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Most rocks of sedimentary and regional metamorphic origin are characterized by 
some degree of strength anisotropy. On a large scale, systems of rocks usually contain 
joints, bedding-plane partings or faults which impart considerable anisotropy to strength 
and other properties. In the present paper, the general propesties of fracture criteria 
of -anisotropic rocks or systems of rocks are discussed. A General fracture criterion 
of them can be approximated in the load space or in the principal stress space by the 
minimum composite surface constructed from all the possible surfaces, each of which 
is determined as if a single plane of weakness or a crack were contained in the materials 
or in the systems of materials. 

Several fracture criteria in two dimensions based on three types of model are 
critically reviewed. It is shown that they are best summarized in the Coulomb or the 
Mohr quadratic type criterion. Two types of fracture surface in the principal stress 
space are also discussed as a formal extensison of the Coulomb and Mohr type criteria. 

These criteria, both the two dimensional and the three dimensional, are in good 
agreement with experimental results. These criteria, thus, can be used to predict 
fracture of anisotropic rocks or systems of rocks which exhibit planar anisotropy. 

1. Introduction 
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Most rocks of sedimentary and regional metamorphic origin in the upper crust 

are characterized by some type of foliation and thus exhibit some degree of strength 

anisotropy. On a large scale, systems of rocks, even though compositional and 

other characteristics are sufficiently uniform to be considered reasonably homo­

geneous, usually contain joints, bedding-plane partings or faults. As a natural 

consequence of the effects of them systems of rocks can be expected to exhibit some 

degree of anisotropy in strength and deformational property. 

Knowledge of deformation and fracture of rocks and systems of rocks are of 

basic importance to design the mining excavations or the foundations for civil 

engineering structures. An extensive research into the effects of anisotropy on rocks 

and systems of rocks is strongly desired. 

The primary object of the present paper is to discuss the general properties of 
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fracture criteria of anisotropic rocks or systems of rocks. In Sect. 2, concepts of 

the fracture initiation surface, the subsequent fracture surface and the final fracture 

surface are introduced and fundamental properties of them are discussed. In Sect. 

3, several two-dimensional fracture criteria of anisotropic rocks and systems of rocks 

are critically reviewed. Formal extension of the two-dimensional fracture criteria 

into three-dimensions is made in Sect. 4, and the general fracture criterion of 

anisotropic rocks or systems of rocks is discussed. In Sect. 5, the proposed fracture 

criterion is compared with experimental results on anisotropic rocks and models of 

systems of rocks. 

2. Fundamental Properties of Fracture Criteria 

It is well recognized that fracture of rocks or of systems ofrocks originates from 

inherent cracks and flaws contained in them due to stress or strain concentrations. 

Therefore, the problem of determining the stress and strain fields and configurations 

and distributions of cracks and flaws is of extreme importance. However, the con­

figurations and the distributions of the inherent cracks and flaws in a given body or 

in a given system are not specified beforehand but must be determined, in general, 

through complete loading processes. The problem of analytical determination of 

the stress and strain fields of a given body or a system under a given system of loading 

is essentially nonlinear and extremely difficult to obtain the complete solution. 

Fortunately in most practical applications we do not need the complete solution of 

this kind of probelm, but it is only important to know whether the given body or 

the system under the given loading conditions has enough carrying capacity or not. 

In general the crack and flaw may be orientated in any way relative to the 

directions of applied loads, so there will be no uniqueness in the shape of the end 

region of the crack and flaw at which the branching crack initiates. In order to 

determine the conditions for the initiation of the crack development for any body or 

system in which fracture initiates in a brittle or quasi-brittle manner, according to 

Barenblatt1>, there may be assumed the existence of a universal function expressed 

in terms of theoretical strengths 

such that 

(2. 1) 

at all points on the contours of all cracks and flaws within the body or the system, 

where N<T, T<T, S<1', N., T., and Se represent the characteristic strengths of the 

materials in tension, in plane shear and in longitudinal shear, respectively, expressed 
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in terms of stress and strain. At points at which (1)=0, the state of stress and strain 

is limiting in the sense that the attainment of this state at some point on the contour 

makes the crack or flaw move at that point and any increase in load which would 

have led to (I)> 0 in fact tends to crack development. 

If a unique relation between the stress and strain is presumed, the function (I) 

can be expressed in terms of stress strengths only. Thus, the condition for fracture 

initiation is expressed 

(2. 2) 

In the most general form of fracture criterion other factors such as gradients 

and rates of stress and strain and temperature also may be taken into consideration, 

although they are of secondary importance. 

It should be emphasized that Eq. (2.2) defines the conditions for the initiation 

of crack development at the contour of the inherent crack and flaw, but it does not 

say anything more. In some special applications Eq. (2.2) is very advantageous, 

since for any given situation we need only know the values of the stress intensity 

factors or stress conct"ntration factors and need not undertake a complete analysis 

of the stress and strain fields. In general, however, as mentioned already, the con­

figurations and distributions of the inherent crack and flaw in a given body or in a 

system are not specified beforehand, Eq. (2.2) is strongly limited in application. 

In order to establish more general criterion for brittle or quasi-brittle fracture 

as is required in most practical applications, we had better formulate a criterion 

from the macroscopic point of view, that is to develope a criterion as a function of 

the applied loads, because the applied loads uniquely determine the stress and strain 

fields of a given body or of a given system containing the inherent cracks and flaws 

provided that the body or the system is stable in the sense of Drucker2>. 

Fig. 1. A body containing systems of initial 
cracks and flaws subjected to a system 
of loading 

Suppose that a body or a system containing a certain initial crack or flaw 

system is subjected to a system ofloading P1 (i=l, 2, •··, n) as shown in Fig. I. As 

the loads increase along a certain loading path from zero, stresses and strains 

increase and continually redistributed on the contours of cracks and flaws and 
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finally at one point, at least, on the contour the limiting condition Eq. (2.2) will 

be satisfied. At that moment, the condition in terms of applied loads may be 

expressed as 

(2. 3) 

which represents a surface in the n-dimensional load space {Pi, P 2, • • ·, P n) and is 

called the fracture initiation surface. If the initial state P;=O (i= l, 2, · ··, n) is taken 

to correspond to the initial null stress and strain fields, the origin of the coordinates 

of the load space is contained in the surface. The fracture initiation surface has 

the following properties; for any state of load (or point) inside this surface and 

for any loading path wholly contained in this surface, no crack initiation tak~s 

place at any point on the contour of the inherent cracks and flaws and no crack deve­

lops in the body. For any state represented by a point on or outside of this surface, 

one crack, at least, initiates and/or develops. Thus, this condition essentially 

depends on the configurations and distributions of inherent cracks and flaws as 

well as the property of the external loads applied. In very brittle materials or 

highly heterogeneous materials such as concrete, the crack initiation is observed to 

take place at a very low stage ofloading3 >. 

As the state of load transfer to any point outside of the fracture initiation 

surface, stresses and strains in the body or in the system are continually redistributed 

and more than one point successively becomes the limiting state corresponding to 

the condition Eq. (2.2) and different systems of crack initiate and/or develop. 

At this stage of loading, the subsequent fracture surface may exist. This surface, 

in general, depends not only on the current state of configurations and distributions 

of cracks and flaw and on the state of the current load system, but also on the 

complete history of the loadings. 

As the loads increase along a certain loading path, a radial one for example, 

continually more and more cracks initiate and develop from the inherent cracks and 

flaws or from current cracks and the region of loss of stability gradually grows in 

size and in number and finally global instability-the final fracture-of the body 

or the system will be attained. To the state of loads at which the final fracture 

takes place a general function is defined 

(2. 4) 

which represents a surface in the load space and is called the final fracture surface. 

This surface is characterized such that for all points inside this surface and for all 

loading paths wholly contained in this surface, an equilibrium state of the body or 

the system exists and no state of loading outside of this surface cannot be realized. 
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Fig. 2. Fracture surfaces in the load space . 

Thus, the surface of final fracture is the most important characteristic of the body 

or the system for a given system of loading. Fracture surfaces discussed above 

are schematically shown in Fig. 2. 

As a special case of fracture surfaces, though very important in practical 

applications, we consider fracture surfaces of rocks or systems of them subjected 

to a system of short-term static loading which produces the macroscopically 

homogeneous state of stress in the materials or in the system of materials. In 

this case fracture surfaces of the materials or the systems of materials can be 

expressed in terms of stress instead of the system ofload. Thus, fracture surfaces are 

expressed as 

in the six dimensional stress space a,1 (i,j=l, 2, 3) or 

f(au a2, a3 ; fJ) = 0 

(2. 5) 

(2. 6) 

in the three dimensional principal stress space, where fJ is a material descripter 

which characterizes the directional properties of the materials or the systems of 

materials. If the materials or the systems of materials are assumed isotropic, 

fracture surfaces become independent of the material descripter fJ. The surfaces 

of fracture initiation, of subsequent fracture and of final fracture, respectively, are 

defined in a similar way as those defined in terms of loads. If fracture surfaces 

Fig. 3. Fracture susfaces in the stress space 

a,· 

(a) (b) 
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are assumed to be independent of loading path, they are fixed in the stress space 

as shown schematically in Fig. 3. 

Rocks or systems of rocks in general can be considered to have global stability 

in the sense of Drucker. Thus, all fracture surfaces such as ones for fracture 

initiation, subsequent fracture and final fracture are convex in the stress space, 

provided that the elastic or recoverable response of the materials or the systems of 

materials does not vary appreciably from the initial one even if permanent de­

formations may take place. In some, rock systems the recoverable responses are 

observed to vary notably from the initial one under cycles of loading, so the local 

concavity in fracture surfaces may be expected. In most cases, however, con­

cave curvature may not be detectable since they are restricted to the reciprocal of 

Young's modulus. 

3. Two-dimensional Fracture Criteria for Anisotropic 

Rocks and Systems of Rocks 

On discussing the general fracture criterion of anisotropic rocks and systems 

of rocks, two-dimensional fracture criterion, especially in the state of plane-deform­

ation, is 'most fundamental. In this section, several fundamental two~dimensional 

fracture criteria are formulated based on three types of basic mechanical model; 

a model containing systems of weak planes and a model containing systems of 

cracks in otherwise homogeneous and isotropic matrix, and a model containing a 

system of cracks in an orthotropic matrix. 

3.1. Fracture Criteria Based on a Model Containing Systems of Weak 

Planes 

As a simple mechanical model of a two-dimensional anisotropic rock or a 

system of rocks, J aeger4> proposed a "single plane of weakness" model. In extend­

ing his idea we consider a model containing n-systems of weak planes, each of which 

o-, Fig. 4. A model containing systems of weak 
planes 
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consists of equally spaced parallel planes of weakness in an otherwise homogeneous 

and isotropic matrix as shown in Fig. 4. 

Let the principal stresses be a 1 and aa (a1 ;?;;aa, and compressive stresses are 

positive), and the orientation angle of the i-th system of weak planes measured 

from the axis of the major principal stress a1 be a, (Ia, I ~90°). 

The following assumptions are made throughout this subsection; 

1) Interactions between the weak planes belonging to different systems are negligib­

ly small and thus the characteristics of a model containing n-systems of weak 

planes can be approximated by those of a model containing n weak planes, each 

of which represents the global properties of a system of equally spaced parallel 

multiplanes of weakness. 

2) Strengths of weak planes are far lower than the strength of the matrix and 

thus fracture of the model takes place exclusively in weak planes. 

3) A system of loading applied increases proportionally, i.e., the radial loading 

paths exclusively traced. 

From these assumptions it can be concluded that fracture criteria depend only 

on the final state of loadings and that fracture surfaces are fixed in the load or 

stress space. 

3.1.1. Application of the Coulomb Criterion 

In order to describe the mechanical behaviors of the model mentioned above, 

in addition to the assumptions ( 1), (2) and (3), an assumption is made that the 

fracture of each weak plane obeys the Coluomb criterion. Fracture of the i-th 

weak plane takes place when the normal stress a and the shearing stress r working 

on the plane satisfy a condition 

?" = a tan <J',+c, 

= aµ,+C, (i=l, 2, •··, n), (3. 1) 

where <p,, µ,=tan <p; and C, are material constants of the i-th weak plane. The 

same criterion expressed in terms of principal stresses a 1 and aa and the orientation 

angle a, is as follows 

a
1 

= sin 2a,+µ1(1 +cos 2a1) a + 2C, 
sin 2a1-µ 1(1-cos 2a1) a sin 2a1-µ 1(1-cos 2a1) 

(3. 2) 

This equation gives a criterion for fracture of the model containing a "single plane 

of weakness" (i-th plane). This criterion is shown in Fig. 5. The figure shows 

that the strength of the model depends not only on material constants and the 

confining pressure, but also on the orientation angle of the weak plane. 



314 

2 

o• 

µ =0.0 

0.2 

. I I 
: , / 

, k=,Q}= ~✓-' 

Orientation d. 

Cal 

Shoichi KOBAYASHI 

-- JJ. =0.4 
0.6 

0.8 
30 

1\ t, · 
tS"io I'\,\ /I' /1 

20 • I I • k=~=3/ / •/ ., .. • C ' / 
~ --- I ., 
~ 
.;! 
u 
~ 
IL 

10 

go• oo• 30° 60° go• 
Orientation cl. 

( bl 

Fig. 5. A fracture criterion for a "single plane of weakness" model (based on the Coulomb criterion) 

Since the model to be considered here contains n weak planes with different 

properties and orientation angles from the axis of the major principal stress, we must 

take all the effects of these weak planes into consideration. On the assumptions 

( l) ,._,(3) the effect of each weak plane on the model can be analyzed independently 

as if it were the only weak plane existing in the model, so the strength of the entire 

model is determined by the weakest strength, each of which is independently deter­

mined for a model containing a single weak plane with a fixed orientation angle 

from the axis of the major principal stress. It is noted that the plane with weakest 

material constants does not necessarily determine the strength of the entire model. 

A fracture criterion as a minimum combination criterion of the n indepentent 

fracture criteria is schematically shown in Fig. 6. The fracture criterion depends 

not only on the confining pressure and material constants, but also strongly on the 

orientation angle of the system of weak planes. The orientation angle which gives 

the minimum strength may vary with the confining pressure. In the real anisotropic 

rocks or in systems of rocks, some degree of interactions between weak planes does 

exist in the process of loading and at the moment of fracture. Thus, the criterion 

curve may be leveled out to some extent at the transition point from one fracture 

criterion curve corresponding to a certain weak plane system to another curve 

corresponding to another weak plane system, and sometimes strength may be 

lowered to some extent. 
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Orientation 0( 

Fig. 6. A fracture criterion for a model con­
taining systems of planes of weakness 
(based on the Coulomb Criterion) 
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When various degrees of weak planes with a random orientation are assumed 

to be contained in a material or in a system of materials, the strength of it 

does not depend on the orientation angle of weak planes and the criterion of an 

isotropic and homogeneous material or of the system having macroscopically 

isotropic properties will be obtained. 

3.1.2. Application of the Mohr Quadratic Criterion 

If an assumption is rnade that fracture of weak planes obeys the criterion of 

Mohr quadratic form, the fracture of the i-th weak plane takes place when the 

equation 

(i=l, 2, , .. , n) (3. 3) 

is satisfied, where ..l, and D, are material constants of the i-th weak plane. This 
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equation is also expressed in terms of principal stresses and the orientation angle of 

the plane as follows 

(3. 4) 

or 

(3. 5) 

This equation gives a criterion for fracture of the model containing a "single plane 

of weakness." The figure of this equation is similar to that in Fig. 9 to be shown 

in subsection 3.2.1. 

For a model containing many systems of weak planes, for the same reasons as 

discussed in subsection 3.1.1., the curves of the fracture criterion of the entire 

material or the system become also similar as those shown in Fig. 6. 

3.2. Fracture Criterion Based on A Model Containing Systems of 

Cracks 

In most rocks which are characterized by some type of foliation, preferentially 

orientated slender cracks or flaws along the foliation plane may be reasonably 

assumed. In the systems of rocks, on a large scale, also the existence of pre­

ferentially orientated cracks, flaws, joint systems, bedding-plane partings or faults 

are assumed. As an idealized model of these rocks or the systems of rocks, we 

consider a model containing n-systems of cracks, each of which consists of a parallel 

Fig. 7. A model containing 
systems of cracks 

cl 

• 

Fig. 8. Stresses acting upon 
a crack with orientation 
angle a from the axis of 
the major principal stress 
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set of cracks spaced in equal distance in an otherwise homogeneous .and isotropic 

matrix as shown in Fig. 7. 

In this subsection the similar assumptions as in subsection 3.1. are made; 

1) No interaction between the different systems of ~racks as well as .in the own 

system of cracks is assumed. 

2) A system of loading applied incre~ses exclusively along radial loading paths. 

On these assumptions the effect of each crack can be analyzed as if it were the. only 

crack existing in the' model. The strength of the entire mocl.el can he. deterpuned 

by the same process as discussed in subsection 3.1.1. In what follows, we will 

discuss the applications of the Griffith theory, the modified Griffith theory and the 

shear fracture criterion. 

3.2.1. Applications of the Griffith and Modified Griffith Theories. 

Walsh and Brace5 >, and Hoek6> applied independently the Griffith and the 

modified Griffith theories in order to explain the anisotropic strength of rocks. 

They assumed that two types of microcracks exist in the otherwise homogeneous 

and isotropic rock such that one is very slender and solely alined in the bedding 

planes and the other is short and distributed in a random manner in the entire 

rock. In extending their idea, we apply the Griffith and the modified Griffith 

theories to the model containing n-systems of cracks. 

Applying the Griffith theory to the i-th crack, the major axis of which is 

inclined a; from the axis of the major principal stress 111 as shown in Fig. 7, a 

fracture initiation criterion in the neighborhood of the crack tip is expressed as 7 > 

±[½ { (oi+oi)-(11¥-11;) cos 2a;} J12 

1 = --{111(1-cos 2a;) +oa(l +cos 2a;)} 
2 . 

(3. 6) 

where K is the tensile strength of the matrix. When the applied stresses are com­

pressive, the crack may close and the above expression ma:Y not be used. In such 

a case the modified Griffith theory by McClintock and Walsh 8> ma,y be applicable. 
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Thus, the fracture criterion is' 

where µ; represents the coefficient of microfriction between the surfaces of the 

closed crack. 

When pore pressure a P must be taken into account, we must replace a1 and 

a3 in Eq. (3.6) by a1 -a P and a3 -a P' respectively. 

The criterion Eq. (3.6) is shown in Fig. 9 m the a1/K -a plane with a 

parameter a3/a1 • This criterion Eq. (3.6) is not different essentially from that of 

al:.: 20 

15° 30° 45° 60° 75° 90• 
Orientation o( 

Fig. 9. Fracture initiation criterion from 
a single open Griffith crack (based on 
the Griffith theory) 

Eq. (3.4). The criterion Eq. (3.7) is also similar to Eq. (3.2) and figures similar 

to Fig. 5 are obtained. 

For a material or a system of materials containing systems of initial cracks or 

flaws, the fracture initiation criterion of the entire model is determined, as discussed 
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in subsection 3.1.1., by the weakest one of the strengths, each of which is indepen­

dently determined for a model containing a single crack with a fixed orientation 

angle from the axis of the major principal stress. The criterion curves of fracture 

initiation, therefore, become similar to those already shown in Fig. 6. This ex­

position may be easily approved by considering the equivalency of the Griffith and 

the modified Griffith theories to the Mohr and the Coulomb criteria, respectively. 

In fact, replacements of l,, D, and C, by 4K, 4K 2 and 2K, respectively, in Eqs. 

(3.5) and (3.2) lead to Eqs. (3.6) and (3. 7), respectively. 

It must be noted here that these criteria based on the Griffith and the modified 

Griffith theories give the general conditions for fracture initiation, but not for 

final fracture. As is well known, if both principal stresses are compressive, branch­

ing cracks emenated from the neighborhood of the tip of the initial crack on flaw 

turn away from the direction in which they start and gradually become alined with 

the axis of the major compressive stress, and finally cease to propagate because of 

the decrease of the stress concentration at the tip of the branching crack. 

In a material or in a system of materials containing many systems of initial 

cracks or flaws, branching cracks continually initiate at the limiting tips of initial 

or the propagating cracks as the applied loads increase. As already discussed in 

Sect. 2, this process causes the loss of local stability and finally leads to global 

instability-the final fracture---of the material or the system of materials. In other 

terms, the subsequent and the final fracture strengths depend not only on the 

configurations and the distributions of the initial cracks and the otientation angles 

of the initial cracks from the axis of the major principal stress, but also on subsequent 

developments of branching cracks and other complex processes of local instability. 

Thus, for the subsequent and the final fracture no explicit criterion can be expected. 

3.2.2. Application of the Shear Fracture Criterion 

In formulation of the Griffith and the modified Griffith theories the maximum 

normal stress fracture criterion was applied to the initial microcrack. To the same 

crack the shearing stress fracture criterion9> also may be reasonably applied, since 

the crack lies in general in bedding-planes which are weaker than the rest of the 

rock or the system of rocks and since the crack development may be fully contained 

in these planes. We apply this idea to the model with systems of initial cracks, when 

both principal stresses are compressive. When both principal stresses are tensile or 

the tensile stress exceeds the compressive stress, the maximum normal stress fracture 

criterion is adopted. 

Consider a single crack with length 2/ inclined a, from the axis of the major 

compressive stress a1 as shown in Fig. 8. Stresses at the tip of the crack 
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expressed in Cartesian coordinates are as follows 10 >, provided that the crack does 

not close, 

a,, = _ }- {k1 cos~( 1-sin~ sin 1_ o)-k2 sin ~(2 +cos~ cos 
38

)} 
V 2e 2 2 2 2 2 2 

ay = _} {k1 cos~(1+sin~sin1-o)+k2 sin~(cos~cos
38

)} 
V 2e 2 2 2 2 2 2 

(3. 8) 

1 {k O . 0 30 +k O ( l . 0 . 30)} ?' = ~ 1 COS-Sln- COS- COS -- -Sln - Sln-
zy V2e 2 2 2 2 2 2 2 , 

where e represents a distance measured from the tip of the crack and O represents 

an angle measured anticlockwise from the x-axis as shown in Fig. 10, and coefficients 

k1 and k2 are defined as 

. ! (3. 9) 

When stresses are compressive, crack development takes place at the tip of the 

initial crack by shearing stress. Thus, a criterion of fracture initiation is given by 

putting 0=0 in Eq. (3.8) 

(3. 10) 

where L is the shear strength of the matrix material. 

When the applied stresses are tensile, crack initiates at the tip of the initial 

crack by tensile stress and a criterion is given as follows 

(3. 11) 

where K is the tensile strength of the matrix material as given in Eq. (3.6). 

When we take into consideration the effect of the closure of the crack under 

the compressive stresses, we must replace p and q in Fig. 8 by p-a,. or ac and 

q-a f• q+µ;a,. or q+µ;(P-ac), respectively, by applying the same procedure as 

used by McClintock and Walsh in deriving the modified Griffith theory 11 >. We 

obtain the following expressions instead of Eq. (3.9) 

kl= acvT 

k2 = {q+µ,(p-ac)}vT = vT {µ;(a 1 +a3 -2ac) 
2 
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where ac is the critical stress of p at which crack closes, a,. is the normal stress 

on the crack surface, a fis the friction stress on crack surface and µ; is the coefficient 

of friction the crack surface. Finally a criterion for crack initiation based on 

the shear fracture hypothesis becomes as follows 

(3. 13) 

This criterion is quite similar to the modified Griffith theory, although the physical 

meanings for crack initiation are. quite different in both criteria. Since the stress 

a c can be considered neglibigily small compared to principal stresses, we obtain 

(3. 14) 

which is identical to Eq. (3. 7) or Eq. (3.2) when L is replaced by 2K and C;, 

respectively. Thus, the criterion curves for a model containing a single crack sub­

jected to compressive stresses become similar to those shown in Fig. 5. For a 

model containing systems of cracks the criterion curves become similar to those 

shown in Fig. 6. by the same reasons as discussed in subsection 3.1.1. The sub­

sequent and the final fracture criteria coincide with the fracture initiation criterion, 

since the crack develops in the original slit plane. 

3.3. Fracture Criterion Based on A Model Containing A System of 

Cracks in An Orthotropic Matrix. 

As an extension to the material discussed in the previous subsection, we con­

sider a model which is made in such a way that a system of cracks is preferentially 

orientated in the direction of one of the principal planes of an orthotropic matrix 

material. 

Let the axes of Carterisan coordinates be taken to coincide with principal 

axes of the orthotropic matrix. Stresses in the neighborhood of the tip of a crack 

with length 2l and inclined a from the major principal stress are as follows12
) 

(3; 15) 
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where Re means the real part, k1 and k2 are given by Eq. (3.9), complex parameters 

s1 and s2 are the roots of the characteristic equations of the orthotropic elastic 

material 

i=l, 2 (3. 16) 

The coefficients au, a12, etc., can be associated with the principal elastic constants 

E,,, Ey, etc., as follows; 

l 
au=-, 

E,, 

_ -1lxy _ -11:,y 
a12------, 

Ex Ey 
(3. l 7) 

where Ex, Ey are the Young's moduli, 11 "Y' 11 Y"' the Poisson's ratios and G "Y the shear 

modulus. When new notations are defined as 

ao=~f, 
y 

the roots of Eq. (3.16) are 

By the same reasons as discussed in the previous subsection, we use the same 

fracture hypothesis, i.e., the shear fracture criterion in compression and the maxi­

mum normal stress fracture criterion in tension. The exact same procedure as in 

the previous subsection leads to the following criteria 

(3. 19) 

in compression and 

(3. 20) 

in tension, where L' and K' represent the strength of the matrix material in shear 

and in tension, respectively. 

When the effect of the closure of the initial crack must be taken into consider­

ation, by the same procedure as used in the previous subsection, Eq. (3.19) is 

modified to 

(3. 21) 
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These equations Eqs. (3.19), (3.20) and (3.21) are similar to Eqs. (3.10), (3.11) and 

(3.13), respectively. Thus, the similar criteria for both models with a single crack 

and a system of cracks can be expected as those obtained in the previous sub­

section. 

In summary of this section, fracture criteria of two-dimensional anisotropic 

rocks or systems of rocks became quite similar to each other although they were in 

their forms derived on the basis of different models, and the criteria may be best 

summarized in the Coulomb or Moly- quadratic type criteria. In the next section, 

the criteria of Coulomb or Mohr will be formally extended into three-dimensions. 

4. Fracture Surfaces of Anisotropic Rocks and Systems of Rocks 

The general fracture criteria of anisotropic rocks and systems of rocks subjected 

to a system of short-term static loading, as discussed in Sect. 2, can be expressed by 

convex surfaces in the principal stress space, provided that there exists an unique 

relation between stresses ancl, strains. The shape pf the fracture surface may be best 

visualized by its cross sectibn expressed on an .l.rbitrary equipressure plane. In 

order to express it in a simpler form, change Cartesian coordinates (01, 0 2, o3) to 

new ones (o.', o/, oa') according to 
I 

' l, I, I, 
o1 = - -.I 6 o1 - -./ 2 o2 + -.I 3 o3 

. .r2 I } / 

02 = 'V 301 + -.,1·303 

i 
,1 

(4. I) 

The equipressure plane 1s expressed by o3=const. i.e., o/'o/'-plane parallel to 

o/o/-plane (Fig. 10). 

VT I 

Oj' 

Fig. I 0. Transformation of coordinates. Fig. 11. Six regions of an equipressure plane 
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The equipressure plane is divided into six regions according to the ordering 

of principal stresses as shown in Fig. 11. The length of a vector originated. from 

the hydrostatic pressure axis to any point on the equipressure plane and the distance 

from the origin to the equipressure plane are respectively given by' 3> 

(4. 2) 

and 

(4. 3) 

where l1= 111+ 112+a, l2= 111112+ 11211a+ 11a111· 

The angle measured clockwise from the a/' axis is given by 

(4. 4) 

where A is the Lode parameter. The general fracture criterion, thus, can be repre­

sented by a surface in cylindrical coordinates (r, (}, d) or ( v3•oct, tan-1(v }), 
v3•oct ). 

In most cases foliation in anisotropic rocks and joints, bedding-plane partings 

and faults in the systems of rocks are planar. Fracture can be considered to take 

place in these planes, so the procedure as used in subsection 3.1. can be extended 

into three-dimensions without any essential modifications. 

In order to determine a fracture surface in three-dimensional stress space, 

we consider a model containing systems of weak planes as discussed in subsection 

3.1. The other types of model may be also applicable, but are excluded here 

since the analytical results based on them are not essentially different from those 

of this model. 

In this section, the same assumptions ( 1), (2) and (3) as in subsection 3.1. 

are also made. On the assumptions ( 1) and (2), the strength of the entire model 

is determined by the weakest one of the strengths, each of which is independently 

determined for a model containing a single weak plane with a fixed orientation 

angle from the axis of the major principal stress and on the assumption (3) the 

fracture surface can be considered to be fixed in the principalstress space. There­

fore, the fracture surface of the entire model is obtained as a minimum composite 

surface which contains all the common regions enclosed by surfaces independently 
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obtained as if only one single plane of weakness were contained in the model. 

4.1 Fracture Surface Based on A Model Containing Systems of Weak 

Planes Parallel to the Axis of the Principal Stress. 

Let us consider a model containing systems of weak planes parallel to the axis 

of the principal stress 0 2 as shown in Fig. 12. Since the intermediate principal 

stress in this case may be presumed not to show any essential influence on the 

Fig. 12. A model containing systems of 
CJ3 weak planes parallel to the axis of 

the principal stress 

fracture of the model, the same fracture hypothesis used in two-dimensional analysis 

can be directly applied even in the three-dimensional. 

4.1.1. Extension of the Coluomb Criterion 

A fracture criterion of a model containing a single plane of weakness which 

obeys· 'the Coulomb criterion is expressed by Eq. (3.2). The expression of this 

equation in new coordinates (o/, o/, oa') is 

o/ = V3 sin 2a,+µ; cos 2a, o/+v2oa'+v6 C,' (4. 5) 
µ, µ; 

where µ; and C; are material constants of the weak plane and a; represents the 

orientation angle of the plane from the axis of the principal stress. This equation 

is valid for 0 1 ~ o3 , irrespective of any value of 0 2, i.e., in the regions I, II and III in 

Fig. 13. On the equipressure plane oa'= J!:
3

=const., the equation is expressed 

by a straight line passing through two points 

( ./2 _;-£ ) 
'Vgl1+v6µ/0 [ (

v2 _c.) µ. ) and O - --/ +· 1 2 ~ • 
' 3 1 v µ; sin 2a,+µ, cos 2a, · 

For the matrix material with the material constants µ 0 = tan 'Po, C0 and 

a 0 =!:._- 'Po, the fracture criterion is expressed by replacing the subscript i in 
4 2 

Eq. (4.5) by subscript 014
) 
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This equation is valid in the region 0 1 ~02~03, i.e., in region II of Fig. 11. How­

ever, due to the isotropy of the matrix, this equation can be applicable for the 

entire space by merely changing the subscript 1, 2 and 3 in a cyclic permutation. 

On the equipressure plane this equation is expressed by a straight line passing 

through two points 

and 

The fracture surface, therefore, can be expressed by the minimum composite 

surface constructed from Eqs. (4.5) and (4.6). The section of the surface cut 

by the equipressure plane is also expressed by the minimum composite curve 

composed from Eqs. (4.5) and (4.6). 

Fig. 13. Cross sections offracture surface 
cut by equipressure planes (based on 
the extended Coulomb criterion) 

For a model containing many systems of weak planes the fracture surface for 

the entire model can be determined as the minimum composite surface constructed 

from surfaces given byEq. (4.6) and Eq. (4.5) with i=l,2,··· as shown in Fig. 

13. The section of the surface cut by the equipressure plane is also expressed by 

the minimum composite curve composed from curves Eq. (4.6) and Eq. (4.5) with 

i= 1, 2, ···. 

4.1.2. Extehsion of the Mohr Q.uadratic Cfiterion 
When fracture of the weak plane of the model and the matrix material obeys 

the Mohr quadratic criterion, we obtain the following expression for the model with 

a single weak plane from Eq. (3.5) merely by transforming coordinates according 

to Eq. (4.1) 
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(4. 7) 

where A; and D; are material constants of i-th weak plane, and a; represents the 

orientation angle of the plane from the axis of the major principale stress. 

This equation is valid for u1 ~u2, irrespective of u2, i.e., region I, II and III 

of Fig. 11 as discussed in the previous section. 

The fracture criterion of the matrix is obtained in the same manner as ex­

plained in the previous section15
) 

where, J.0=tan <p0, and a0=.!:_- <to are used. 
4 2 

(4. 8) 

This equation is valid in the region u1 ~u2 ~u3, i.e., region II of Fig. 11. 

However, due to the isotropy, this equation can be applied in the entire space by a 

cyclic replacement of the subscripts 1, 2 and 3. 

The fracture criterion for a model containing many systems of weak planes in 

the otherwise homogeneous matrix can be obtained as the minimum composite 

surface constructed from the surfaces given by Eq. (4.8) and (4.7) for i=l, 2, ... , 

by the same process as mentioned in the previous subsection. The cross sections 

of the surface cut by the equipressure planes are expressed schematically in Fig. 14. 

Fig. 14. Cross sections of fracture surface 
cut by equipressure planes (based on 
the extended Mohr criterion) 

4.2. Fracture Surfaces Based on the Model Containing Systems of Weak 
Planes with arbitary Orientation 

In a most general case of three-dimensions, let us consider a fracture surface 

for a model whose systems of weak planes are inclined arbitarily from the axis of 
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the principal stress. Let the direction of the principal stress a., 0 2 and a3 coincide 

with the Cartesian coordinates x., x2 and x3, respectively and directional cosines 

of the k-th plane be denoted 1'1,1 1, ,.1,12 and ,.1,13, Normal and shearing stress N 

and S, working on the plane are given, respectively, by 

where the summation convention rule is used. 

If the weak plane obeys the Coulomb criterion 

S = Nµ,.+C,., 

(4. 9) 

(4. 10) 

( 4. 11) 

where µ,. and C,. are material constants of the k-th weak plane, the expression in 

terms of the principal stress becomes, omitting the superscript and subscript k 

for the sake of simplicity, 

a/[1-v/(l +µ 2)]v/+a/[l -1,1/(l +µ 2)]v/+a/[l -v/(l +µ 2)]1,1/ 

-2(1 +µ 2
) ( 01 02 1,1/ v/+02 0 3 1,1/ v/+03 01 1,1/ v/) 

-2µC(a 1 v/+a2 v/+a3 1,1/)-C2 = 0 

with conditions 

where oii represents Kronecker's delta. 

If the weak plane obeys the Mohr quadratic criterion 

S 2 = Nl,.+D,., 

then the corresponding equation in terms of the principal stress are 

a/(l -v/)v/+a/(l -v/)v/+a/(l -1,1/)1,1/ 

-2( 01 02 1,1/ v/+02 a3 1,1/ v/+a3 01 1,1/ 1,1/) 

-l(a1 v/+a2 v/+a3 1,1/)-D = 0 

with conditions (4.13), where superscripts and subscript k are omitted. 

(4. 12) 

( 4. 13) 

(4. 14) 

(4. 15) 

Therefore the model cotaining many systems of weak planes inclined arbitarily 

to the axis of the principal stress, fracture surface is given by the minimum surface 

composed from surfaces given by Eq. (4.6) and Eq. (4.12) for i=l, 2, ···, or Eq. 

(4.8) and Eq. (4.13) for i=l, 2, •··, provided the assumption of no interaction 

between the weak planes is reasonable. 

Fracture surface for more elaborate models can also be obtained similarly. 
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5. Comparison with Experiments 

In order to illustrate the applicability of the fracture criteria (curves or sur­

faces) discussed in this paper and to check the validity of these criteria in predicting 

real strengths of anisotropic rocks or the systems of rocks, comparison was made 

with three types of experiment, i.e. anisotrpoic rocks and two types of model of 

systems of rocks. 

The collected results of the experiments on anisotropic rocks were plotted in 

Fig. 15. The data of the model with a system of slit made of mortar with mix­

proportion c :w :s= I .0 :0.6 :2.0 are shown in Fig. 16. In Fig. I 7 are shown the 

results for the other type of model with parallel multiple weak layers, in which 

the matrix was made of cement mortar with mix proportion c :w :s= 1.0 :0.6 :2.0 and 

the layer was made of cement mortar added with flyash with mix proportion c :w: 

fa=l.0:l.8:2.0 and the compressive strength of the layer is one-tenth that of the 

matrix. 

Examination of the experimental results of anisotropic rocks reveals that the 

the compressive strength is most strongly influenced by the orientation of the bedd­

ing planes from the axis of the major principal stress. The lowest strength is 

obtained when the inclination angle is about 30° at low confining pressure. 

General form of the curcves drawn in Fig. 15 does not vary appreciably even 

in a wide range of confining pressure. 

I. 

30° 60° 
Orientation a 

(al 

90° 30° 60° 
Orientation ()( 

( b) 

Fig. 15. Collected results of experiments on anisotropic rocks 

90° 
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Fig. 15 (continued) Fig. 16. Results of tests on models with a system of slits 
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Fig. 17. Results of tests on models with 
parallel multiple weak planes 

The results for various slates and a crystalline schist show similar curves, 

although the degree of the increase of strength due to the confining pressure is 
quite different. The effect of anisotropy is not as strong in Green River shale as 

in the slates and the crystalline schist. 

The results for the anisotropic rocks tend to confirm the general form of the 
the predicted criteria in Sect. 3. 

The results on the multi-layered model also show a qualitative agreement with 
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the general form of the predicted criteria. It might be thought that results of the 

model with a asystem of slit disagreed with the predicted criteria. However, if two 

systems of weak planes are assumed such that one coincides with the real slit plane 

and another is perpendicular to the slit plane (virtual plane), the criteria discussed 

in Sect. 3, are in good agreement with the results. 

Q' == 30o 

'-
........... , ,,,,.,,, 

'- / 

I 
I 
I 
I 
I 
I 
I 

o; 

0-
/ 

Fig. 18. Experimental data on 
crystalline schist plotted on 
an equipressure plane (Akai, 
Yamamoto and Arioka20)). 

Fig. 19. Results of models with a 
single plane of weakness ex­
pressed on the equipressure 
planes (Ishida21 )). 
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Fig. 20. Results of models with 
multiple weak layers ex­
pressed on the equipressure 
planes. 

In summary, the fracture criteria discussed in Sect. 3, are enought to facilitate 

the interpretation and rationalization of the experimental results. 

The general form of the fracture surface may be complicated and cannot be 

visualized easily, so the sectional curves of the surface cut by the equipressure 

planes are compared with the experimental ones. 

The results of experiment on a crystalline shists are plotted in Fig. 18. The 

results on models with a single plane of weakness and with multiple weak layers are 

shown in Figs. 19 and 20, respectively. The former model was made of cement 

mortar with mix proportion c:w:s= 1.0:0.6:2.0 and a single plane of partings. In 

the latter model the matrix was made of cement mortar and the layer was made 

of cement and fly ash, as already described above in this section. 

The fracture criterion curves shown in Figs. 13 and 14 are compared with the 

results in Figs. 18, 19 and 20, the similarity between the predicted curves and 

observed ones are remarkable. 

Although the experimental results are limited, the fracture surface discussed in 

Sect. 4 may be enough to facilitate the interpretation and rationalization of the 

experimental results. 

6. Conclusions 

It has been shown that the general fracture criterion for the anisotropic rocks or 

the systems of rocks can be approximated in the load space or in the principal 
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stress space by a minimum composite surface constructed from all the associated 

surfaces with the anisotropic model as if it contained a single plane or system of 

weakness. 

Several fracture criteria in two-dimensions based on the fundamental three 

types of model have been discussed and show that they are best summarized in 

the Coulomb or the Mohr quadratic type criteria. Two types of fracture surface in 

the principal stress space have been also discussed as a natural extention of the 

two dimensional Coulomb or Mohr quadratic type criterion. 

These criteria, both the two dimensional and the three dimensional, are in good 

agreement with the experimental results. Thus, these criteria can be used to 

predict fracture of anisotropic rocks or the systems of rocks which exhibits a high 

degree of planar anisotropy. 
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