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Equilibrium and stability problems of plasma in the Heliotron magnetic field 
are discussed under the assumption that the plasma behaves as a hydromagnetic fluid 
and its pressure is much less than magnetic pressure. Both plasma pressure and dia­
magnetic current satisfying the equilibrium conditions are analyzed in the case where 
the plasma carries only a diamagneticj9 current and not a j, current due to an external 
electric field. 

Also by using the curvilinear coordinate system peculiar to Heliotron magnetic field, 
the stability condition for the flute type instability is discussed according to the energy 
principle which was investigated by I.B. Bernstein et al .. 

It is concluded that Heliotron magnetic field provides the equilibrium of plasma 
inside the separatrix and the plasma in this field is stable against the interchange 
instability under the proper gradient of plasma pressure. 

1. Introduction. 

The consideration about plasma confinement is a most important problem 

for a controllable thermonuclear fusion and one of the promising methods which 

achieve this fusion is the cofining of a high temperature plasma with the aid of 

external or self-magnetic field. 

In history, magnetic fields to confine plasma in a stable condition has been 

investigated and many interesting configurations such as helical field, loffe field, 

multipole field, have been analyzed. 

Also Heliotron magnetic field investigated first by K.Uo has an interesting 

nature from the confinement points of view. 1
•
2> 

In this paper, first an axisymmetric Heliotron magnetic field produced by 

the current flowing in the sheet coils which are wound over a straight discharge 

tube at regular interval is analyzed. Next the theoretical treatment about plasma 

confinement in the Heliotron magnetic field is discussed. 

The stability of a hydromagnetic fluid in static equilibrium can be deter-
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mined by an energy principle formalism which was investaigte by I. Bernstein 

et. al. 3> The present purpose is to apply this method to a plasma in an axisym­

metric Heliotron magnetic field. 

When the plasma carries only a diamagnetic j 8 current and not j. curreat 

due to a external electric field, for instance joule heating electric field, both equi­

librium plasma pressure and diamagnetic current can be expressed in the forms 

respectively; 

P = a _!l!__g__( I - L)" on <po 

. ( ¢ )"-1 Jo= -aor I-To 
where <J;=rA8• 

The stability condition for the flute type instability due to the e9= f (0) /rB 

pertubation is given as follows; 

oW(<J;) = )dX :<J; ( 12 )[rpB• :<J; ( 1. )+ :: ] >O 
The equilibrium state satisfying the above condition takes the next inequal­

ity r/n>I.51, where r is the ratio of the specific heats. 

2. Analysis of an axisymmetric Heliotron magnetic field. 

We consider an axisymmetric Heliotron magnetic field produced by sheet coils 

which are wound at regular intervals over a straight discharge tube. The sheet 

coils consist of two different sets of coils; one of them is a set of positive coils carry­

ing the current I and another is a set of negative coils earring the current -).J. 

Using the cylindrical coordinate system (r, 0, z), these sets of sheet coils are 

located at r=a with regular interval L/2, shown in Fig. I. 

t kr 

I -A.I + -Al I = . T = 

LL/27 magnetic 
axis 

-21[ 0 ,r 21r 
2ka 1-kz I 
L 

I 

= 1.,. ,,.L = -i lor : 'or -! !or ..: lo:- 7 1o!-: I : 

Fig. I. Set of sheet currents located at T=a with regular interval L/2. 

In any region without current, the magnetic flux intensity B satisfies 

rot B=O. (2-1) 

Then B can be described as the following equation; 
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B = grad </>, (2-2) 

where </> is a magnetic scalar potential. 

Further we get L:tp1ace's equation due to the divergence free of B; 

'v2
</> = 0 (2-3) 

In an axisyrnmetric case, </> is not a function of a coordinate (} and eq. (2-3) can 

be rewritten as 

(2-4) 

The general solution for a periodic field with regard to the coordinate z, may then 

be written as 
00 

<p=Cz+ I: [AJ0 (nkr) +B,.K 0 (nkr)J sin(nkz) (2-5) 
n=l 

where k is defined as k=2n/L, C, A,. and B,. are arbitrary constants and I 0 (nkr), 

K O (nkr) are modified BP.ssel functions. Substituting </> from eq. (2-5) into eq. 

(2-2), the magnetic flux intensity can be described as 
00 

Br= I: f AJ 1 (nkr) - B,.K 1 (nkr) Jnk sin (nkz) 
n=l 

00 

B. = C + I: [A,./ 0 (nkr) + B,.K O (nkr) Jnk cos (nkz) 
11=1 

where C, A,., and B,. can be determined by the boundary conditions. 

(2-6) 

(2-7) 

First we consider the magnetic field produced by the set of positive coils. 

For this purpose we expand the current sheets into Fourier series such as 

j O (z) = ½ a0 + a. cos (kz) + a2 cos (2kz) + · · · (2-8) 

where 

½ ao= j 0kl0/21t, a..=4j0 sin (nkl) /2nn, 21;:::: 10 (2-9) 

Now an arbitrary constant A,. must be zero for r>a because / 0 (nkr)-+oo as 

r -+oo and B,. must be zero for r<a because K 0 (nkr)-+oo as r -➔ O, The conditions 

on Bare that Br is continuous at r=a and the jump in B. is equal to µ0 j 9• Namely 

the conditions are 

n X [BJ= µ 0 jee 
n•[BJ=0 (2-10) 

at r=a, where [B] is the jump in Bat the current sheet and n is the unit vector 

normal to the surface. 

Substituting eqs. (2-6), (2-7) and (2-8) into eq. (2-10), we get 

C = ½ µoao 

A,.= µ 0aa,.K 1 (nka) = µ 0 :k D,. 

(2-11) 

(2-12) 

-B,.= µ 0aa,.I 1 (nka) =µ 0 ~ E,. (2-13) 

Then magnetic field produced by the set of positive coib is obtained as foll!Qws, 
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In the region r<a, using the suffix I, the magnetic flux intensity B., B, are 
00 

B.1 = µ 0 ½ a0 + µ 0 I: aJJJ O (nkr) cos (nk;:,) 
n=l 

B 1 - ~k ~ 2 sin (nkl) Dnl
1 
(nkr) sin (nk"') 

r -µo 27t' ;;.1 nkl "' 

(2-14) 

(2-15) 

In the region r<a, using the suffix II, 

B/1 =- µflo k I; 2 sini;kl) EnK
0
(nkr) cos(nkz) 

7t' n=l n 
(2-16) 

B 11 _ µ 0j O l O k ~ 2 sin (nkl) E K ( k ) · (nk ) 
r - 27t' ~l nkl n 1 n r sm z . (2-17) 

Modifying eqs. (2-14), (2-15), (2-16) and (2-17), we also can analyze the mag-

netic field produced by the set of negative coils. That is transforming the para­

meters j0 and kz into -J.j0 and kz-11: respectively, we get the magnetic field pro­

duced by the set of negative coils. 

Then we get the axisymmetric Heliotron magnetic field by adding both the 

field of positive coils and the field of negative coils. For r >a, 
B/= µojolo k[(l-J.) +2 I; sin(nkl) Dn(l-J. cos n11:) X 

211: n~1 nkl 

I O (nkr) cos (nkz)] (2-18) 

B/ = µojolo k[2 f si:t('l) Dn (1-). cos (n11:)) L 1 (nkr) sin (nkz) (2-19) 
277: n=l 

For r<a, 

B/1 = µojolo k[2 £ sin(nkl) (1-). cos n11:)EnK
0
(nkr)cos(nkz) 

211: n=1 nkl 
(2-20) 

B,11 = µojolo k[2 I; sin(nkl) (1-J. cos n11:) E 1.K 1 (nkr)sin(nkz) 
211: n=l nkl 

(2-21) 

In the following discussion, we use simple equations for r<a, i.e. 

where 

B.= B 0 [1 +al O (kr) cos k;:,] 
B, = B0al 1 (kr) sin kz 
~=Bo[z+akl0 (kr)sin kz] (2-22) 

!/J=rA0 =B0{(½)r+ ~ Ii (kr)coskz] 

Bo= µo{olo k(l-,0 

2 (1 + J.) sin (kl) 
a= l-J. kl D 1 (ka). 

Examples of the Heliotorn magnetic field are easily calculated by using the 

above formula. Fig. 2 shows the magnetic lines of force with a=O. 787, a=0.2, 
which are produced by the circular point current. 
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kr 

1.0 

0 - kz 7C 2'11" 

Fig. 2(a). Axisymmetric Heliotron magnetic field with a =0. 789 
and kd=l.0. 

kr 

1.0 

ii=o.2 

0 - kz 7C 27l 

Fig.2(b). Axisymmetric Heliotron magnetic field with a=0.2 and 
kd=3.03. 

3. Low-/3 plasma equilibrium in Heliotron field. 

Next we study the problem of a plasma equilibrium in the Heliotron magne­
tic field. 

The equilibrium equations in the ideal case, are expressed by the magneto­

static equations; 

jxB=grad p 
rot B=µ0 j 

div B=O 

(3-1) 

(3-2) 

(3-3) 

By successive iteration, we seek low-/3 solution in which 2µp/B' is a small quan­

tity. The zeroth-order solution of /3 is the Heliotron field given by the follow­

ing equations 

:rot B 0 =0, div B0 =0 (3-4) 

Namely B0 implies eqs. (2-18) to (2-21). 
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The first order solution is given by 

j x B=- gran p, 
rot B=-µJ, 
div B::::,O 

(3-5) 

Adding to the above equations, the next equation must exist for the charge sepa-

ration not to occur, i.e. 

div i=-0 

The first necessary condition on p is 
f) 

B grad p=-0 or a;-P=-0 

namely p is constant along a field line. 

The next necessary condition is 

( rB0 • (grad pxB d _ 0 ) Bo' s-

(3-6) 

(3-7) 

(3-8) 

where the integration is taken along any closed line of force. In the case of scalar 

pressure, eqs. (3-7) and (3-8) are the necessary and sufficient conditions for the 

equilibrium. 

Introducing U = -~dl/B, we can rewrite eq. (3-8) as 

grad p x grad U =- 0. (3-9) 

Therefore in equilibrium, the gradient of the pressure is everywhere perepndicular 

to the U=const surface.') 

Now apart from the general outline of equilibrium, we discuss a simple but 

important equilibrium in the Heliotron field in which the plasma carries only an 

azimuthual j 9 current. In this case the current density is 

j =- j, (r, z) 

Taking the component of eq. (3-5), we obtain .:he next relations 

lfJB f)B . ,-af .- fJz ,=-µ.J, 

fJ B a B . az ,-a, .=-µo)s 

l[fJ fJ ] . r a,(rB9)-88B,_ =-µoJ• 

lfJ lfJ fJ 
, a,(rB,) + 788B,+azB,=-0 

fJ . B 
a,P=-J, •• 

l fJ , 88P=-0 

fJ . B azP= - Jo , •. 

(3-10) 

(3-11) 
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Assuming all quantities independent of 0, the above relations can be rewriten 

as 

0 B 0 B . 8z •-Tr .=µo)o 

8 . B 
a,P=Jo •• 

8 . B azP=-Jo •• 

According to B 0 •grad P=O, we can arrive at 

a a,P=-CrB.0 , 

a 
azP=CrB •• 

(3-11)' 

(3-12) 

where (, is determined by the div B=O. Substituting B from (3-12) into the 

second equation of (3-4), we get 

a a a a 
azPT, C-a,PrzC=O (3-13) 

then 

(3-14) 

Using the flux function cJ; described in the previous section, the next relations are 

obtained 

o a -p=-C-c/J or or 
a a -p=-(,-cp oz oz 

(3-15) 

then 

(3-16) 

If we take C such that plasma pressure p becomes zero at c/J=<Po, C is given by 

( 
</J )"-1 C=C0 1-¢. 

where <Po shows the magnetic lines of force through the neutral lines. 

Therefore scalar pressure p and current density j 0 are given by 

P=C. <P; ( 1- :. r 
• ( cJ; )"-1 Jo=-C0r 1-¢. 

The first order perturbation in B. field satisfies 

1 a ( a ) o' 1 a . r8r ra,B• + oz•B,=-µ•,a,(1:Jo) 

where j 0 is that of eq. (3-19). 

(3-17) 

(3-18) 

(3-19) 

(3-20) 

In the case of n=2, the first order quantities, j 0, p, B. are given respectively 
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Fig. 3(a). Profile of an azimuthal current which satisfies an equili­
brium state. Solid lines show the state just under the negative 
coil, while dotted lines show the state under the positive coil. 
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Fig. 3(b). Profile of an azimuthal current which satisfies an equili­
brium state. Curves are plotted in the middlt> position of coils. 
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Fig. 4. Radial distribution of plasma pressure which satisfies an 
equilibrium state. 
( a) It is calculated under the negative coil, 
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( c ) calculated in the middle positit,n of coils. 

3.0 



436 
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p=r..t• (i-t)" 
k2 

2 1 (kr) • 
c;B,= ½ (kr) - 8 ¢ok' B 0 +F+G(l-a/0 cos k::,) 

+~ ,P~k' [-4kr/,+2(kr) 2
/ 0+(kr) 3

/ 1] cos kz 

-F=-½ (kd)'- !B/!~{+~ !r-4kdl,(kd)+2(kd) 2l 0 (kd) 

+ (kd) 3
/ 1 (kd)] 

-G=-F+ ½ "'_;{ 

In the case of n=2/3, the first order quantites j 8 and p are given by 

j 8 = - r. 0r ( 1- :. f 
2 ( r/J )3/2 p=r.03¢0 1-T. 

(3-21) 

(3-22) 

The stability of these equilibrium solutions will be examined in the next section. 

The examples of equilibrium situation for given flux function ¢ are shown in Figs. 

3 and 4. The magnetic lines of force used in above calculation are also shown 

in Fig. 2. 

4. Stability of the low-0 plasma equilibrium in the Heliotron field 
The stability of a hydromagnetic field in static equilibrium can be deter­

mined by an energy principle formalism which was investigated by LB. Bernstein 

et. al. This principle shows if oW can be made negative, then the system of our 

interest is unstable, where oW is given by 

oW = l/2~d-r [Q, 2/µ0 -j-Q x ~ + p(div ~) 2 + (div ~)(~•grad p)] (4-1) 

where 
Q=rot(~xB) 

In order to calculate the sign of oW, we introduce the curvilinear coordi­

nate system (¢, 8, x). In this system the fluxfunction ¢ and the magnetic poten­

tial ¢ are defined respectively as, 

[ 

/ 1 (kr) 
,P=rA8 =B0r l/2r+a k cos(kz) 

(4-2) 

x=B.[z+a 1•~kr) sin(kz) 

According to the theory of the curvilinear coordinate, the volume element, gradi­

ent operator and divergence are given respectively by 

1 dr=-h,ph8h1d,Pd8dx= B'd,Pd8dx, (4-3) 
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where 

e¢=grad ¢/!grad ¢1, e,=grad 0/lgradO!. ex=grad x/lgrad XI 
In this coordinate system, the necessary and sufficient conditions given by eqs. 

(3-7) and (3-8) can be rewritten as 

fJp/fJx = o ( 4-6) 

)( :¢ B %0p/B2)dx=O (4-7) 

Then we consider only the equilibrium such that 

fJp/fJx=O and fJp/80=0 (4-8) 

Now we try to minimize '1W by ~eans of estimating each term. The terms 

of grad p and Qare the first order quantities in respect to e. The terms of i·Q 
x ~. p (dive) and (div e) (e g1c:1d p) are the third order quantities in respect to e. 

Examination of the above integration shows. that the term I QI' is the second 

order in e. The displacement e which makes Q to be zero is of interest to us. 

Physically these displacements are those which do not change the Heliotron mag­

netic field; this is the so called interchange mode. 

Hence in the following we can determine the stability such as 

Q=rot (exB)=O (4-9) 

or 

Q==e¢~ :x (re¢B) +e0rB 2 :x (e:) 

+exB[ :¢ (re¢B) - Zo (e: )]=o 
Taking the components of eq. (4-10), we get 

fJ fJ (l' w<re¢B) =0, ax Teo )=;:o 
fJ f) (1 ) 8¢ (re¢B) +ffo Teo =0 

On substituting eq. (4-11) into eq. (4-1), we find 

<lW== ½ )d-r [rp(div e)•+ (dive) (e•grad p)] 

where 

rp(div ~) 2 + (div~). (e•grad p) 

=div ~[rpB 2
{ %¢ ( e¢; )+ Zo (eo rk• )+ !x (~x1 )} 

(4-10) 

(4-11) 

(4-12) 
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+~,;,rB g<f,p] (4-13) 

Now we consider the simple but important disturbance which is ~8 =~.=0. Physi­
cally this disturbance is only pcrpendicular to the Heliotron megnetic lines of force, 
namely the distu.rbance is 

r~,;,B= f ((}) {4-14) 

Using ,eq. {4-17), the <'hange of potential energy <llue to perturbation is given 
by 

oW(<f,)=)dx[rpB• g<p (~.)+:'PP] :<p (~.) (4-15) 

Then stability condition of equilibrium state is 

oW(¢) = )dx[rpB• .:¢ ( 1• )+ ip J k ( 1• )>o (4-16) 

We introduce F such as 

(4-17) 

Within separatri:x F takes positive or negative value along the Heliotron magne­

tic lines -Of furce, became ;¢ ( ~•) becomes negative under the positive roils but 

positive under the negative coils. 

In general the plasma confined in the magnetic field decreases in the outer 

direction, then :IP p takes a negative value. Near the axis of negative coils g'P 
( ~ 2 ) has positive value and so F becomes positive only if the next inequality 

is satisfied ; 

r pB' :¢ ( ~. ) + :¢ p><l 

Now we examine whether the equilibrium obtained in previous 

stable or not. On substituting eq. (3-18) into eq. (4-18) we get 

~ 'Po ( 1- :
0 

) B
2 ;<I, ( 1• ) -l>-0 

(4-18) 

section is 

(4-19) 

where r is the ratio of specific heats, and ¢ 0 is the flttx function through the neutral 
lines of the Heliotron field. In the case of kr=O and cos(kz) = 1, we can easily 

calculate the value ofr/n so as to satisfy eq. {4--19); r/n<l.51 and also for kr=2, 

we get r/n>l.87. 
Therefore we have a low-0 equilibrium state which satisfies the stability con­

dition. 

5. Conclusion. 

Equilibrium and stability problems of plasma in the Heliotron magnetic field 
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are discussed under the as,umption that the plasma behaves such that the hydro­
magnetic fluid and pressure is rr.uch less than magnetic pressure. When the 
plasma carries only an azimuthal j 0 current, both an equilibrium plasma pressure 

and azimuthal current can be expressed respectively in the forms, 

P=Co~o( 1-sr 
. ( ¢)"-1 Jo= -Cor 1- 'Po 

where </J=rA0, A0 is vector potential and ¢ 0 is flux function through neutral lines. 
So far as stability problem is concerned, the stability condition for the flute 

type instability due to the e¢=J(O)rB, e0 =ex=O pe11turbation is given as follows; 

oW(</J)=)dx$</J (iJ,)[rpB' $</J (iJ,)+ $</JP]>o 
The more severe condition is 

for all x. 
The equilibrium state satisfying the above condition takes the next inequality; 

r/n>I.51 for kr=O. 
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