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The present paper is concerned with the effects of couple stresses on the stress dis
tribution in a disc subjected to diametral compression. An analytic solution was ob
tained by the Fourier-Bessel expansion method. Results are as follows. 
(1) The effect of couple stresses is remarkable. The larger the material parameter l 
for bending rigidity becomes, the more the magnitude of stresses on the diametral plane 
in the loading direction is reduced, especially in tension. In the case, for instance, where 
the. ratio of the material parameter l to the radius of the disc a, i.e. l/a, is 0.2, the tensile 
and the compressive stresses at the center are respectively reduced to about 50 percent 
and 80 percent of those obtained by the classical theory of elasticity. The stresses on the 
diameiral plane perpendicular to the loading direction develop more uniformly with an 
increase of the ratio l/a. 
(2) The effect of the loading width on the stress distribution is limited near the loaded 
boundary. As the loading width increases, the turning point of the circumferential 
stress from tensile to compressive is shifted toward the center and the radial compressive 
stress becomes more uniform. The influence of the loading width is less dominant in the 
couple stress theory. 
(3) As the Poisson's ratio increases, the magnitude of both compressive and tensile stresses 
generally increases. The effect of the Poisson's ratio, however, is not very predominant. 

1. Introduction 

Knowledge of the stress distribution in a test specimen is a basic prerequisite 

to estimate the strength of the materials concerned. The diametral compression 

test of a disc, i.e. the so-called Brazilian test, is simple and easy to carry out 

and is widely accepted as a conventional test for estimating the tensile strength 

of rock-like materials. Several papers1>~5> were published on the usefulness of the 

test. In some of them, 1>· 2 >· 4> stress distributions were also discussed based on the 

classical theory of elasticity. As is well known, the classical theory of elasticity 

assumes the homogeneity of the constituent materials to the infinitesimal element of 

volume, that is, mass density is continuous and remains constant of any volume 

element is continuously shrunk to zero. This continuum approximation is violated 
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for many materials composed of several distinct constituent materials, for example, 

for polycrystalline mixtures such as rocks, and for composite materials. 

The classical theory of elasticity is successfully applied to the analysis of stress 

and strain wherever the overall dimension of the concerned problem is large as 

compared to an average dimension of the intrinsic discontinuities in the material, 

e.g. the average grain size or inter-grain distance, i.,,. the average intern~llength 

of the constituent materials. However the ratio ol the ;,overall dimension t? the 

average internal length decreases toward unity, the cla'.ssical theory of elasticity 

is expected to fail. In such · a case, the more precise theory which takes the foffect 

of the constituent materials into consideration must be sought for. 

The couple stress theory6 >• 7> or micromorphic theory8 >• 9> may find application 

in a wide variety of situations from crystal lattices to rocks or composite materials. 

As was discussed by Eringen 8> and Cowin•0 >, the couple stress theory is an extreme 

case of the micropolar ( micromorphic) theory, and another extreII1e is the classical 
theory. 

The present paper discusses the effects of the average internal length on the 

stress distributions in a disc specimen subjected to the diametral compression based 

on both extreme theories, i.e. the classical and the couple stress theories, since the 

average intrinsic discontinuity may well be predicted by them., On the effects of 

couple stresses on the stress distributions in the so-called uniaxial compression test 

specimen the reader is referred to the previous paper11 >. 

2. Description of Problem 

A disc specimen with radius a and unit thickness is subjected to diametral 

compression as shown in Fig. l. The specimen is assumed to obey the couple 

stress theory of elasticity and in the state of plane strain. 

According to Mindlin6 >• 7 >, the fundamental equations of the couple-stress 

theory in plane strain are obtained as follows. 

a) Kinematical relations 

In general curvilinear coordinates ~ (a=l, 2, i.e. r=x1, fJ=x2 in Fig. l), 

strains e.,11, rotation w3 and curvatures ic3., are expressed by displacements U;. as fol

lows. 

l 
e.,11 = uc.,111> = 2 (u.,111+u11I.,) 

l 
Cua = Uc2lu = -(u2l1 -u1l2) 

2 

(a, (:i=l, 2) (2.1) 

(2.2) 

(2.3) 
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Fig. I. Schematic diagram of the Brazilian test and 
the coordinate system. 

where u11 j11 means the covariant derivative of u,. by x11, and u,,.1 11) and Uc,_1 111 mean 

the symmetrical and the antisymmetrical parts of u .. 111, respectively. 

b) Constitutive relations 

The constitutive relations are 

(2.4) 

(2.5) 

where r ,.11 and µ,.11 mean the Cauchy stress and the couple stress, respectively, and 

G, 11 and l mean the shear modulus, the Poisson's ratio and the material parameter 

for bending rigidity, respectively, and g .. 11 is the metric tensor. 

c) Equations of equilibrium 

Disregarding the body force and the body couple, the equilibrium equations 

are expressed as 

rll'"I,. = 0 

µ'"31 .. +eSII/IT'"/I = Q' 

where e3
'"11 means the permutation tensor. 

d) Compatibility conditions 

Compatibility conditions are 

(2.6) 

(2.7) 
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e3•/J e381 etJYI~ = 0 (2.8) 

c3
d/J IC,_I/J = 0, (2.9) 

which are expressed in terms of stresses as follows, 

e3d'l' ea1JaTc,.1J)l,.a-J.1V2T~ = 0 

e3d/J µa,.I/J = 0 

µ,.a = e3/JY Tc,.y)I/J+J.lea.,/J -r ~1/J, 

(2.10) 

(2.11) 

(2.12) 

where V2
T = I -~ cv g 9•tJ ~), 'I= det i 'J,./J j • The two of the three Eqs. v 9 ax• ax/J 

(2.10), (2.11) and (2.12) are independent. 

e) Stress functions 

Stresses are assumed to be expressed by two such potential functions </, and 
,fr as 

'l'•/J = ea.,, e/JB </Jl,,a+e3Y"' vrl~ 

µa. = vrl. · 

(2.13) 

(2.14) 

The functions must satisfy the following differential equations in order to satisfy 

the equilibrium equations and the compatibility conditions and vice versa, 

V'</, = 0 

(I-t2V2)V2,t, = o 
(l-l2V2),t,I. = -2(1-1,1)l2e3.,/J'J/JYV2 ¢I,,. 

(2.15) 

(2.16) 

(2.17) 

When l =0, all the relations mentioned above reduce to those of the classical theory 

of elasticity. 

The solution of the problem of the couple stress theory of elasticity in plane 

strain is obtained by solving the field equations (2.15) to (2.17) with appropriate 

boundary conditions. 

Let us consider a disc subjected to diametral compression. The compressive 

force is distributed uniformly and normally over the opposite sides of the surface 

of the disc, with a width 2aa (a: rad) (Fig. I). 

The boundary conditions of the present problem are as follows, on r=a 

a,. = p(O) 

'l',-9 = 0 

µ,. =0. 

(2.18) 

In the above expressions, notations are redefined as a,., -r ,.q andµ,. the components 
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of the normal stress, the shear stress and the couple stress acting 6n the plane 

r=const., respectively. 

are 

3. Analytical Solutions 

The solutions of the field equations (2. 15) and (2. 16) of the present problem 

</J = A0 r2 + ~ (A,.r"+ 2 +B,.r") cos nO 
ffl=2,4••· 

,fr= .i ... { {C,.r"+D,.l,. (f )} sinnO, 

(3.1) 

(3.2) 

where l,.(r/l) is the modified Bessel function of the first kind and A0 , A,., B,., ··· 

are constants to be determined. 

Substituting Eqs. (3.1) and (3.2) into Eq. (2.17), following relations are 

obtained 

C,. = 8(n+I)(l-v)l2A,.. (3.3) 

Stresses of Eqs. (2.13) and (2.14) are expressed in the extended form as 

(] - I 8</) + I 8
2

</J - I 82,fr + I 8,fr 
,. r 8r r 2 802 . r 8r80 r 2 80 

= 2A0+ .t ... {-(n-2)(n+I)r"A,.-n(n-I)r"-.2 B,. 

-n(n-I)r"-2C,.+ ; 2 [1 .. ( T )-+1~( + )]n .. } cos nO (3.4) 

a9 = 82</J + _!_ 82,;, - _!_ 8,fr 
8r2 

T 8r80 r2 80 

= 2A0 + .t ... { (n+I)(n+2)r" A,.+n(n-I)r"-2B,. 

+n(n-I)r"-2C,.- ; 2 [1,.(f )-+1~( f )]n .. } cos nO (3.5) 

i- 9 - - I 8
2

</J + I 8</) - I 8,fr - I 8
2
,fr 

,. - r 8r80 r2 80 r 8r r2 802 

= .j'.L.{n(n+I)r"A,.+n(n-I)r"-2B,. 

+n(n-I)r"-2C,. + :2 [ n
21,.( f )-+1~( T) Jn .. } sin nO (3.6) 

i-9,. = _ _!_ 82</J +_!_ 8</J + 82,fr 
. T 8r80 r2 80 8r2 
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µ,. 

to Diametral Compression 

+n(n-1 )r"-2 C,.+ }
2 

I~' ( f )n .. } sin nO 

=a,;, 
fJr 

= ± {nr"- 1 C,. + l_1~(_!.___)n,.} sin nO 
•=2,••·· l l 

µII = _!__ fJy, 
r ao 

= ± {nr"-1 c,,+!!._1,,(!_)n,.} cos nO 
•-2.••·· r l 

where the prime means the differentiation by r/l. 

(3.7) 

(3.8) 

(3.9) 

Strains are also easily obtained by substituting Eqs. (3.4) to (3.9) into Eq. (2.4), 

but are not expressed here. 

The constants A0, A,., B,., • • • will be determined from the three boundary 

conditions (2.8) and the compatibility relation (2. 7), i.e. Eq. (3.3) in the final 

form. As the first of the boundary conditions (2.18) is expressed in Fourier cos~ne 

series as 

where 

a = a,.=____!!_+ ~ a,.cosnO, 
2 •=2, , ... 

4pa 
ao =-.

'It: 

" 4p a,.=(-1)2 -sinna, 
n1r: 

(3.10) 

the substitution of the Eqs. (3.4), (3.6) and (3.8) into the boundary conditions 

(2.8) with Eq. (3.10) leads to the following system of linear equations with respect 

to the unknown constants 

(3.11) 

-(n-2) (n+ I )a" A,.-n(n-1 )a"-2B,.-n(n- I )a"- 2C,. 

+!!._ {1 .. (!!._)_!!._/~(!!___)}n,. = (-1): 4P sin na 
a2 l l l n1r: 

(3.12) 

n(n+ I )a" A,.+n(n-1 )a"-2B,.+n(n- I )a"-2 C,. 

+ _ _!__ {n21 (!!._)- .!!:_11(!!._)}n = o 
'a2 "l t"l" 

(3.In 
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(3.14) 

In calculations, we are forced to truncate the higher terms of the equations 

because of the limited capacity of the computor. In the present computation, 

the terms higher than n =50 were truncated. Even in this computation we must 

adapt some technique. 

In order to obtain the values of the modified Bessel functions up to the 50th 

order with sufficient accuracy, the values of the 50th and the 51st orders were cal

culated at first by Miller's method, then those of the lower orders were successively 

calculated through the recurrence formula down to that of the zero order. Al

though the values of the modified Bessel functions decrease very rapidly with an 

increase of their order, even the values of the relatively higher orders may not be 

disregarded because they play a considerable role in the solutiori of the problem. 

In the determination of the constants, it is necessary to modify the coefficients 

of the system of equations (3.12 ,..,_,3, 14) so that the difference of the maximum and 

the minimum is within several powers of ten. The coefficients accompanied with 

the modified Bessel function were too small for direct calculation, so they were 

reduced to the order of unity by dividing by an appropriate constant, say I,.(a/l). 

Similar technique was also reported in the previous paper11 >. 

4. Results and Discussions 

The collected results of stresses on the diametral plane both in the directions of 

loading and of its perpendicular are shown in Fig. 2. This figure shows the re

markable influence of the material parameter l. When the ratio l/a is very small, 

the stress distribution is similar to the well-known one obtained by the classical 

theory of elasticity, i.e. on the diametral plane in the loading direction a9 is ten

sile and constant P/1ra, where P=2aap, over a wide region about the center and 

a,. is compressive, whose magnitude is 3P/1ra at the center and gradually in

creases toward the boundary. As the ratio l/a increases, the magnitude of stresses 

on the diametral plane in the loading direction reduces, especially remarkably in 

tension, the turning point of a9 from tension to compression is shifted toward the 

center, and a9 compressive for small ratio of l/a turns into tensile near the loading 

boundary. When l/a=0.2, a9 and a,. are respectively reduced to as much as about 

0.5 and 0.8 of those obtained by the classical theory. The st~ess distribution on 
\ 

the diametral plane perpendicular to the loading direction becomes more uniform 

with an increase of the ratio l/a. 
The effect of the loading width on the stress distribution on the diametral 

piane in the loading direction is shown in Figs. 3 and 4. The effect is limited 
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Fig. 2. Effects of the, material parameter l on the circumferential and the 
radial stresses on the diametral planes in the loading direction 
and in its perpendicular. 
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Fig. 3. Effects of the loading width on the 
circumferential and the radial stresses 
on the diametral plane in the loading 
direction ( the classical theory). 

Fig. 4. Effects of the loading width on the 
circumferential and the radial stresses 
on the diametral plane in the loading 
direction (the couple stress theory, l/a= 
0.2 and 11=0.2) 



126 Yoshiji NIWA, Shoichi KoBAYASHI and Talmo FuKut 

near the loaded boundary. As loading width increases, the turning point of a8 

from tension to compression is shifted toward the center and the compressive stress 

becomes more uniform. The effect of the loading width is less dominant in the 

couple stress theory. It is noted here that the stress distribution obtained by the 

classical theory is valid for any value of the Poisson's ratio, although it is not for 

the couple stress theory. 

The effect of the Poisson's ratio on the stress distribution on the diametral 

-5.0 0 5.0 10.0 c xL i 
11'0 

Fig. 5. Effects of the Poisson's ratio on the 
circumferential and the radial stresses on 
the diametral plane in · the loading 
direction when l/a=0.2 and a=2.5°. 
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~=0.2 

-3,0 0 5,0 10.0 

CIC= 10.0• 

/J=0.2 

Jl=0.4 

Fig. 6. Effects of the Poisson's rati,;> ·on the 
circumferential and the radial stresses on . 
the diametral plane in the loading di
rection when l/a=0.2 and a= 10.0°. 

Fig. 7. Variations of the circumferential and 
the radial stresses at the center with l/a. 
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plane in the loading direction is observed in Figs. 5 and 6. As the Poisson's ratio 

increases, tlie magnitude of both compressive and. ten~ile ,stresses, a.,. and a9, 

generally increases. The effect of the Poisson's ratio, how~ver, is not so predomi

nant. 

The variations of the tensile and the compressive stresses a9 and a,. at the 

center of the specimen with the ratio l/a are shown in Fig. 7. The magnitude of 

both stresses decreases rapidly as the ratio l/a increases. 

5. Concluding Remarks 

The analytical results indicate that couple stresses have remarkable effects on 

the stress distributions in the Brazilian test specimen, in particular on the tensile 

stress in the central region of the specimen. It is advisable to take the effects of 

couple stresses into consideration in the interpretation of the experimental results 

of the Brazilian test. 
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