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%—harmonic Oscillation in Three-phase Circuit with

Series Condensers

By
Koshi OxkuMura* and Akira Kisumma¥*

(Received March 15, 1971)

The 3-harmonic oscillation originated in the three phase circuit with series con-
densers is treated. The system equation is reduced to the nonautonomous type of
nonlinear differential equation ' ’

dy .
dr

First by means of analog computer the 3-harmonic oscillation is investigated and

then the extended form of Bogoliubov and Mitropolski’s asymptotic method for the
- system with some-degrees of freedom is used for obtaining the periodic solution.

5
'Z‘a;,;x,-—]—ef.(xl, Xay *tty X5, T) k=1,2,:-,5 e&: small parameter
&

1. Introduction

We have encountered the phenomena where nonlinear oscillation occurs in a
three-phase circuit with series condensers. This kind of nonlinear oscillation, for
example, 3-harmonic oscillation results from the nonlinearity of the no-load
characteristics of the transformer. : ” :

The analytical treatment of the nonlinear three-phase circuit is finally reduced
to the solution of the nonlinear differential equation with some degrees of freedom,
so that it is rather labourious. In the case of neglecting the zero sequence com-
ponent, the analysis of the subharmonic oscillation has been reported!®, where
the system becomes an autonomous type after some transformation process. In
this paper, considering the zero sequence flux interlinkage, we shall analize
4-harmonic oscillation originating in the circuit. The system equation in our
case is reduced to non-autonomous type whose solution is made by the extended
form of Bogoliubov and Mitropolski’s asymptotic method.®

2. Fundamental equation and its solution by analog computer

The three-phase circuit treated here is shown in Fig. 1, where generator
voltages are balanced and circuit elements (line resistance R in the primary winding
and series condenser C) in each phases are also balanced. The transformer is in the
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Fig. 1. Three phase circuit with series condensers.

star-delta connection and the secondary windings contain the small resistance r.
The primary neutral of the transformer and the generator neutral are both ground-
ed. Our problem is to analyse the 4-harmonic oscillation in this circuit.” If the
characteristic of no load transformer is assumed to be cubic, the fundamental
equations are given by the system of nonlinear differential equations of non-auto-
nomous type,

% = E—l—‘lﬁ'q—l}d—f¢d('\[’d’ Yos 1/)‘0, T)‘
% = —Ya—0,—E0 (Vs Vo Yoo T)
‘(111:" = vﬂ+’7¢d(¢'d, "/’m "/’o" '7") v . ( : )
-‘:_vﬂ._ = —04+7Pg(Vas Vo» Vs T)
T
-‘!dlk—o = —C¢o("/"d, '\l"q’ 1/’0’ T)
T
where
¢d(¢'d’ E”q, "/'oa T) = (¢§+1/’3)1/’d+2{(1/,§_1/’%) cos (37) )

—2yrgrg sin (37) 1o+ 4y avrd

Oy(Vas ¥o» Voo 7) = (YE+ ¥RV e—2{(¥3i—¥?) sin (37)
+2v49, cos (37) g+ yrd

O(¥a> Yas Yo, T) = (Ya—393) ¥y cos (3r) +(ve—3¢d)¥r sin (37)
+6(YiH- vV +4ve

(2)
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and &, 7 and { are normalized values of the resistance of the lines, the elastance
of the series condensers and the resistance of the secondary windings of the trans-
former, respectively. (See Appendix 1). Here we represent Eq. (1) by new
coordinate. (See Appendix 2). Thus Eq. (1) becomes

ﬁ = xz—xé—|—6X1(x1, Koy Xy T)

dr

_d_x_z = —x,— %+ eX;(x, %5 X5, T)

dr

% = hyx,+x,+eX;(x), x5 %, T) (3)
T

_% =3 hlxz—x3+5X4(x1: x2’ x57 T)

dr

d—x5 = €X5(xu Xy X5y T)

dr

eX, (%), x5 x5y T) = —Empx, —E{f, (%15 %,) +8,(%,, %5 %5, T)}

eX, (%) Xy 255 T) = —Emyx,—E{ [, (%), %,) — g, (%1, Xy %5y )}

eX, (%), %y X5, T) = (qmy—hy)x,+7{fi(x), %) +8, (%1, x5 %5, T)} (4)

X, (%5 %y %5, T) = (7my—h) %, 7{fi(%ss %;) —8,(%1s %5 %5, T)}

eXy(%yy Xy, Xy T) = —C{k(xy, %, T)Fh(%y, %)% +4x3}

Filo %) = 0B+ Fa(2+42)

Sa(xs %) = 202,50, 42, (x5 4-23)

£1(%xy, %55 x5, 7) = 2[{(0y+2x,)2—43} cos (3t14-36,)
—2(pyt-2,)%, sin (37436, 1%,+-2(0,+x,) 2

8o(%1, %y %5 T = 2[{(0y+x,)2—x3} sin (37 +36,) -
+2(0,+2,)%, cos (37+30,)]x,—2x, x% (5)

R(xy, %,) = 6{(0,+%,)2+13} '

k(x,, x,, 7) = {x3—3(0,+x,)%}x, sin (374 36,)

+{(0,+x,)2—3x8} (p,~+x,) cos (37438,)

2
m, = Po

my; = 3:0%

Before we deal with the solution of Eq. (3), we show some results obtained
by means of analog computation. Instead of using Eq. (1),  we made use of
the equations represented by 0-, a-, A-components for analog computation (See
Appendix 2). Fig. 2 shows the region where 3-harmonic oscillation is sustained for

certain parameters. Fig. 3 shows the typical wave forms in the region of Fig. 2.
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Fig. 2. 'The region where 4 harmonic oscillation is sustained (Analog computer)

£€:0.15 7=0.20 %=0.15 E =0.26

AN
Fig. 3. Typical wave form of 4 harmonic oscillation in the three phase circuit.

3. The analysis of fundamental equation

Here, we are in a position to obtain the first approximate solution of system
(3) by the extended form of asymptotic method.
In Eq. (3), putting € =0, we have linear equation

dx,

- T KX
dr

dr



138 Koshi Oxumura and Akira KisHmMa

% = hyx, X, v (6)

dx,
dr
dx,
dv

= hyx,—x,
=0

Eq. (6) is called the unpurturbed system of Eq. (3). Ii we assume no permanent
magnetization, we have- .
x =0 (7)
We denote the natural frequencies of Eq. (6), w, and o, (v, <®,). The
parameters k, and A, are chosen so as to hold the relation
4
3

20, = w, =

(8)
Following the extended form™ of the asymptotlc method ‘we may write the
solution of Eq. (6) as

= (r)ene’™ -+ (=)ol e e o) 2ae o —Jv)x* e (9)
‘ k=1,2,3,4

(0)

where @, and z, are the eigen functions for eigen values, jo, and jw, respectively
and asterisk indicates the complex conjugate. We shall ‘obtain the approximate
solution of Eq. (3) using the expansion

X = xlt (x’.y: u, v)+sx(1’(x, s U ”)+5 (2)(x: D Uy l))+ - T (10)
' k=1,2, 3 4-

where real variables %, », u and v are assumed to be determined by the cquatlon

dx . ‘\
T_EA i(%, 3, 4, v) +6°Ay(x, 3, u, v)+"'- :
T

'er = eB,(x, u, J”l”)+52 2(% 9, Uy V) 4o
du : (an

d_ = eCy(x, », u, v)+6202(x: Js Uy 0) e
T .

d_U = eDl(x’.y’ u, v )+62D2(x, D Uy l})—|—'"
dr - )

Here, we need the zero-seqeuence component x;,. Variable x; is considered to
be smaller than other variables x; (=1, 2, 3, 4) and there is little difference in
neglecting higher powers of x; than the first in Eq. (3). We rewrite the last
equation of Eq. (3) as follows.
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B k5 ) O )R - B

Making use of the method of harmonic balance, we shall have the stationary
solution of zero-sequence component x;. The periodic solution of Eq. (12) may be
assumed to be of the form

L
x5 = 23 (Z;67°r +Z¥ e™50r) (13)
=1
where Z, is complex function of real variables x, y, 4, and v and is written as
oo Zr=2Zylx, 3, uy 0) = Py(x, 3, u, v) +jQ(x, 3, u, v) I - (14)
On the other hand, the substitution of Eq. (9) into E(%,, %, 7) and h(x,, x,) gives

N
k(xiﬁ), x(2°)a T) = k(xa I U, U, ‘l') = 2 {Knejn”T'i'vae—jo"‘r}
#=1

x . - (15)
h(x®, 2P, 7) = h(x, 3, u, v, T) = H+D" (H,e/®m - H¥¢™iomr)
m=l
Whére K,, H, are complex function written as
Kn = Kn(x’ D U, Il)
= u, (%, 3, u, 0) +jv,(%, 3, u, v) n=1,2,., N (16
Ho= Ho(5,5, 1,9 )
= Dm(%s 9> 8, 0) +jqm(%; ¥, u, ) m=1,2,--, M
and H, is real function written as

Ho = Ho(x,}’, u, I)) (17)

and the values L, M and N are positive integers.

If the value L is given, the values M snd N are determined by the value L.
Substituting Eq. (13) and (15) into Eq. (12) and equating the . coefficeint of
each frequency component, we have

¥Z=u .. o (18)

where ¥ is 2L X 2L matrix whose elements are the function of variables x, 3, u
and » and Z and u are 2L column real vectors written as

Z = t(un vl; "", Ur, vL) }
u= t(Pn Q.v e, Py, Q,L)

Under the assumption that ¥ is nonsingular we have

(19)

Z=F"% . (20)
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In the zero-sequence flux interlinkages there exist frequency components of order
1,3 2 ... but terms of harmonics higher than order $ are ignored. Conse-

quently we may preferably put
L=M=N=2 )

— Lo
2 =5 @-1) an

_ 2
O =
Note that the frequencies of zero-sequence component are invariant by the trans-
formation defined in Appendix 2. From the above procedure, we obtain the
expression of ¥ as follows.

1
H,+p, 91——3‘h bh+p, at1.
1
7= q1+? H—p, q¢.—q p—b: (22)
htp:  —¢ H, -1
@+9. pH—2. 1 H,

where each component for ¥ is

H, = 6{{0§+4(+"+y" +u*+")}
b =60 (2p0,x+4xu+4yv)

b, =12{p,u (23)
g = 6{(20,y+4xv—4yu)
g, = 12{p,v

and components of u are

u, = —{[60,(u?—1?) cos (30,) +12p0,uv sin (36,) +12(u>—*) {x cos (36,)
‘ + sin (36,)} —24uv{y cos (36,) —x sin (36,)} +12(x2—?) {u cos (30,)

v sin (36,)} +24xy{u sin (36,) —v cos (36,)}]

v, = —{[60,(u®—7*) sin (38,) —12p,uv cos (36,) +12(u2—s*) { y cos (36,)
—xsin (36,)} +24uv{x cos (36,) +y sin (36,)} +12(x*—»*) {usin (36,) .
—uv cos (360,)} —24xy{u cos (36,)+v sin (36,)}

u, = —{ {12p,(ux—uvy) cos (30,) +120,(up-+ux) sin (36,)
+4 (2 —3¢%)u cos (36,) +4 (362 —1?)v sin (30,) +4(38°—y?)y sin (30,)
+4(x*—35%)x cos (36,)}

) (24)
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v, = —{{—120,(vx+uy) cos (30,) —12p0,(vy—ux) sin (36,)

—4(*—34)v cos (36,) —4(u*—3v*)u sin (36,)
—4(3x*—»%) y cos (36,) —4(3y*—»*)x sin (36,)}

141

Substituting the variable x; into the first four equations of Eq. (3) and making

use of the extended form of asymptotic method, we have

Zf = eA,(%, », u, v)
- 2 2
= —apX— (wl _?"‘bn))’_(‘faux—’]blay) (**+57)
—(&a,x—nb, y) (W +v*) — {faupo(xu""yv) —ﬂblzpo(xv—yu)}
+R(U) '
:l‘r = eB,(x, 3, u, v)
. 2
= —ay)y +((01 _‘5‘— bu)x—(fals)"l‘ﬂb;sx) (**+5")
—(Eay v+nb,, %) (uz+vz) - {faié'pb(xv—.yu}_"ﬂblz po(xu+yv)}
+1,.(U)
Z—: = eCi(x, y, u, v)
4 2
= —auu— (wz ——3-+ bm)v—(fanu—{—ﬂb%v) (¥4 77)
—(€ay,u+nb,v) (x*+5%) ’ff,{fazz po(%* ") +277bzzpox)’}
+R (V)
Z—:_ = eD,(x, 3, u, v)

) = —an? + (("2 —g— +b21 )u —(€ay,v—7by ) (“2I+ %)

— (€03, 0— 7o) (F° +5%) — {26 a0, %9 — 03 0o (¥ — %)}

+1.(V)

(25)

@y, by, -+ being constants and R,( ), I,( ) indicating the real part and the

imginary part of the complex functions U and V respectively

where ,
U = U(x, y, u, v)
= —(£+j37) (SeZi+5,2T +85.2%)
V =V(xy, uy0)
= —(§—j37) (5,2, + 8,2, +8,Z¥+-S,.Z¥)

(26)
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Sy = Solx, 9, u, v) : \
= 2(## —v*) cos (36,) +4uv sin (36,) -|—]{2(u’ %) sin (36,)
—4uv cos (36,)}
S, = 8,(x, y, u, v)
= 4(ux—uvy) cos (360,) +4(up+uvx) sin (36,) .
+j{#(ur—w) sin (30,)—4(wy+o%) cos (30,)} (27)
S, = S,(x, y, u, v) »
= 2(x*—”) cos (36,) +4xysin (36,)
+2p,{u cos (36,) +v sin (36,)} +7[{2(x*—»?) sin (36,)
—4xp cos (36,) +2p,{u sin (36,)—v cos (36,)}]
S, = 2p,{x cos (36,) +ysin (30,)} +720,{x sin (36,) —y cos (36,)}

In the nonlinear equation (25), two sorts of steady states are considered: one
corresponds to singular point and another to periodic solution. We deal with the
former case. The singular .points of Eq. (25) are obtained by the solutions of
simultaneous nonlinear algebraic equation

eA,(x, y,u,v) =0
eB, (%, y,u,v) =0 (28)
eCi(%, 9, u,0) =0

eD,(x, y, u,v) =0

4. The stability of singular points

We must investigate the stability of singular points x=/x,, 3, %, 7,} (we use
vector notation hereafter) of Eq. (25). These singular points are determined by
Newton method which is often effective for the solution of nonlinear algebraic
equation. Considering the variation éx from x,, we have the variational equation
of Eq. (25).

4% _ yox (29)
dr ‘ : :

where J, is Jacobi matrix.

Note that it is rather difficult to obtain explicitly the components of J, since
Eq. (25) includes functions U and V, which, asis seen from Eq. (26), are repre-
sented by the sum of the products of complex function §; and Z;. Function S; is
explicitly expressible as the value of real function of x, », u and » but function Z;
is not so. The components of J, includes terms, for example,
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»2,3

b

38,2; 88, 8z; =0, 1
j=1,2

— P48, -2 30
éx ~ Ox J+'6 ()

The terms Zs S; are easily obtained but Z ,, %Z—’ are not explicitly’ expresslble as
x %

the real function of variables x, », u and ».. Then we need to devise any useful

way in order to have term % Column vector Z which gives the solution of
o dx

Eq. (18) is represented as the product of the square matrix ¥~! and column vector
u. Making the partial derivatives of column vector Z by x, we have

2 . (T lt) (31)
Ax . x T ox : ‘
and Q—Z- °Z and %z are similar to Eq. (31). As is easil&r seen from Eq. (22),
8y’ du ov

%! and ? are easily obtained since ¥ and u are expliciﬂy expressible as the
x x

function of #, y, u and », and matrix ¥~? is obtained numerically by what we call
Sweep-out method. If Jacobi matrix J, is obtained by the above procedure,

then the characteristic equation of Eq. (29) is written as
det (A1—-J,) =0 (1: unit matrix) ’ (32)

If the coefficients and Hurwitz determinants of Eq. (32) are all positive, then the
singular points are stable and 4-harmonic oscillations are sustained for parameters
&, 7, { and E which give stable singular pblnts

5. Numencal examples

In this section we show some numerlcal examples in certain parameters We
consider the case where E=0.20, £ =0.15, =0.24, { =0.15. For these parameters
0, =0.2020, 8,=—1.56 are obtained. The periodic solutions are shown in
Table 1. -

The four stable solutions M,, M,, M, and M, predict the physical existence
of four modes of 3-hamonoic oscillation in the original three phase circuit.

6. Conclusion

Making use of analog computer, we show the existence of 4-harmonic oscil-
lations in the three phase circuit with series condensers and have made their
analysis by the extended asymptotic method of Bogoliubov and Mitropolski.
The results are shown by numerical examples for certain parameters.
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Table 1. Periodic solution for parameters E=0.20 £=0.15 7=0.24 {=0.15.
Mode | x; (x+17) @ (u+jv) 12 z 2y Stability
X1 0.0281+;0.2013| 0.0660—40.1721
%, | —0.2013+50.0281] 0.1721+-70.0660
M; | x5 { —0.0671+4;0.0094] —0.0574—;0.0220 Stable
% | —0.0094—50.0671} 0.0220—;0.0574
x5 0.0176450.0119| —0.0103—;0.0055
1 | —0.1079+4,0.1723)  0.1810+0.0351
x2 | —0.1723—;0.1079| —0.0351 +4-0.1810|
M, | x; | —0.0577—50.0360, 0.0117—;0.0603 Stable
. 0.0357—;0.0574| 0.0603+50.0117
% —0.0125—50.0172[  0.0004+;0.0117
% | —0.19344;0.0626/ —0.0032 +;0.1843
%, | —0.0626—70.1934| —0.1843—;0.0032
M; | x3 | —0.0209—;0.0645( 0.0614+;0.0010 Stable
%y 0.0645—50.0209, —0.0010+-70.0614
g 0.0058+70.0204]  0.0099—;0.0062
x 0.1603—50.1250!  0.1160+50.1432
%, 0.1250470.1603| —0.14320.1160 _
M; | 23 0.0417+50.0534) 0.0477 —;0.0387 Stable
% | —0.0534+50.0417| 0.0387-+;0.0477
x5 —0.0191+-50.0093) —0.0103 —;0.0055
xn 0.0700—;0.1575| 0.0704—;0.1415
%2 0.1575+;0.0700| 0.1415-+0.0704
M; | x3 0.0525+.70.0233] 0.0527+;0.0472 Unstable
x4 | —0.0233+470.0525 —0.04724-50.0527
% 0.00804-70.0130,  0.0073—0.0031
x| —0.1196+450.1240|  0.1449—;0.0631
x; | —0.1240—;50.1196| 0.0631-;0.1449
Mg | x3 | —0.0413—70.0399; —0.0210—50.0483 Unstable
x 0.0399—;0.0413| 0.0483—;0.0210
x5 0.0142—0.0056| —0.0010-570.0079
% | —0.1714450.0181|  0.0873-;0.1318
x; | —0.0181—;50.1714] —0.1318+;0.0873
M; | x3 | —0.0060—50.0571] 0.0439—;0.0291 Unstable
X4 0.0571—50.0060, 0.0291 +;0.0439
x5 —0.0153+450.0004] 0.0073 —;0.0031
% | —0.1429—50.0963| —0.1146--;0.1089
%y 0.0963 —50.1429] —0.1089—;0.1146
Mg | % 0.0321—;0.0476;  0.0363-0.0382 Unstable
EA 0.0476+570.0321| —0.0382 +;0.0363 '
x5 0.0145-+70.0048 —0.0063 —;0.0048
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Appendix 1.

The fundamental equation of the nonlinear three phase circuit shown in Fig. 1
is obtained by the following graphical procedure. If the voltage sources are short,
the circuit of Fig. 1 is represented in Fig. 4 by linear graph. The circuit under
consideration with arbitrary node numbering and arbitrary branch numbering and

orientation is shown in Fig. 4.

Fig. 4. Linear graph for the three phase circuit.

Bryant® has shown that his method of tree construction always leads to a

fundamental loop matrix B of the form
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1, 0 0 :F,; O 0
B=[LF]=|0 1 0 :Fy Fs 0
0 0 1, :F, F, Fy
We now define as our state variables, ¥ chord flux-linkage and v tree

capacitor voltages.
In our circuit, we may write

y = t("/’a, wbs V’c)

v = '(Ua, Vps ;) .

_ _2 _4
E = (E,,, cos (wt+¢), E,, cos (wt—l—qa 3 7:), E,, cos (wt—i—go 3 z))
J‘Y = t(Ja’ Jo Je)

y(T) =y, civrs, ) ¢,: positive constant

R, = diag (R, R, R)

€ =diag (G, C, C)

r =diag (r, r, )

where

¥ : column vector of the flux-interlinkages for branch (7, 8, 9)
: column vector of the voltage across capacitor branch (4, 5, 6)
: voltage source column vector for branch (1, 2, 3)

: current column vector for branch (10, 11, 12)

v

E

Iy

fy : current column vector for branch (7, 8, 9)
R,.: diagonal matrix for resistive branch (1, 2, 3)
C : di?,goii;a.l matrix for capacitive branch (4, 5, 6)
r

: diagonal matrix for resistive branch (16, 17, 18)

Let us select the tree of G, and G, shown as thick line in Fig. 4 and the set of
fundaméntalv loops defined by these trees is shown as loop I, II, III, IV.
After some elimination processes, we have the state equation for G,

a¥vr
i = —Fyv—Fy, R’ Fy {f,(¥) +J} +E
J ’ (34)
% = C U Fu{fy(T)+ 4}
For G,, the fundamental loop matrix B, of chord (15) is given by
B, = (bw, bz)
b, =(1,1,1) (35)

b, =(1, 1)
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The tree voltage vector V,, tree current vector I,, chord voltage vector v, and

chord current vector i, are written as

V. = (v, 2)
L —tG . i
s =" 1) 55)
v, = (vo)
i = (i)
where
v, : voltage column vector of secondary windings branch (16, 17, 18)
v, : voltage column vector of resistive tree branch (13, 14) .
i, : current column vector of secondary windings branch (16, 17, 18)
i, : current column vector of resistive tree branch (13, 14) ‘
The diagonal matrix r is decomposed as
r=roir, (37)
and combined relations between v,, i,, v, and i, are
v, =ri
1 1 -l } (38)
U, =r,i,
After some elimination process, we have
(ri+0,7,'8,)b,, 8/ (B ) +b,0,, =0 (39)

where (b,, b,,) is the inner product of b, and b,,. The relations between Jy, % R

v, and i, are held by equations

v, = n®¥
dt

1 (40)
lw - —_Jy

n

Substitution of Eq. (40) into Eq. (34) and (39) gives finally
av ¢ .
E = —Fvsv—F-n Rte Fvs{fy(’) ’,_mw} +E
d - ,
= = C Fulfy(®)—ni} | (41)
1 .

bw%’ = = (BT f6)bt] (b b)
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In our case, Fy; and Fy, are 3x3 unit matrix. Then we have as the state
equation for the three phase circuit

dd% = —0,—R(e;yra—nis) + E cos (wt+9)

% = —v,—R(c;¥r3—nio) +E cos (wt +¢—% n)
&, _ —0,—R(cyr3—niy) +E cos (a)t-l—cp—i 1:)
dt 3

dv, .1 "

B — L eyt - )
d 1 ;

% = E (631#2—"”20)

d l ;

d’;c = E(cs‘lll‘g—'mo)

dy,  dy,  dy. 3

G¥a %Y c — _ v

@t & e

Appendix 2.

The equation (42) is written by the 0-a-#-components for analog computer
use. At first, Eq. (42) is normalized by putting

ot+p >7v ¥ > auv—>v a,E,—E
43
R?ws e 1 3¢, G ¢ (43)
4wal o Cdwa} rajw '

where

ay = wa,

Eq. (42) is represented by 0-, a-, f-components using transformation matrix Co,g
defined as '

1 1 1 1 1 0
3 3 3
2 1 1 - 1 V'3 ~
Copo=|> —=— —— Cii=|1 —— Y2 44
R I 3 3 M | 2 2 (4
o L -1 1 -1 _v3
V3 V3 2 2

If we assume the case 7 <n°R, we have the following set of equations
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ddi: = —0,—E{(YVI+ VRV +2(¥E— VRVt 4y Y8} +E cos (7)

Wt — —rp— (V2D Va— b i+ 3] + Esin (7)

dvq

e 1{(Va+VE)Vat2(Vi— Vi)Yot 4v,¥e}

% = {2V Vs — WP+ vy}

% = —C{(WE =3V (I~ ¥RVt 4T}

Furthermore, the transformation matrix defined by

1 0 0 1 0 0
Coae=|0 cos () sin (7) tae =| 0 cos(r) —sin(7)
0 —sin(r) cos(z) 0 sin (7) cos (7)

leads Eq. (45) to Eq. (1) in section 1.

Appendix 3.
If { =0 and y,=0, Eq. (1) becomes

% = E+yr,—v,—E(WE+ ¥y,

ddi: = —Ary—vg—E(PE P,

dvd

—4 =yt p(Yit+ vV,
dr

dﬁ = —Ud+7/('¢‘azz+¢5))¢'q
dr

which is an autonomous system,
The singular points of this system are given by

Va0 = P, cos (6,)
Ygo = Posin (6,)
Vg0 = 703 sin (6,)

Vg0 = — M0 cos (B,)

where p, and 8, satisfy the equation
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~ (45)

(46)

(47)

(48)
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(6*+7°)p§—2700+05—E* =0
49
e (13 “
'3 Do
The stability of the singular points is investigated in Refference (1). Putting
g =Ya—Va
e =YY (50)
vy = v3—04
dvg = vg—04
we define as our new variables x,, x,, x,, x,, and x,
Xy +jx, = (g +jdyrg)e 7%
%,+gx, = (dvg+jdv,)e 7% (51

X =Yg

We have Eq. (3) rép’résented by new coordinate whose origin is given by
Eq. (48). :



