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By 
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This paper describes the fundamental properties of the operational calculus 

based on the Mikusinsky's method for the matrix functions (sequences and series of 
operators, operational functions and their derivatives), and then, presents the analysis 
of the multi-conductor transmission systems for its applications. 

1. Introduction 

In analysing the physical systems with many variables, matrix algebra 
provides a systematic method for the manipulation and solution of system 

equations. We have reported the matric operational calculus based on the 

Mikusinsky's method and applied it to the study of the linear lamped time­

invariant systems1>. There, the system equations are given by the simultaneous 
ordinary differential equations and their operational solutions are expressed by 

the rational functions of the operator s. But in the linear distributed time­

invariant systems, typical examples are multi-conductor transmission systems, 

their properties are expressed by the simultaneous partial differential equations, 
and their operational equations become the simultaneous ordinary differential 

equations involving the operator s. Therefore, new mathematical concepts, 

which are, sequences and series of operators, operational functions and their 
derivatives are needed. 

In this paper we shall try to apply new operational calculus to the study 
of the linear distributed systems. First, following the Mikusinsky's method2> 

we shall present the basic definitions and the fundamental properties. In our 

case what differs from the scalar functions is that they are subjected by the 

matrix algebra. Next, using the results, we shall consider the multi-conductor 

transmission systems. Here, gothic letters represent matrices and sets of them 
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are assumed to compose the integer domain. 

2. Extension of Functions and Operators 

2.1 Discontinuous functions. We shall consider a function {F(t)} defined in 

the interval O<t< oo satisfying the following conditions. 

i) It is sectionally continuous in every finite interval. 

ii) The integral ):IF(,)!d, has a finite value for every t>O. 
By the definition of convolution, we have 

lF={l} {F(t)}={ ): F(,)d,}. 

The integral on the right side always represents a continuous function, denoting 
it by {H(t)}, we have 

F=l- 1{H(t)} =BH 

therefore {F(t)} can be regarded as an operator. 

When discontinuous functions F {F(t)} and G={G(t)} satisfy the above 
conditions, the following definitions are given. 

F=G if u: F(,)d,}= 1): G(,)d,} 

F±G=l-1
( u: F(,)d,} ± { ): G(,)d,} J =l-1{):CF(,) ±G(,)Jd,} 

By the above definition we can prove the formulas 

{F(t)}± {G(t)}={F(t) ±G(t)} 

a{ F(t)} = { aF(t)} a constant. 

For a discontinuous function satisfying the above conditions the following the­
orem is given. 

Theorem 2.1: If a function {X(t)} has jumps /Ji, /12,··, Pn at the points ti, 
t2,···, tn, is elsewhere continuous and has a derivative {X'(t)} satisfying the 
above conditions, then 

" s{X(t)}={X'(t)}+X(O) + "E, p,ht, 
v-1 

(2.1) 

where ht, is a translation operator. 

2.2 Non integer power of the operator s-a. For all positive values ;., power 

of the operator s-a is defined as 

(2.2) 

where I'(A) is the Euler's gamma function. 

By the definition of the convolution, for all positive values of ;. and µ, we 
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have 

(2.3) 

For all real numbers l, powers of an operator s-a is defined by (2.2) and 

(s-a) 0 =1 (s-a)•= 1 l>O ' (s-a)-• (2.4) 

therefore (s-a)-• represents a continuous function in the interval O<t<co if 

l>l, and a function discontinuous at the point t=O if O<l<l, but if l<O it 

does not representa function. 

From (2.2) the following equalities are given. 

1 
v's+a 

J_t_-,_12 _,,e-ct} { 1 e-«t} 
l I'(l/2) = v'"ii:t (2.5) 

(- 13)cs+a)-<•+/3) =1' tB-l(-t)" e-«t} f3>0, l,I natural 
J.I I'(/3)v! (2.6) 

3. Sequences and Series of Operators 

3.1 Sequences of operators. A sequence of operator An is termed convergent 

if every element CAnli of An divided by a suitably chosen non-zero operator 

qt1 becomes a sequence of continuous functions uniformly convergent in every 

finite interval, and in this case An is said to have a limit and is written 

1. CA J 1. CAnJ11 1m n ij = qi} 1m . 
n--,.cx., n-co Qii 

(3.1) 

Every element of An has only one limit, therefore An has only one limit. 

If sequences of operators An and Bn have limits A and Bi. e., lim An=A and 

lim Bn = B, we have the following equalities. 

~ 

ft➔OO 

(3.2) 

(3.3) 

3.2 Series of operators. For an infinite series of operators ~ An, if the sequ-
n=o 

ence of partial sums 

converges to A, it is said to have the sum A and is written 
00 

~ An=Ao+A1+······=A. (3.4) 
n=O 

In applications power series of the following form is important 

•cw)= ao+ a,w + a2W2 + • • • • • • (3.5) 

where ao, a 1,-·· are numerical coefficients and w an operator. 

Specially for w = F (F { F(t)} : continuous function in the interval O<t< co)) 
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the following theorem is given. 
Theorem 3.1: If the convergence radius of the series 

<l>(l) =ao+a1l +a2l2+ ······ 

is positive, then series 

<l>(F) =ao+a1F+a2F 2 + , ..... 

l complex 

83 

(3.6) 

(3.7) 

is operationally convergent for every continuous function F, where multiplica­
tions in F 2, F 3, ...... mean the convolution. 

3. 3 Powers with arbitrary real exponents. From the binominal theorem for 
non-integer /1 and Theorem 3.1, we can define for an operator of the form 

l+F(F={F(t)} continuous function in the interval O::;:t<oo) power with 
any real exponents as 

(3.8) 

and by the properties of the binominal expansion, the following relations are 
given. 

(1 +F)P1 (l + F)P2= (1 +F).S1+fJ2 

1 
(l+F)-P (l+F)P 

(3.9) 

(3.10) 

Having defined the powers of the operators A and B, and they are com­

mutative, we define the power of their product AB by the formula 

(AB)P=APBP. (3.11) 

Using the equalities (3.8) (3.11) we have the following relations. 

1 (3.13) 

V / 2 =Uo(iat)} 
B -a (3.14) 

(3.15) 

4. Operational Functions and Their Derivatives 

4.1 Operational functions. Given a function of two variables F(J., t) defined 

· for t>O and for some values of )., we shall write it as 

F(l) ={F(l, t)}. (4.1) 
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Formula (4.1) defines an operational function which assigns an operator that 

is a function of the variable t to the value of A and is called parametric. 

An operational function F(A) will be termed continuous in an finite interval 

if every element (F(A)J;j of F(A) can be represented in that interval as a 

product of a certain operator q;1 and a parametric function G(A) and written 

(4.2) 

where (G(A)J;j={(G(A, t)J;i} is the function of two variables continuous in the 

domain D(M.l, O<t< oo). 
4.2 Continuous derivative of an operational function. An operational function 

F(A) will be said to be continuously differentiable in a finite interval I if we 

can write for every element of it 

(4.3) 

where QiJ is an operator and (G (A)Jii is a parametric function {(G(A, t)J1j} having 

a partial derivative { ·ti (G(A, t)J;1} continuous in the domain D(Ad, O:s:;:t<oo). 

In this case the function F(A) will be said to have in the interval I a continuous 

derivative F' 0) whose element is 

CF 1(A)Jt1=Qt1{-ti (GO, t)J1,} q;AO 

and from this definition F' 0) is determined uniquely. 

Continuous derivative of high order of a function F(A) is defined as 

(4.4) 

(F<n>WJtj=q~"J{ :;n CG(A, t)J1,} q~"j~O (4.5) 

where (GO)J11={(G(A, t)J11} has n-th partial derivative {:;_,.(GO, t)J11} in the 

domain D. 
For the translation operator hA we can write 

hA=s2{h10, t)}=s8{h20, t)} 

where 

!O : O<t<i) 
hi(A, t) = Ct_-A)l: O<i<t ' 

therefore we have 

(4.6) 

(4. 7) 

For continuous derivatives of the operational functions the following pro­
perties are given. 

i) If the function F(A) is constant in a certain interval I, F'O) =0. Con-
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versely if F'(.<)=0 in I then FO) is constant. 

ii) If the functions FO) and GO) have continuous derivatives F'O) and 

G' 0) in I then 

CF 0) ± G 0) J' = F' 0) ± G' 0) 

CF O)G(l) J' = F' (l)G(l) + F (l)G' (l) 

iii) If the function FO) has the continuous derivative F(l) in I and C is 
an arbitrary operator, then 

CCFO)J' =CF'O) 

A function F 0) is said to be differentiable at a point .<0 if it can be represented 
in the neighbourhood of that point as the product 

where Qt; is an operator and {CG(.<, t)Jt1} a parametric function such that the 
quotient 

CGO, t)J;1- CGOo, t)Jt1 
.<-.<o 

uniformly tends to the limit for .<-+lo in every finite interval O~t~t0• This is 

a more general definition of the operational derivative. 

4. 3 Exponential functions. For differential equations of the operational func­
tions the following theorem is given. 

Theorem 4.1: For given operators w, k and a real number .<o there exists 

at most one operational function x(l) satisfying for any real .< the equation 

x' (.<) = wx 0) (4.8) 

and the condition 

x(lo) =k. (4.9) 

If w is constant the operational function xO) = e-<w satisfies ( 4. 8) and the 
condition 

x(O)=l (4.10) 

and by this theorem this is th~ only function with these properties. 

If w is an arbitrary operator equation (4.8) and condition (4.10) defines the 

generalised exponential function 

(4.11) 

. From (4.7) translation operator h' satisfies (4.8) and h0 =1, then by this 

theorem we have 

(4.12) 

Furthermore the following theorem is given for the differential equations. 
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Theorem 4.2 : For given operators w, k0, k 1 and a real number lo, there exists 

at most one operational function x(A) satisfying for all real 1 the equation 

x"W=wx(l) (4.13} 

and the conditions 

(4.14) 

4.4 Derivatives of power series. For derivative of power series the following 

theorem is given. 

Theorem 4.3: If a numerical series 

1 complex 

has a positive radius of convergence, then the function 

0(AF) =ao+a,1F+a2.l2F 2 +······ 

has a derivative in the form of a power series 

0'(AF) =la1F+2a2.lF2+ ······ 

where F~{F(t)} (continuous function in the interval O~t<oo). 

In particular if 

then by this theorem 

0'(.lF)-F+ 1F2 + 12pa +···=F0(AF) 
- 1 ! 2 ! 

and 0(0) = 1, therefore we have 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Consequently the following relations are given if a and fJ are commutative and 

i~o. 

le-•«21•=Uoc2vit a)} 
B 

exp .la(s-v s 2+ fJ2) =1-{ vt2/:2iat {J]1(/Jvt21 +2Aat)} 

exp la(s-v s2 -p2
) = 1-{ v t21 i: 21at ·pf, Ci/Jv t21 +2Aat)} 

exp (-la-,/ s2+ fJ2) =C•tr• exp .la(s-v 82- p2) 

exp (-la-,/ 82-p2) =e-•«• exp .la(s-v s2- fJ2) 

5. Multi-Conductor Transmission Systems 

(4.i9) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

5.1 Telegraphic equations. Here we shall consider multi-conductor transmission 
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systems stretched along the axis ;,, Denote by {v()., t)} and {i()., t)} the 
voltage and the current at a point of coordinate ). and instant t. The fol­
lowing equations hold 

-{v,()., t)}=L{ie(A, t)}+R{i()., t)} } 

-{i,()., t)}=C{veO, t)}+G{v()., t)} 
(5.1) 

where R denotes resistance, G leak-conductance, L inductance and C capacitance 
per unit length. 

When the initial values are 

v()., 0) =0, i()., 0) =0 

then equations (5.1) have the following operational form. 

v'().) = -(Ls+R)i().) } 

i' ().) = - (Cs+G)v().) 

Differentiating (5.3) with respect to ). we have 

v"().)=CLCs2 +RC+LG)s+RGJ v().) 

i"().) = (CLs2+ (CR+GL)s+GRJi().) 

(5.2) 

(5.3) 

(5.4) 

5.2 Hyperbora type equations. If R and G can be neglected (5.4) becomes 

v" ().) = a2s2v ().) a 2 = LC. (5. 5) 

Suppose that the boundary conditions are given as 

(5.6) 

or as operational form 

(5.7) 

Considering the operational function e'"' satisfying (5.5), we have w=a2s2• Since 

a 2 is positive definite, w= ±as, therefore we have 

v().) =e•.,.C1 +e-.1«•C2 (5.8) 

where C1 and C2 are arbitrary operators and from (5. 7) 

v().) = (1-e-2•0«•)-1 ((e-.t«•-e-C2Ao-,).,.)v1 + (e-C.lo-i).,._ e-C.lo+A).,.)v2J. (5. 9) 

The operator (l-e-2•0«•)-1 is expanded to the following infinite series 

-(1-e-2•o«.)-1= ~ e-2kloao (5.10) 
k~O 

therefore (5.9) becomes 

-v().) = ~ C(e-(2klo+l)ao-e-(2k+l.lo-A)«•)v1 + (e-(2k+Uo-l).,._e-(2k+Vo+l)Q) V2J. 
k•O 

(5.11) 

Denote by ai, a2, 0
", «n eigen values of a and when they are distinct we have 
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e«•=Q-1 Ce<ns, (!"2S, ,eansJQ (5.12) 

where Q denotes a non-singular numerical matrix and Cea 1s, ea2s, ,eansJ diagonal 

matrix. 

Suppose that V2=0 then (5.11) can be solved to 

v(l)={vO, t)}= i: Q-{{O __ : O:s::t<2klo+la1}, 
k-o u1(t-2kl0+la,): 2klo+la1<t 

······, {O ~- : 0:S::t<2klo+la.}J 
u.(t-2kAo+Aan): 2kAo+Aan<t 

(5.13) 

where u=Qv1 and u= Cui U2•"unY. 

If infinitely long system is considered the operational solution is given as 

(5.14) 

{
o : o:s::t<Ja.}J 

······, Un(t-lan): Ja.<t 
(5.15) 

where u=Qvo and U= Cu, U2·"Un] 1
• 

5.3 Parabora type equations. If L and G can be neglected (5.4) becomes 

v"O)=a2sv0) a 2=RC. (5.16) 

The boundary conditions are given as operational form 

v(O)=v,={v,(t)}={v(O, t)} l 
vOo)=V2={v2(t)}={vOo, t)} J · 

Since a 2 is positive definite, the operational solution is 

V(A) =el«✓•C1 +e-l«✓oC2, 

Here let us consider the parametric function 

Then we have the equality 

l''•F(J) = { 1 l F(J) = J la f\t-.)-112.-a,2exp(- a2i2) dr}. 
v'1rt f l 211: Jo 4r 

Substituting J2/4r=l2/4t+u2, we have 

1112FO)={ 2a exp(- i•a• )(ooe-a•a•du}={ 1 exp(- i•a• )}. 
,11:v' t 4t )o v' 11:t 4t 

Further we have 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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(5.21) 

and 

g). ):vkexp(- ).~;2 )dr:- - ):21~exp(- ).~;2 )dr:. 

By the operational form this equality is written as l 312F' ().) = -alF().) and con­

sequently 

F'().)=-avsF().). (5.22) 

From (5.21) 

then we have 

(5.23) 

From (5.20) we have 

(5.24) 

Further we have 

_!__e-,.✓• ={ft ).a exp(- ;,2a2 )dr:} 
B )o 2y ,rr3 4r; 

and substituting a=l/2v'r we have 

_!_e-i«✓•={ 2_( .. _).aexp(-).2a 2a2)dal. 
B V 1r \12v't f 

(5.25) 

From (5.23) the operator e-i«✓• represents the continuous function in O~t<oo, 
therefore the operator (1-e-,.✓.)-1 can be expanded to the infinite series and 
(5.18) with the conditions (5.17) becomes 

v().) = ii ( (e-(2kio+.l)cr✓• - e-(2k+Uo-i)«✓•)Vi 
k•O 

(5.26) · 

and can be solved to 

v(J.)={v()., t)}= ii {f (F(2kJ.o+J., t-r:)-F(2k+Uo-J., t-1:)Jv1(1:)dr: 
k•O 0 

+ ):CF(2k+Uo-J., t-r:)-F(2k+Uo+J., t-r:)Jv2(r:)dr:}. (5.27) 

Considering infinitly long system we have 

v().) =e-i«✓• vo-= {v()., t) }= u: F()., t-r:)v0(r:)dr:} (5.28) 
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where {vo(O}={V1(0, t)} and if Vo(t) = Vo (constant) then we have 

(5.29) 

5. 4 Operation T« and its applications. Here we shall introduce an operation 

Ta defined as 

(5.30) 

where a is an arbitrary numerical matrix and Fan arbitrary sectionally con­

tin~ous integrable function, and this operation has the following properties. 

i) T"(F+G)= T"F+ T"G 
ii) T"T'F= Ttt+IF if a and /3 are commutative. 

iii) T"(FG) = (T"F) (T"G) if a and Fare commutative. 

iv) T"R(s) =R(s-a), T"R(s) =R(s-a) where R(s) is a rational function 

of s and commutative with a. 
v) T«ew=eT"w where w is an operator and commutative with a. 

Using this operation we shall consider the solution of (5.4) in some special 
cases. 

When L can be neglected and an infinitly long system is considered we have 

v(,l.)=e-•.-.Ja+,9vo a2 =RC, /3=C- 1G 

where Vo={vo(t)}={v(O, t)}. 

If a and /3 are commutative e-•«.Ja+,9= T-/Je-,«✓s, then 

v(,l.) ={v(,l., t)}={e-/lt~: F(,l., t-,)v0 ('r)d,} 

where F(,l., t) is defined by (5. 23). 

(5.31) 

(5.32) 

Further when G can be neglected and an infinitly long system is considered 

we have 

(5.33) 

and if a and /3 are commutative e-•«✓C•+/l)'-/l2 = T-/l e-•«✓•2 -/l", then we have 

(5.34) 

6. Conclusion 

As mentioned above, a method to apply the Mikusinsky's operational cal­

culus to the matrix functions in order to study the physical systems with 

distributed constants has been presented, and using these results, multi-conductor 

transmission systems are analysed. 

The operations used here are restricted by the matrix algebra, and then 
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commutative matrices are considered, this method is very useful to get the 

numerical solutions of systems with many variables. 
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Appendix 

Proof of The Theorems 

Theorem 2.1: Denote a continuous part of {X(t)} by {Y(t)}, then 

{X(t)}={Y(t)}+ :E .a.{H,.(t)}={Y(t)}+_l :E .Bvhtv. 
11-1 B 11-1 

Multiplying bys and considering that {X'(t)}={Y'(t)} and X(O) = Y(O), we 

have 
n n 

s{X(t)}=s{Y(t)}+ ~ .Bvh'•={X'(t)}+X(O) + ~ p.ht•. 
11=1 11=1 

Theorem 3.1: We shall consider the following power series 

ai),.G + a2J.2G2 + • • · • · · (A-1) 

where G={G(t)} continuous function in the interval O~t<oo. 
Denote by M the maximum absolute value of all elements of G(t) in an 

arbitrarily fixed interval O~t~t0, then 

IG(t)l:s;;MH H=CHt1J H11=l 

IG2 (t)l=l):G(t-t")G(t')dt'I ~m ):M-Mdt' H=mM 2 {i H 

where m is the order of G, and generally 

IGn(t) I <mn-1Afn tn-1 H<mn-1Afn ton-I H n=l, 2,···· - ~-D! - ~-D! 
Denote by p the convergence radius of the series (3.6), then the sequence 

( 
2J.o )nmn-1Afn ton-I 
p (n-1) ! 

tends to 0, ie., it is bounded by a certain number K, therefore 

and p is the convergence radius of the series (3.6) then the series 

k'lad-f+k'la2i(; )2+··· 

is convergent. Hence the convergence of the series (A-1) follows and from 

this fact follows the convergence of the series (3.7). 

Theorem 4.1 and 4.2: The operator w is constant with respect to )., then 

from the theorem of the ordinary differential equations uniquness of the solu­

tion is assured. 
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Theorem 4.3: From theorem 3.1, the power series (4.15) represents the 
parametric function in every domain 

(A-2) 

and a numerical series 

~'().) =l•a1 +2•a21H··· 

has the same radius of convergence as the series (4.15), therefore the power 

series (4.17) represents the parametric function in the domain (A-2), then the 
theorem is proved by differentiating term by term. 


