
Influence of Couple Stresses on Stress Distributions 
in Rectangular Specimens Compressed Between Rigid 
Rough Platens 

By 

Yoshiji N1wA*, Shoichi KOBAYASHI* and Sunao MoRITAKE** 

(Received December 28, 1970) 

The present paper is concerned with the influence of couple stresses and the 
Poisson's ratios on the stress distributions in. rectangular specimens compressed be
tween rigid rough platens. An exact solution was obtained by the Fourier expansion 
method. 

The conclusions are as follows. 

1) As the material parameter for bending rigidity in the couple stress theory 
approaches to zero, stresses in the specimen become closer to those in the classical 
theory. 

2) The influence of couple stresses is limited near the boundaries of the specimen 
and fades out rapidly as it goes away from the boundaries. 

3) The larger the material parameter for bending rigidity becomes, the more 
uniform stresses are expected to develop in the specimen. 

4) The magnitude of shear stress acting on the perpendicular plane to the 
specimen axis is in general larger than that of shear stress acting on the plane parallel 
to the specimen axis. The shear stress in the classical theory approximately falls be
tween the above two. 

5) The Poisson's ratio has predominant influence on the stress distributions 
throughout the specimen. 

6) The larger the Poisson's ratio is, the larger the magnitude of stresses be
comes. The smaller the Poisson's ratio is, the more uniform stress distributions are 
expected. 

7) As the Poisson's ratio increases, the apparent Young's modulus decreases. 
The larger the material parameter for bending rigidity is, the more rapidly the 
apparent Young's modulus decreases. 

8) The influence of the Poisson's ratio and couple stresses on the apparent 
Young's modulus becomes less dominant as the height to width ratio of the specimen 
increases. 
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1. Introduction 

In the investigation of actual mechanical behaviour of rock-like materials, 

it is desirable to develop the homogeneous state of stress or strain throughout 

the testing specimen. The direct pressure loading by air or oil is suitable for 
the purpose. However, it may be impracticable to construct such type of 

loading equipment with ample capacity for testing the moderate size of specimen 

of rock-like materials. In practical tests, we are forced to use loading equip

ment which transmits the force, actually the displacement, to the specimen by 

solid material, i. e. loading platen, even if the influence of the end constraint 

of the specimen due to friction between the specimen and the platen on the 

stress distributions, that is inhomogeneity of the state of stress, is inevitable 

even in the so-called uniaxial compression test. Therefore, it is of fundamental 
importance to know the actual stress distribution in the specimen in order to 
investigate the mechanical behaviour, especially the strength and the mechanism 

of failure. 

The state of stresses in the specimen may be affected by it's own material 
properties such as the Poisson's ratio and internal structures in addition to the 

boundary constraints by the loading equipment. 

In the previous papers0 , a thorough discussion was developed on the influ

ence of the end constraint of the specimen by the loading platen including the 

partial slippage and the Poisson's ratio on the stress distributions of the 

specimen. 

The present paper, based on the couple stress theory, presents the influence 

of internal structures of the specimen on the stress distributions of the specimen 
compressed between rigid rough platens, since the mechanical behaviour of the 

materials with internal structures may be expected to be explained to some 

extent by the couple stress theory of Mindlin's2>. 

2. Description of Problem 

The specimen with 2 a and 2 b in width and in height, respectively, is 

compressed between parallel flat loading platens as shown in Fig. 1. The 
specimen is assumed to obey the couple stress theory of elasticity in the state 

of plane strain. The platen is assumed rigid and rough enough to completely 
prevent the specimen from slipping. The rectangular Cartesian coordinates are 

taken as a reference frame. 
According. to Mindlin2>, the fundamental equations of the couple stress 

theory in plane strain are obtained as follows. 



Influence of Couple Stresses on Stress Distributions in Rectangular Specimens 37 

y 

p 

p 

0 

Fig. 1. Specimen and coordinates. 

a) Kinematical relations 

In the rectangular Cartesian coordinates Xa (a=l, 2, i.e. X=Xi, J=X2 in 

Fig. 1), strains dap, rotation ms and curvatures Ksa are expressed by displace

ments Ua as follows. 

1 
dnfj=U(a,/3) =-z(Ua,~+up,a) (a, .B= 1, 2) 

1 
Wa=U[2,1) =z(U2,1 -U1,2) 

(2.1) 

(2.2) 

(2.3) 

where Ua,/3 means the partial differentiation of Ua by Xp, and U(a,/J) and U[a,~J 

mean the symmetrical and the antisymmetrical parts of ua, 13, respectively. 

b) Constitutive relations 

The constitutive relations are 

1 
da/J= 2G (,<a/J> -vaaP•rrJ 

1 
Kaa = 4G/2 mas, 

(2.4) 

(2.5) 

where ?'a/J and mas mean the Cauchy stresses and the couple stresses, respec

tively, and G, v and / mean the shear modulus, the Poisson's ratio and the 

material parameter for bending rigidity, respectively, and aa/J is the Kronecker's 

delta. 
c) Equations of equilibrium 

Disregarding the body force and body couple, the equilibrium equations are 
expressed as 



38 Y oshiji NJW A, Shoichi KOBAYASHI and Sunao MOR IT AKE 

where ea.fl means the permutation symbol. 

d) Compatibility conditions 

Compatibility conditions are 

which are expressed in terms of stresses as follows, 

m.a = Sa(lr< <•Tl ,fl+ IJSsa(l<rr,f!, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
a2 a2 

where P'2=-a 2 +-a-~2 . The two equations of Eqs. (2.10), (2.11) and (2.12) 
X1 X2 

are independent. 

e) Stress functions 

Stresses are assumed to be expressed by such two potential functions ,/J 

and¢ as 

m.a=¢, •. 

(2.13) 

(2.14) 

The functions must satisfy the following differential equations in order to 

satisfy the equilibrium equations and compatibility conditions and vice versa, 

p4,p=0 

(/2p2- l)P'2¢=0 

(/2/72- 1)¢,.=212(1-IJ)Ssa(IO(lrP'2,/J,r. 

(2.15) 

(2.16) 

(2. 17) 

When l = 0, all the relations mentioned above reduce to those of the classical 

theory of elasticity. 

The solution of the problem of the couple stress theory of elasticity in 

plane strain is obtained by solving the field equations (2.15) to (2.17) with 

appropriate boundary conditions. 

The boundary conditions of the present problem are as follows, 

u(x,±b)=0 

v(x, ±b) = ':fvo( =Const.) 
K11(x,±b) =0 
qx(±a, y)=0 

<x11(±a, y) =0 
mx(±a, y) =0. 

(2.18) 
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Instead of the conditions v(x, ±b) = +Vo and .t11 (x, ±b) =0, we may choose the 

conditions v,.,,(x,±b)=0 and L:al/dx=-P(=const.), and Kl/(x,±b)=0 or wa(x,± 

b) =0, although we did not use them in the present paper. In the above ex

pressions, notations are redefined u, v, Kl/, a.,,, •xu and m.,, for the components 

of displacement vectors in x and y directions, the component of the curvatures 
in y direction, the normal stress, the shear stress and the couple stress acting 

on the plane x=const., respectively. 

3. Analytical Solutions 

The general solutions of the field equations (2.15) and (2.16) are obtained 

in the rectangular Cartesian coordinates as follows, 

'P = ii (An sinh any+ B,.yc?sh a,.y)sin a,.x 
n=i cosha,.y smh a,.y cosanX 

+ ii (Am'sinh /3mX + Bm' xC?Sh f3mX)sin f3mY 
m=l coshf3mX smh /JmX cosf3mY 

¢= ii (c .. sinh a,.y)sin a,.x + ii (cm,sinh f3mx)sin f3mY 
n-1 cosha,.y cosa,.x m=l cosh/3mX cosf3mY 

+ ii (Dn sinh r ,.y)sin anX + ii (Dm'sinh r mX)sin f3mY 
n-1 coshrny cosa,.x m=l coshrmX cosf3mY, 

ntr m1r / 1 ✓ 1 where a,.=a• /3m=-----,;-, rn= an2+ 12-, rm= /3m2 +7,2-, and A,., B,.,. .. are con-

stants to be determined. 

In the present problem, the material is assumed centrosymmetric and the 

boundary conditions are symmetric with respect to x and y axes, so the stress 

functions are reduced to .. 
</)= I] (A,.cosha,.y+B,.a,.ysinha,.y)cosa,.x 

n-1.3,··· .. 
+ I: (Am' coshf3mx+Bm'f3,,.xsinhf3,,.x)cosf3mY 

m=l,3,·•• 
(3.1) 

.. .. 
¢ = I] Cn sinh any sin anX + 2l Cm' sinh /3mX sin /3mY 

n=l,3,··· m=l,3,··· 

.. ~ 

+ I: D,. sinh r nY sin a,.x + 2l D,,.' sinh r mX sin f3,,.y. (3. 2) 
n-1,3,··· m-1,3,• .. 

Substituting Eqs. (3.1) and (3.2) into Eqs. (2.17), the following relations are 

obtained 

Cn= -4(1-JJ)l2an2Bn 

C,.,' = 4(1-JJ )l2f3,,. 2B,,.'. } (3.3) 

Stresses of Eqs. (2.13) and (2.14) are expressed in the extended form as 
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.. 
= I! an2{ (An+ 2Bn)Cosh any+ BnanY sinh any }cos anX 

n=l,3,· .. 

00 

- I) fJ,,.2{ Am' cosh fJmx + Bm' fJmX sinh fJmX }cos .BmY 
m-1,3, ... 

.. 00 

I! Cnan2 cosh any cos anX- I! Cm' ,8m2 cosh .BmX cos .BmY 
n=l,S,• 00 m=l,3,··· 

.. .. 
I) Dnanr n cosh r nY cos anX- I) Dm' .Bmr m cosh r mX cos .BmY 

n•l,3,•·· ffl=l,3,··· 

(3.4) 

.. 
= - I! an2 (Ancosh any+BnanY sinh any)cos anX 

71•1,3, 00
• 

00 

+ I! ,8m2{ (Am'+ 2Bm')cosh .Bmx+ B,.,' fJmX sinh .BmX} cos fJmY 
m-1,3,••· .. 

+ I) Cnan2 cosh any cos anx+ I! Cm' .Bm2 cosh .BmX cos .BmY 
n=l,3,··· m=l,31 ••· 

00 

+ I) Dnanr n cosh r ,.y cos anx+ I) Dm' .Bmr m cosh r mX cos .BmY 
n•l,8,••· m=l,3, 00

• 

(3.5) 

00 

= Il an2
{ (An+ Bn)sinh any+ BnanY cosh any} sin anx 

n=l,~, ... 

00 

+ I! ,8m2{(Am' +Bm')sinh fJmx+B,.,' fJ,.,x cosh ,Bmx}sinfJ,,.y 
m•l,3,··• 

.. 00 

I! Cnan2 sinh any sin anx+ I! C,,,' fJ,,. 2 sinh .BmX sin fJ,.,y 
n-1,a,... m•l,3,·•· 

.. 00 

I) Dnr n2 sinh r nY sin anx+ I! D,.,' ,8,.,2 sinh r mX sin fJmY 
n=l,3,··· m=l,3,··· 

(3.6) 

00 

= I! an2{(An+Bn)sinhany+Bnanycosha,.y}sinanX 
n=l,3,"· 

00 

+ I! fJm 2{(Am1 +B,,.')sinh fJ,.,x+B,.,' ,8mX cosh ,Bmx}sin fJ,.,y 
m-=1,3, 00

• 

00 -

I) Cnan2 sinh a,.y sin a,.x+ I! C,.,' fJ,.,2 sinh fJmX sin fJ,.,y 
n=l,3, .. , ffl•l,3,··· 

00 

I! Dnan2 sinh r ,.y sin anx+ I! D,.,'r m2 sinh r mX sin fJmY 
n=l,3,··· m=l,3,··· 

(3. 7) 
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mz=r/J,z 

= = 
= :E Cnan sinh any cos anx+ :E Cm' /3m cosh /3mX sin f3mY 

n-1,a,... m=l,3,· .. 

= = 
+ :E Dnan sinh r nY cos anx+ :E Dm'r .. cosh r mX sin /3mY 

n=l,3,··· m ... t,3,··· 

(3.8) 

m11=</J,11 

00 00 

= :E Cnan cosh any sin anx+ L] Cm' f3m sinh /3mX cos f3mY 
n=I,3,•·· m•l,3,··· 

00 = 
+ :E Dnr n cosh r nY sin anx+ L] Dm' /3m sinh r mX cos f3mY, 

n-1,3,... m=l,3, ... 

(3.9) 

The displacements, the rotation and the curvatures are obtained as follows 

Eu= :E an({(l+1,1)An+2(l-1,12)Bn}cosh any+ (l+w)BnanY sinhanyJsin UnX 
n=l,3,··· 

00 

+ :E /3m({-(l+1,1)A,,.1 + (l-1,1-21,12)B,,.'}sinh/3mX 
m=l,3,··· 

- (l+1,1)B.,1 /3,,.x cosh /3,,.xJcos f3,,.y 
00 = 
:E (1 + 1,1) Cnan cosh any sin anX- L] (1 + 1,1) Cm' /3m sinh f3,,.x cos f3mY 

n=l,3,··· m=l,S,··• 

00 00 

- :E (1+1,1)DnrncoshrnysinanX- I: (l+1,1)Dm'/1msinhr,,.xcosf3,,.y 
n=l,3,··· m=-1,3,•·· 

(3.10) 
~ 

Ev= L] an({ - (l+1,1)An+ (l-'-1,1-21,12)B,.}sinh any 
11 .. 1,S,•·· 

-(l+1,1)BnanY cosh anyJcos anX 
00 

+ I] /3m( { (1 +1,1)A,,.1 +2(1-r2)B.,'}coshf3mx+ (1 +1,1)B,,.' f3mxsinhf3,,.xJsin/3mY 
m=l,3,'"· 

= ~ 

+ :E (1 +1,1)Cnan sinh any cos anx+ :E (l+1,1)Cm1 /3m cosh .Bmx sin .BmY 
it=l,3,··· m=l,3,"· 

00 00 

+ I: (1 + 1,1) Dnan sinh r nY cos anX + :E (1 + 1,1) Dm'r m cosh r mX sin f3mY 
n•l,3,·.. m-1,3,•·· 

(3.11) 
00 

2Ewa=- :E 4(l-1,12)an2BnsinhanysinanX 
n=l,3,•·· 

00 

+ :E 4(l-1,12)/3m2Bm1 sinh.BmXSin,B,,.y 
m•l,S,••· 

00 

- :E (1+1,1)(an2 -Tn2)DnsinhrnysinanX 
11=1,3,-·· 

00 

- :E (l+1,1)(/3m2 -rm2)Dm'sinhrmxsin/3mY (3.12) 
m-t,3,··· 
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ii Cnan sinh any cos anx+ i: Cm' fJm cosh /JmX sin fJmY 
n=l,3,·.. m-1,3, ... 

00 = 
+ I] Dnan sinh r nY cos anx+ L] Dm'r m cosh r mX sin fJmY 

nal,3,,.. m=l,3,··· 

(3.13) 

- -L] Cnan cosh any sin anx+ L] Cm' /1m sinh fJmX cos /1mY 
n=l,3,··· m-1,3,··· 

00 -

+ I: Dnr n cosh r nY sin anx+ L] Dm' /1m sinh r mX cos fJmY, 
n-1,3,•·· ffl=l,3,··· 

(3.14) 

where the terms for the rigid body displacements are eliminated. Strains are 

also easily obtained by substituting Eqs. (3.4) to (3.7) into Eq. (2.4), but are 

not expressed here. 

The constants An, Bn, ... , .. will be determined from the six boundary condi

tions (2.18) and the two compatibility relations (2.17), i.e. Eq. (3.3) in the 

final form. 

The substitution of the appropriate equations of Eqs. (3.4) to (3.14) into 

the boundary conditions (2.18) leads to the following system of linear equations 

with respect to the unknown constants. 

fJm cosh fJma Am'+ fJm 2a sinh f1ma Bm' 

+ fJm cosh fJma Cm'+ rm cosh r ma Dm' = 0 

fJm cosh fJma Cm'+ rm cosh r ma Dm' = 0 

an cosh anb An+an{2(1-1J)cosh a,.b+a,.b sin hanb}Bn 

-an cosh anb Cn-r n cosh r nb Dn=O 

ancoshanb Cn+rm cosh rmb Dn=O 

= m-1 n-1 a 2 2a [ ,.Jl,. .. C-1)-2-(-1)_2_ an2 .;.
11

m2 --,f- coshanb An+ (anb sinhanb 

+ a}f8m2 cosh anb)Bn] 

+ /1m2(sinh f1ma Am'+ (sinh fJa+ f1ma cosh fJma)Bm'J 

00 m-1 n-1 a 2 2a 
- ~ (-1)-2-(-1)_2_ 2 nfJ 2 _bncoshanbCn+/1m2 sinhf1maCm' 

n=l,3,··· an + m 

00 m-1 n-1 r 2 2r 
- I: (-l)-2-(-l)-2---2 ~--

2
- __ n_cosh rnb Dn+/1m2 sinh rmaDm' =0 

n=l,3,··· T n + fJ m b 

(3.15) 

(3.16) 

(3.17) 

(3. 18) 

(3.19) 
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+ {2(1-v) cosh f3ma+ f3ma sinh f3ma--aJ!~,;,: 2 cosh ana} Bm'] 

+ an sinh anb C,. + an sinh r nb Dn 

+ ~ c-1t;\-1)n;1 2an 2 -~~cosh/3 aC I 
m=l,3,··· Un +Pm ll m m 

4 n-1 E 
=- nn--(-l)-2--l+v-Vo. (3.20) 

In the derivation of the last two equations, we expanded the terms such as 

sinh /3mY, cosh any, · · ····, x sinh f3mx, y cosh any, ······ into the Fourier sine or cosine 

series with a period 4a or 4b, i.e. sin anX or cos /3nY, then satisfied the conditions 

,x11 (a, y)=0 and v(x, b)=-Vo termwise in sinanx and cosf3nY, respectively. 

All the constants are determined from Eqs. (3.15) to· (3.20) and Eq. (3.3). 

The constant An, Am', Cn, Cm', Dn and Dm' are easily expressed by Bn and Bm' 

through Eqs. (3.15) to (3.18) and Eq. (3.3), so finally a system of infinite linear 

equations with respect to Bn and Bm' is obtained. In the calculations, we are 

forced to truncate the higher terms of the equations because of the limited 

capacity of computor. In the present computation, we truncated the terms 

higher than n=81 and m=81. Even in this computation we must adapt a technique 

to divide the coefficients of the constants Bn and Bm' so as to make them almost 

the same order of unity, otherwise the system of the equations could not be solved. 

4. Influence of Couple Stresses on Stress Distributions 

In the numerical calculations, the material parameter l was chosen as l/a=0, 

0.1, 0.2, and 0.4, and the Poisson's ratios v=0.l, 0.2, 0.3 and 0.4. The normal

ized stresses, i.e. the ratios of stresses 0 11 , Ox, ,x11 and , 11x to the average axial 

stress 0 110, are shown for some typical cases in Figs. 2 to 6. 

On the influence of the couple stresses on the stress distributions the follow

ing may be concluded. 

(1) As expected from the theory, stresses in the couple stress theory become 

closer to those in the classical theory as material parameter l approaches to 

zero. 

(2) The larger the material parameter becomes, the more uniform stresses 

are expected to develop. 
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Fig. 5. Infl.uence of Poisson's ratio on normalized stresses in the couple stress theory with 1,1=0.2 and height to width ratio h/a=l.O. 
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Fig. 6. Influence of Poisson's ratio on normalized stresses in the couple stress theory with l.1=0.2 and height to width ratio b/a=2.0. 
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(3) The influence of the couple stresses is limited near the boundaries of 

the specimen and rapidly fades out as it goes away from the boundaries. 

( 4) Stresses in the couple stress theory near the corner of the specimen 

behave differently from those in the classical theory. 

(5) The magnitude of the shear stress acting on the perpendicular plane 

to the specimen axis is larger in general than that of the shear stress acting 

on the plane parallel to the specimen axis. The shear stress in the classical 

theory approximately falls between the above two. 

On the influence of the Poisson's ratio on the stress distributions the follow

ings may be concluded. 

(1) The larger the Poisson's ratio is, the larger the magnitude of stresses 

becomes. 

(2) The smaller the Poisson's ratio is, the more uniform stress distribution 

is expected. 

(3) The magnitude of stress is affected not only by the Poisson's ratio, but 

also by the material parameter. For the fixed material parameter, the magnitude 
' of stress becomes larger as the Poisson's ratio increases. 

(4) Differing from the influence of the couple stresses, the Poisson's ratio 

has predominant influence on the stresses throughout the specimen. 

It is of some interest from the viewpoint of the brittle fracture that there 

appears a tensile zone in ax as the height to width ratio increases. 

The influence of the couple stresses and the Poisson's ratio on the apparent 

Young's modulus E', i.e. the average axial stress divided by the average axial 

strain, is observed in Fig. 7. As the Poisson's ratio increases the apparent 

Young's modulus decreases. The larger the material parameter is, the more 
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Fig. 7. Influence of couple stresses and Poisson's ratio on the apparent 
Young's modulus. 
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rapidly the apparent Young's modulus decreases. As the height to width radio 

increases, the influence of the Poisson's ratio and the couple stresses on the 
apparent Young's modulus, as expected, becomes less dominant. 

5. Concluding Remarks 

As theoretically predicted, the couple stresses have only second order effect 
on the overall stress distributions. However, the influence on the stresses near 

the boundaries, especially near the comer, is predominant and may not be 

disregarded. The results obtained in the present paper may help to interpret 

the experimental results of rock-like materials. 
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