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An analysis of the magnetic field produced by a current flowing in the Heliotron 
C coils is carried out. Under the assumption that radius of coils is much smaller than 
that of torus, the calculation resorts to the perturbation method in which all quantities 
are expanded in 1Ca, where " is the curvature of torus and a the radius of coil. 

The Heliotron C magnetic field is obtained analytically as the function of coil. 
radius, the current ratio of adjacent coils, the distance of adjacent colis and the curvatre 
of torus. 

The accuracy of this analyzed magnetic field is examined according to whether the 
position of neutral line calculated by the obtained formula agrees with that of exper• 
iment or not. 

1. Introduction 
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The Heliotron C magnetic field was designed in order to be used in the 

Heliotron C device.1
)
2

)
3

) This device was constructed in Kyoto University in 

colaboration with the Institute of Plasma Physics in Nagoya :University and its 

aim was to investigate the spatial confinement of plasma. 

When we investigate the plasma confinement in a nonuniform magnetic field 

such as the Heliotron C magnetic field or the bumpy field, it is necessary to get 

the exact formulas of the fields'). But owing to a toroidal curvature effect, we 

can not easily obtain the analytical equations in general. 

The main purpose in this paper is to get an analytical formula which describes 

the toroidal Heliotron C field and to evaluate the accuracy of the formula by 

comparing the analyzed magnetic field with that of the experiment. 

The analytical formula is obtained by adopting the expansion techniques :5
) 

all field quantities are written as power series in a small parameter ,er which 

gives a measure to the magnitude of the toroidal curvature effect. 

We analyze the toroidal Heliotron C magnetic field in Section 2 and compare 
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the analytical results with that of the experiment in Section 3. The distribution 

of the field intensity is measured experimentally. 

The obtained analytical formula to the first order of JC is found to be in 

good agreement with that of the experiment with respect to the location of the 

neutral line and the magnetic field intensity. 

When considering the plasma confinement or particle confinement in the 

Heliotron C field, we can utuilize this first order analytical formula with good 

approximation. An extension to the calculation of the poloidal Heliotron magnetic 

field is carried out easily by using the same method. 

2. Analysis of Heliotron C magnetic field 

We take the (T, fJ, z) toroidal coordinate such that z-axis lies along a circle 

of radius R and unit vector e8 is perpendicular to e,. and ez respectively. The 

toroidal perturbation introduces a small constant of curvature of z-axis, JC, so 

that JCT<. l. (Fig. l) 

Fig. I. Toroidal Coordinates. 

The operator V is defined as 

a 1 8 l 8 
V =e,.-+e9--+ez--------

8T T 8() l + u cos (} 8 z 
(2-1) 

wher JC=l/R. 
Then operating V on the vector function F and scalar functionf, respectively, 

we get next formulas with 7/ = l + JCT cos fJ; 
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'v•F= - -(r71F,.)++-(71F8)+-(rFz) 1 [ a a a ] 
T7] OT 80 az 

When these equations are expanded for small ,cr, the equations obtained are 

= 
'v<!> ='v0<t>+ ~<t>z(-,crcosO)"ez 

•=1 

V•F= V0 •F- ~ -F•grad (-,crcos 0)"--F,,(-,crcos O)" = [ l a ] 
•

001 n az 
and 

= [ I V•V</> = V0
• V0¢>-~ -(grad</>) •grad (-,cr cos 0)" 

"~1 n 
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(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

-( l + : ) <f>zz( -,cr cos 0)"] (2-7) 

(2-8) 

Now the Heliotron C magnetic field is produced by the 2N filamentary current 

loops of radius a, which are equally spaced along the circumference of the torus. 

N current loops carry the current I and another N current loops carry the 

current -J.1. The direction of current is reversed in adjacent coils. 

For analytical convenience, a set of current loops is expanedd into· Fourier 

series. If we assume the positive current loops locate at z so as to satisfy cos (mz) 

= I and the negative current loops locate at z so as to satisfy cos (mz) =-1, then 

the equation for a set of current loops is obtained as 

2here 

1/2 a0 = Im (l-J.)/2;,r 

a,.= Im (I-J. cos n1r)/1r. 

We rewritej(z) as 

j(z) = Im (l+,cacosOf 1[(1-J.)+2(l+J.) cosmz+···] 
21r 

(2-9) 

(2-10) 

(2-11) 
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The IC perturbation on magnetic scalar potential </> is 

(2-12) 
I 

The ¢ 0 which satisfies the axisymmetric Heliotron field is given by the following 

equation: 
~ 

¢0 = Cz+ ~ [A,,I0 (nmr)+BnK0(nmr)] sin (nmz) 
n=1 

where 10 and K 0 are modified Bessel functions. 

In the case of n=l, ¢0 is 

¢ 0 = Cz+[AI0(mr) +BK0(mr)] sin (mz) 

where C, A and B are arbitrary constants. 

(2-13) 

(2-14) 

Next in order to seek the IC order solution we use eqs. (2-7), (2-12), and 

(2-14), then the IC order Laplace's equation for¢ is 

where 

(V • V) 0 ¢" = -</>,. cos <1>+2</>zzter cos(} 

= -Amk[I1(mr)+2mrl0(mr)] sin (mz) cos(} 

+Bmk[K1(mr)-2nmrK0(mr)] sin (mz) cos(} 

(2-15) 

(2-16) 

(2-17) 

The solution of¢" satisfying eq. (2-16) is composed of both homogeneous solu

tion and inhomogeneous solution. The homogeneous solution may be written 

since it satisfies the next differential equation: 

Meanwhile inhomogeneous solution for eq. (2-16) is of the form: 

</>"inho = [f(mr) +g(mr)] sin (mz) cos 0. 

where f(mr) and g(mr) are functions of mr. 

(2-18) 

(2-19) 

(2-20) 

The differential equations obtained from eq. (2-16) for f and g are of the 

form: 

1 ( 1 ) AIC 1 f" +-J' - I+-- f +-[311 (mr) +2mrl1 (mr)] = 0 
rm (rm) 2 m . 

(2-21) 
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I ( I ) B,c · g" +-g' - I+-- g +-[3Ki(mr) +2mrK/(mr)] = 0 
rm (rm) 2 m 

where the prime denotes differentiation by mr. 

With the identity 

arid the similar relations for K~, K/' and K/', it can easily be verified that 

AJC ·• J = --[mrI/(mr) +(mr) 2 Ii(mr)] 
2m 

B,c 
g = -[mrK/(mr)+(mr)2 Ki(mr)] 

2m 

are the particular solutions of eqs. (2-21) and (2-22), respectively. 

Then the solution of eq. (2-16) is 

= [A"Ii(mr)+B"Ki(mr)] sin (mz) cos(} 

- A,c [mrI/ +(mr) 2 Ii] sin (mz) cos(} 
2m 

+ B,c [mrK/ +(mr) 2 Ki] sin (mz) cos(} 
2m 

For a>r, the magnetic potential </) 1 is readily shown to be 

</)1 = Cz+Aio(mr) sin (mz)+A"Ii(mr) sin (mz) cos(} 

· - A,c [mrli' +(mr) 2 Ii] sin (mz) cos(} 
2m 

For a<r, the magnetic potential </)11 is 

</)11 = BK0(mr) sin (mz)+B"Ki(mr) sin (mz) cos(} 

+ B,c [mrK i' + (mr) 2 Ki] sin (mz) cos(} 
2m 

The components of magnetic flux density B in the two regions are given as 

B~ = Amii(mr) sin (mz)+A"mI/(mr) sin (mz) cos(} 

- A,c [mrli' +(mr) 2 IiJ'm sin (mz) cos(} 
2m 
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(2-22) 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

(2-28) 
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and 
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B~1 = -BmK1(mr) sin (mz) +B•mK'(mr) sin (mz) cos 0 

+ B1C [mrK/ +(mr)2K1]'m sin (mz) cos 0 
2m 

rB~ = -A•J1(mr) sin (mz) sin 0 

+ A1C [mrl/ + (mr) 2 
/ 1] sin (mz) sin 0 

2m 
rBf = -B•K1(mr) sin (mz) sin 0 

- B1C [mrK/ +(mr) 2K 1] sin (mz) sin 0 
2m 

(1 +1Cr cos 0) B! = C+Aml0(mr) cos (mz) +A•mJ1(mr) cos (mz) cos 0 

AIC , 
--[mr/1 + (mr) 2 

/ 1] m cos (mz) cos 0 
2m 

(1 +1Cr cos 0) B!1 = BmKo(mr) cos (mz) +B•mK1(mr) cos (mz) cos 0 

B1C , 
+- [mrK1 +(mr) 2K1] m cos (mz) cos 0 

2m 

(2-29) 

(2-30) 

(2-31) 

(2-32) 

(2-33) 

Now, five arbitrary coefficients in the above equations are determined so as to 

satisfy the conditions: 

n•[B] = 0 

nx[B] = µ0 j. 

at the current sources, r =a, where [BJ is the jump at the current sources. 

After the calculation, we get 

(2-34) 

(2-35) 

Im 
B = -µ 0 -2a(l+l)l1(ma) 

21r 
(2-36) 

IC Im ~ 
A• = -ma-µ 0-2a(l +l) A 

2m 21r 
(2-37) 

• IC Im • B = -ma-µ 0-2a(l+l)B 
2m 21r 

(2-38) 

where 

A= (-IoK1K 1-l1KoK1 -mrloKoK1-mrK1 -mrl1KoK0),.=a, 

B = [1/ -~ -mrl/' / 1K1 +mr/1/ 1Ki'' -(mr)2
/ 1I 0K0+ (mr)2I1Kif1] 

mr r=a 
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The above equations are just solutions that indicate the toroidal Heliotron C 

magnetic field to the first order of ,c. 

In the next section it will be shown that this set of equations (2-28) to (2-38) 

is quite in accordance with the experimental measurement of the toroidal magnetic 

field in the Heliotron C device. 

3. Heliotron C magnetic field 

A) Measurement of Heliotron C magnetic field 

Magnetic field coils for Heliotron C device are designed so that the neutral 

lines may be laid inside a discharge tube far from a wall and the mirror ratio along 

field line may become considerably low. The coils used in the device are com

posed of positive coils and negative coils. Each of the former has eighty turns and 

each of the latter has forty turns with three auxiliary taps which have 45 turns, 50 
turns and 55 turns respectively. 

These coils are set with regular intervals to one another along the mean cir

cumference of discharge tube. 64 coils are used in the normal operation, and 

carry the currents up to 2000 A, produced by the condenser discharge with energy 

240 Kjoule. 

The maximum magnetic field intensity under the negative coils becomes 

about 2000 G and the mirror ratio along the magnetic lines of force is about 3.5 

on the axis. Fig. 2 shows the configuration of the Heliotron C device. The 

magnetic lines of force obtained in experiment are shown in Fig. 3. These lines 

IRON CORE 

AGNETIC 

Scale 
1---------< 

50cm 

Fig. 2. The configuration of Heliotron C device. 
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(a) Toroidal Heliotron magnetic lines of force with -<=40/80. 

( b ) Toroidal Heliotron magnetic lines of force with A =45/80. 

( c ) Toroidal Heliotron magnetic lines of force with A =50/80. 
Fig. 3. 
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fo force are written with the iron powder method by changing the parameter of 

current ratio )., The values of). are 40/80, 45/80 and 50/80. 

In the case of ). =50/80, the magnetic flux intensity distributions are shown 

in Fig. 4. An effect of the toriiodal curvature appears largely on the horizontal 

plane. 

5) Comparison of the analyticzal results with that of experiment. 

In order to check the accuracy of the set of eqs (2-28) to (2-33), we exapiine 

the difference between the analytical results and those of experiment'. Qf interest 

to us is the location of neutral line where the magnetic flux intensity becomes 

zero. 

It is supposed that due to the toroidal curvature the neutral line is forced to 

move into the direction of the center of curvature to some extent. 

Now, according to the analytical eq. (2-32), the z-component of magnetic 

flux intensity for r<a is rewritten by introducing B0, e and a, as 

where 

B. = Bo{l +alo(mr) cos (mz)] [I -,er cos 0) 

B /Ce •--. +-0-aJ,(mr) cos O cos (mz) 
2m 

B0 = µ 0 lm(l-).)/211:, 

a= 2am(l+).)K1(ma)/(l-).), 

e =ma.A/K,((ma). 

If ,c tends to zero, eq. (3-1) results in an axisymmetric case. 

B-1) Position of neutral line in the vertical plane. 

(3-1) 

The magnetic flux intensity under the negative coils is given by putting 
i 

cos (mz) =-1 and in the case of cos O =0, we get the value Bz in the vertical 

plane which includes the geometrical axis, 

(3-2) 

In the above equation, the effect of torus curvature does not appear. Using the 

numerical values in Table 1, the position of the neutral line can be claculated and 

results in d=5.0 cm, while the experimental reuslt is 4.9 cm according to Fig. 4. 

Table 1. Numerical values for Heliotoron magnetid field. 

a=ll.75 cm L=lO cm ..t=0.625 ma=3.69 K 1(ma)=0.0178 D1=maK1(ma) 

=0.0658 a=2D1/(l+..t)/(l-..t)=0.57 
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(a) Magnetic field intensity of Heliotron C with .l=50/80 in the vertical plane. 
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0 
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(b) Magnetic field intensity of Heliotron C with .l=50/80 in the horizontal plane. 

Fig. 4. 
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B-2) Position of neutral line in the horizontal plane. 

There are two cases in the position of neutral line; one is nearer to the center 

of tours, i.e., cos {} = -1 and the other is farther away from the center of torus, 

i.e., cos 0=1. 

In the case of cos {} = 1, the magnetic flux intensity is. 

Bz/B0 =[1-a/o(mr)](l-icr)- ICE al1 (mr) 
2m 

+JCa[mrli' + (mr) 2 
/ 1]/2m (3-3) 

and after the little calculation, B,, =0 occurs at mr=l.38. Then, the position of 

neutral line is d=4.4 cm, meanwhile the experimental result is 4.4 cm according to 

Fig. 4. 

In the case of cos {} = -1, the magnetic flux intensity can be rewritten as 

Bz/B0 = [l-a/0(mr)J(l +/Cr) +~a/1 (mr) 
2m 

-JCa[mrl/ +(mr)2
/ 1]/2m (3-4) 

and after the calculation, Bz=O occurs at mr=l.81. Then the position of neutral 

line is d=5.76 cm, meanwhile the experimental result is 5.8 cm according to Fig. 4. 

Then as for the location of the neutral line, there is good agrerment between 

the experimental result and the analytical result. 

4. Conclusion 

An analysis of the magnetic field produced by a current flowing in the toroidal 

Heliotron coils is studied. Under the assumption that a radius of coils is much 

smaller than that of torus, the solution is expanded in powers of JCa. The lowest 

and first order solutions of JC are obtianed so that magnetic scalar potential ,J, 

satisfies the boundary conditions on the circular current loops. 

The Heliotron C magnetic field is given analytically as the function of coil 

radius, the current ratio of adjacent coils, the distance of adjacent coils and the 

curvature of torus. 

The location of neutral lines calculated by the analetical formula shows good 

agreement with that of the experiment. 
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