sum and the convolution of the matrix functions, we have the same 

fundamental properties (associativity, distributivity and so on) as for the sum and 

product of the ordinary matrix algebra. 

2.2 Matric integral operator. According to the definition of the convolution, 

we have 

(2.1) 

What distinguishes the unit matrix function {1} is the formation of its convolu

tion with an arbitrary matrix function {F(t)} causes the integration of the latter in 

the interval from O to t. Consequently, the unit matrix function {l} will be 

termed the matrix integral operator and denoted by the letter l : l= {1}. 

From the definition of the convolution, we have 
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{ 
t• -l } 

l•= (n-1) ! I n=l, 2, ...... . 

Using the associativity of the convolution, we have 

{ t (I } { t (t-7)•-1 } 
l•(F(t)}= Jo dt. ..... J

0 
F(t)dt = Jo (n-l)! F(T)dT. 

,.__,..__, 
• 

(2.2) 

(2.3) 

2.3 Matric operators. When matrix function {A} and {B} are given, we shall 

consider matrix functions {X} and {Y} satisfying the following equations. 

{A} {X} = {B} {Y} {A}= {B} 

Here A, B, X and Y are square matrices and A is assumed to be non-singluar. 

Since these equations are not ordinary matrix equations, matrix function {X} and 

{Y} satisfing them do not exist always. When the operation inverse to the 

convolution cannot be performed, a new mathematical concept, matrix operators 

are introduced. For the multication of matrices, the commutative law does not 

always hold, therefore, {X} and { Y} are not expressed as a fraction. But when 

A, X and Y are commutative, {X} and {Y} are denoted as {B} /{A}. This fraction 

represents a matric operator (which is no longer a matrix function). 

2.4 Matric numerical operators. Now we shall take for instance {A}= {I} and 

{B} = {a}, that is 

(1) {X} = {X} {l} = {a} 

where {I} is the unit matrix function and {a} is an arbitrary constant numerical 

matrix function. As stated above, a matric operator {X} is expressed as a fraction. 

We shall denote them by [a]= {a}/ {I}, and call it a matric numerical operator. 

For matric numerical operator [a] and [.8], we have 

[a]+ [,8] = [a+ ,8] [a] [,8] = [a,8]. (2.4) 

Owing to these formulas the brackets [ ] can be omitted in the operational calculus. 

For a matric numerical operator a and a matrix function {,8}, we have 

a {,8} = [a] (,8) = {a,8}. 

specially when {,8} ={I}, we have 

a{l} ={a}. 

(2.5) 

(2.6) 

2.5 Matric differential operator. In the operational calculus we shall define the 

matric differential operator as the inverse of the matric integral operator, which 

will be denoted by 

(2.7) 

By definition we have ls=sl=l, ands is a diagonal matrix. For the matric differ-
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ential operator s, we have the following theorem. 

Theorem : If a matrix function {X(t)) (not always a square matrix) has a 

derivative matrix {X'(t)} continuous for O ~ t < oo, then we have the formula 

s {X(t)) = {X'(t)) + X(O) (2.8) 

where X(O) is the value of {X(t)) at the point t=O. 

Appling this theorem for a matrix function {X(t)} having a n-th derivative 

matrix (X<•>(t)} continuous for O ~ t < oo, we have the follwing general form. 

s• {X(t)) = {X<•>(t)) + xcn-1>(0)+sX<•- 2>(0)+ ...... + sn-1 X(O) (2.9) 

2.6 Operational form for certain matrix functions. Appling eq. (2.8) we shall 

have the operational forms for certain matrix functions. First we shall consider 

{eAt), where A is assumed to be a constant numerical square matrix. From eq. 

(2.8) we obtain the equality 

s {eAt) =A {e41) + I 
from which we easily arrive at 

1 
{eAt) = s-A. 

By the definition of the convolution we have the following general form. 

1 
(s-A)• n=l, 2, ...... . 

(2.10) 

(2. ll) 

Next we shall consider {cos Bt) and {sin Bt), where B is assumed to be a constant 

numerical square matrix. Using eq. (2.10) we have 

{cosBt) =-1-{eiBt+e-iBt) =-1-( I_ +-1-.-) 
2 2 s-zB s+zB 

{sinBt} = _!__{eiBt-e-iBt) =_!_( __ I _____ I ___ ). 
2z 2z s-zB s+zB 

The matrix 8 and B are commutative, therefore, we have 

8 
{cos Bt) = 82 +iF 

{sin Bt) = _l!__ __ s2+B2. 

In the same way, we have 

. 8 
{cosh Bt) = ~B2 8-

{sinh Bt) = 2 BB' . 
8-

(2.12) 

(2.13) 

(2.14) 

(2.15) 

In finding the operational forms for an arbitrary matrix function, attention must be 

called to the fact that the commutative law does not always hold for multiplication. 
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When matrices A and B are commutative, we have 

eAeB=eBeA 

therefore, we have the following equations. 

{ At B)- 8-A 
e cos t - (8 -A)2+B 2 

(eAt sinBt) = (8 -Aj2+B 2 

{ At hB )- 8-A e cos t - (8 -A)•-B• 

(eAt sinhBt} = (
8
-A~-B• 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

2. 7 First order simultaneous ordinary differential equations. According to the 

results given above, we shall consider the following differential equation, 

{x-Ax) = {Bu) (2.20) 

where A and B are constant numerical matrices. Using eq. (2.8) we have 

8 {x} -x(O)=A {x) +{Bu). (2.21) 

For the operational solution, we have 

I I 
{x) =-A x(O)+-A B{u). 

8- 8-
(2.22) 

By the operational form given above and the definition of the convolution, we have 

the following equality satisfing eq. (2.20). 

(2.23) 

The properties of linear time-invariant physical systems can be expressed by the 

differential equation the same as (2.20) when state variables are used. Therefore, 

their properties can be given exactly by eq. (2.23). 

2.8 Second order simultaneous ordinary differential equations. Here we shall 

consider the following differential equations, 

{x+a,x+a.x) = {,Bu) (2.24) 

where ao, a, and ,B are constant numerical matrices. Using eq. (2.9), we have 

(82 +a,8+ao){x} =x(0)+(8+a,)x(O)+,B(u). (2.25) 

In solving the second order differential equation for matrix functions, attention must 

be called to the fact that the commutative law does not always hold for the mul

tiplication of the matrices. With regard to this, we shall consider eq. (2.24). The 

characteristic equation of this equation is assumed to be solved into the factors below 

8 2 + a,8 + ao = (8 -A)(8 -B) (2.26) 
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where A and B are generally complex matrices. 

Then we shall formally express the solution of eq. (2.25) in the following form. 

{x} = (s-A)~s-B) x(O)+ (s-A)(s-B) x(O)+ (s-A)(
1

s-B) x(O) 

I 
+ (s-A)(s-B) ,B{u) 

When matrices A and Bare commutative and A-Bis non-singular, we have 

I 
(s-A)(s-B) 

By the relations between roots and coefficients, we have 

a1=-(A+B) ao=AB 

therefore; a1, ao, A and B are commutative, and we ·have 

and 

{x} = { (A-B)- 1[(eA1 -eB1)x(O)+(AeA1 -BeB1)x(O)+a1(eA1 -eB1) 

,x(O)+ j/ (eA<H>-eB<t-<>)fiu(-r)d-r]}. 

(2.27) 

(2.28) 

As stated above, in order to solve the second order differential equation of (2.24), 

it is necessary that matrices a1 and ao are commutative. 

For a simple example, we shall consider the following equation, 

{Ax+Bx) =0 (2.29) 

where A and B are symmetric and positive definite. Using eq. (2.9), we have 

(s2 +C2){x) =x(O)+sx(o) (2.30) 

where C=(A-1B)1 / 2 and in this case C is expressed by the polynominals of A- 1B 2>. 

As the operational solution, we have 

{x} (2.31) 

and then 

{x(t)) =C- 1 sin Ctx(O)+cos Ctx(O). (2.32) 

3. Linear Systems Excited Periodically 

Here we shall consider a linear time-invariant system excited periodically 
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(periodically interrupted electric circuit of second genus3>) using matric operational 

calculus. 

3.1 Matric translation operator and periodic functions. Now we shall introduce 

the matric translation operator. First denote by {Hi(t)) a matrix function of 

the following form 

(3.1) 

and is called the Heviside's function. It is not so much the Heviside's function as 

the matric operator 

hi=s{H;(t)) (3.2) 

concerned with it and termed the matric translation operator that plays an important 

role in the operational calculus. If {F(t)) is an arbitrary matrix function, then 

hi{F(t))={ 0: Ost<::\.}· 
F(t-::\.): 0s::\.<t 

(3.3) 

If we multiply by the matric operator 1/(l-h1•) a matrix function {F(t)) which 

outside the interval Os t<to is equal to 0, we obtain a preiodic matrix function 

whose period is to, for the matric operator l/(l-h1•) is expressed in the following 

infinite series 

~-1~- lo 210 I-h'• -I+h +h + ..... . 

and then, we have 

I _Ih'• {F(t)) = f F(t-nto)=G(t) (3.4) 
n=O 

where 

G(t)=G(t-nto) nto < t < (n+ l)to n=l, 2, ...... . (3.5) 

3.2 Linear systems excited periodically. The state equation of these systems can 

be reduced to the following form 

{x) = {Ax+Bu) (3.6) 

where A and B are constant matrices, {x) is the state vector and {u} is a periodic 

function whose period is to, that is 

{u(t)) = {u(t+ to)}. 

By the matric operational calculus, we have 

s{x) =A{x) +x(O)+B{u). (3.7) 

It follows from the periodicity of the input function that it is of the form 
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{ } {uo} 
u = 1-h'•' 

{uo (t)) = { u(t): 0 :S:: t<to } 
0 : to <t 

and then we have 

1 1 {uo} 
{x)=-Ax(O)+-AB~l h,-. 

8- s- - • 
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(3.8) 

Here we shall consider the solution of this equation by the following three terms. 

The first term {xo} is the transient term caused by the initial values, the second 

term {x,} is the transient term when initial value is O and the third term (x,) is the 

steady-state term. For the first term {xo}, we have 

1 
{xo(t)) = s-A x(O)= (eA1x(O)) = {z(t)x(O)}. 

For the remaining two terms, we suppose that 

where 

_l_B {uo} 
s-A 1-h1o 

1 
(X,) l-h'• +{xi)= (x,+xi) 

1 (X,) =-A B{uo) -{xt)(l-h1•) 
8-

(3.9) 

(3.10) 

(3.11) 

Because (x,) is a stead-state solution and (X,) is the periodic part, (X,) is equal 

to O in the interval to < t < =, therefore 

1 -A B{uo) = {x,}(l-h1•). 
8-

(3.12) 

This function {x,} satisfies the following differential equation m the interval 

to<t<=. 

{xJ = fAxJ 

Suppose that C is an arbitrary constant matrix, then we have 

{x,} = s~A C= {e.4.IC) = {z(t)C). 

In this case, the right side of eq. (3.11) is 

{xi) (l-h1•)= {x(t)C) - {x(t-to)C) = {-xo- 1(1-zo)xC} 

(3.13) 

(3.14) 

where xo=x(to)=eAlo, x=x(t)=e·•1 and these matrices are commutative, and the 

left side is 

s~A B{uo) ={lo' x(t-T)Buo(T)dT} 

= { x(t-to) !/ x(to-T) Buo(T)dT }= {xxo-19'0} (3.15) 

where 
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We can get the function {xi) deciding the matrix C by eqs. (3.11), (3.14) and (3.15), 

that is 

(3.16) 

For the periodic part {X,) in the interval Os t<to, using eq. (3.10), we have 

where 

1 
{X,) =-A B{ui) - {xi) s-

therefore, we have 

{X,) ={J.1 

x(t-T)Bui(T)dT}+ {x(I-xo)-19'0} 

= {sc+ x(I -xo)-19'0}. 

(3.17) 

(3.18) 

This equality can be used only in the interval Os t < to. The steady-state term 

{x,) is expressed by {X,) in the following form. 

{x,(t)) = {X,(t-nto)) nto<t<(n+I)to n=O, 1, 2, ...... (3.19) 

We can get the perfect solution of eq. (3.6) in the following form. 

{x(t)) = {xo(t)+xt(t)+x,(t)) (3.20) 

4. Conclusion 

As mentioned above, a method has been presented to apply the Mikusinsky's 

operational calculus to the matrix functions, and then, using these results to analyse 

the linear time-invariant systems excited periodically. In case of the matrix 

functions, what differs from the caes of the schalar functions is that the sphere in 

applying this method is restricted by the non-commutativity of matrices in 

multiplication. 

Further work is proceeding on analysis of the systems whose properties are 

expressed by the simultaneous partial differential equations. 
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Appendix 

The operational calculus stated in this paper is based on the following Titch-
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marsh's convolution theorem for the matrix functions. First we shall prove a few 

preparatory propositions, and then, Titchmarsh's theorem. 

l. Theorem of Phragmen. 

If G is a matrix function whose elements are continuous in the interval Ost s T, 
then 

00 

I. l ( - l)•-1 ;:T lo' rm ~----,,.-'~-
0 

e•zct-•>G(T)dT= 
0 

G(T)dT 
z+oo k ! 

(l.l) 
k=! 

Proof: If we assume 

00 

~!!! l and ;:r can change place with each other, (l .2) 
k=! 

the left side of eq. (1.1) is 

(1.3) 

and then 

therefore we have the formula ( 1.1). The formula ( 1.2) can be proved by Lebesgue's 

theorem, q. e. d. 

2. Theorem on moments. 

I. If F is a matrix function whose elements are continuous in the interval 

0 s ts T, and there exists such a number N that 

n=l, 2, ...... (2.1) 

then F(t) =0 in the interval Ost s T, where His a matrix whose elements are all 

unity. 

Proof: Phragmen's formula ( l. l) can be written in the form 

Osts T (2.2) 

If k and x are natural numbers and 

(2.3) 

then by the assumption (2.1), we have 

1;:r ekz<T-•>G(T)dTI = 1;:r eh<T-<>F(T-T)dTI = 1;:r ekz1F(t)dtl s NH. 
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Consequently the expression preceeded by the sign "lim" in formula (2.2) is not 

greater than 

.. 1 < 

NH .l kT e-kx(T-t>=NH{exp (e-x<T-t> _I)} 
k=l 

and therefore thens to O as x increases infinitely running over natural values. The 

existence of a limit of this expression for x---+oo is ensured by Phragmen's theorem for 

x running over arbitrary positive value: this limit must always equal 0, since it is 

equal to O if x runs over natural values, therefore 

Ost<T. 

Differentiating this equality, we have G(t) =0 for O < t< T and by (2.3) F(t) =0 

for O < t< T. Because F(t) is continuous, we must have F(t) =0 for Ost s T, q.e.d. 

II. If a matrix function G is continuous in the interval 1 s x s, X and there 

exists a number N such that 

n=l, 2, ...... (2.4) 

then G(x) =0 in the interval 1 s x s X. 

Proof: By the substitution x=e1, X=eT and xG(x)=F(t) inequalities (2.4) change 

into (2.1). It follows that F(t) =0 for Ost s, T i.e., that xG(x) =0 for 1 s x s X, 

q.e.d. 

III. If a matrix function Fis continuous in the interval Ost s T and 

n=l, 2, ...... (2.5) 

then F(t) =O in the interval Ost s T. 

Proof: Let 0 be an arbitrary fixed number from the interval Os ts T. By the 

substitution 

t=0x, T=0X and F(t)=G(x) 

equality (2.5) yields 

n=l,2, ...... 

and 

n=l,2, ....... 

By theorem II G(x) =0 for 1 s x s X, i.e., F(t) =0 for 0 st s T. Since 0 can be 

fixed arbitrary small and Fis continuous, F must be equal to O at t=O, q.e.d. 

3. Titchmarsh's theorem in the case F=G. 

If F is a matrix function continuous in the interval Ost s, 2 T and that 
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(3. l) 

where [F]' is the transposed matrix of F, then F(t)=O in the interval Ost s T. 

Proof: From (3.l) 

I.= J. 2
T e•<2T-t>dt J.1

F(t--r)[F(-r)] 1d-r=O. 

The iterated integral (3.2) can be represented as follows 

I.= j h. e•<2T- 1>F(t--r)[F(-r)] 1d-r 

where A is a triangle defined bey the inequalities 

0 s -rs ts 2 T. 

After the substitution 

t=2T-u-v, 

we have 

I.= JJ>•<u+o>F(T-u)[F(T-v)] 1dudv 

where B is a triangle defined by the inequalities 

0 s u+ v, us T, v s T. 

We can write 

where C is a triangle, defined by the inequalities 

-Tsu, 

Since I.=0, we have 

-Tsv, u+v s 0. 

ff e••F(T-u)e•• [F(T-v)] 1dudv J ls+c 

= j he•<•+•> F(T-u)[F(T-v)] 1dudv. 

(3.2) 

If h > 0 and M denotes the maximum absolute value of the elements of F, we have 

lf>••F(T-u)du f>••[F(T-v)] 1dvl= /Jc M 2Hdudv=2T2M2H 

and consequently 

lf>••F(T-u)dul s ../2 TMH. 

Therefore 

1;:r e••F(T-u)dul=lf: e••F(T-u)du- f
0

T e••F(T-u)dul 

s ../2 TMH+ /f>••F(T-u)dul. 
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But in the last interval en" is less than 1, and thus 

lfoT en•F(T-u)du/s ✓2 TMH+ f
0

TMHdu=(✓2 +I)TMH. 

By the first theorem on moments, F( T-u) =0 for Os us T, i.e., F(t) =0 for Ost s T, 

e.q.d. 

Now if the matrix function Fis continuous in every infinite interval Ost< oo 

and the equality 

lo' F(t--r)[F(-r)] 1d-r=0 (3.3) 

always hold in that interval, then it holds in every interval Ost s 2 T. It follows 

that F(t)=0 in every interval Osts T and consequently in the interval Ost< 00 • 

4. Titchmarsh's theorem of general form. 

If matrix functions F and G are conformable and not nilfactors, and are not 

identically equal to 0, then neigher is their convolution identically equal to 0. 

Proof: In the interval Os t<oo, we have 

lo' (t--r )F(t--r )G(-r )d-r+ lo' F(t--r )-rG(-r )d-r = t lo' F(t--r )G(-r )d-r. ( 4.1) 

Introducing the notation 

F1(t)=tF(t) and G1(t)=tG(t) 

we can express ( 4.1) in the operational symbols as 

{Fi} {G} + {F} {G,} =0. 

Multiplying, {G1,} {F1}, we have 

{G,'} {F'} {F,} {G} + {G1,} {F1} {F} {G,} =0. 

Since by hypothesis, we have 

{G,1} {F1} {F,) {G) = {Gi'} {Fi'} {F} {G} =0, 

therefore 

{G,1) {F1) {F) {G) = [ {G11} {F1) J [ {Gi'} {F1) ] 1=0. 

By (3.3) we have {F} {Gt} =0 i.e., 

Ost<oo. 

In the same way we have 

lo' F(t--r)-rnG(-r)d-r=O. 

Hence by the third theorem on moments 

(4.2) 

IfG(-ro)~0 for a certain -ro2:0, then F=0 in the interval Ost<oo. Ifno such 

-ro exists, then G=0 in the interval Ost<oo, q.e.d. 


