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The necessary condition for existence of characteristic surface is obtained for hypo­
elastic materials and it is shown to coincide with the acceleration wave propagation 
condition. The wave speeds in plastic state are less than or equal to those in elastic 
state for the same stress state. The principal waves are analysed generally and clas­
sified into longitudinal or transverse waves for isotropic plastic materials. The prin­
cipal transverse wave speeds have the same magnitudes for plastic and elastic state and 
they show identical acoustical birefringent effect for both states. 

1. Introduction 
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Thomas1· 8>** investigated deeply and broadly the characteristic surfaces and 

acceleration waves in plastic materials. The constitutive equations adopted by 

him are linear for elastic deformation with the von Mises or Tresca yield condition. 

Furthermore he assumed the material to be incompressible. The last assumption 

excludes the existence of dilatational waves. 

On the otherhand Tokuoka1> proposed a generalized Prandtl-Reuss constitu­

tive equation, which includes the non-linear elasticity and is consistent with 

the co-ordinate invariance. This is a special case of hypo-elasticity proposed 

by Truesdell.1-1> This paper is concerned with the characteristic surfaces and 

acceleration waves in that generalized Prandtl-Reuss material. 

In Sect. 2 the necessary condition for existence of characteristic surface is 

obtained. This coincides with the wave propagation condition obtained in Sec. 3 

in general hypo-elastic material. Then characteristic surface, if it exists, must 

propagate with the same speed of acceleration wave. Two speeds of waves for 

elastic and plastic state in the same stress state are compared and the speed for 

plastic state is less than that for elastic state, if, and only if, the rates of work done 

by stress per niut volume are different on two sides of the wave. In Sed. 4 principal 

* Department of Aeronautical Engineering 
** 1.8) denotes Refemece 8) of the first paper1> of this series 
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waves are analyzed and they are longitudinal or transverse. The principal trans­

verse waves have the same speeds for elastic and plastic states. The formula of 

acoustical birefringence in the first order approximation is obtained and this is 

identical to that in elastic materials, which was obtained by Tokuoka and Iwashi­

mizu2> and Tokuoka and Saito3>. 

2. Characteristic Surfaces 

As field equations we have the equation of continuity and first Cauchy's law 

of motion: 

d. s pf p •• 
IV +- =-X, 

µ µ 

(2.1) 

(2.2) 

where p, x, f and S are respectively mass density, vecloity of material particle, 

body force per unit mass and non-dimensionalized Cauchy stress, which is defined 

by the stress T divided by the shear elastic modulusµ. 
A surface I(t) in a material is called a characteristic surface when the basic 

equations (2.1), (2.2) and (I.3.16) * or (I.2.8) and the assigned data of p, x, x, 
0 

f, Sand Son I(t) do not suffice for the determination of all first partial deriva-

tives of p, x and S over I(t). 

According to Thomasl. 8> we introduce a rectangular coordinate system y1, y2, 

y3 which may move with uniform velocity relative to x system. The origin of the 

new system coincides with a point Pon I(t),y1 andy2 axes lie in the tangent plane 

to I(t) at P, and we assume that the velocity of I(t) relative toy system is zero 

at Pat time t0• The neighboring of I(t) for P may be represented by 

Y3 = f (y,1 f, t) 

with 

(k=l, 2). 

The value of any quantity 1JI' on I (t) is expressed by 

1Jl'(y1, f, y3, t) = iJi(y1, y2, t) ' 

and we have 

aw aw-- = - , 1Jl',,.=1JI',,. 
8t 8t 

(k=I, 2) 

* (1.3.16) denotes Equation (3.16) of the first paper1> of this series 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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on account of (2.4). Hence all derivatives of p, x and Sare determined at (P, t0) 

from the assigned data on I(t) with the exception of p, 3, X3 , and S, 3 • 

Equations (2.1), (2.2) and (1.3.16) give the conditions 

l (k, m=l, 2, 3), (2.7) 

at (P, t0), where the dots are used to denote terms not involving differentiation 

with respect to y 3
• Hence there are ten independent equations in (2.7) for the 

determination of the ten quantities p, 3, x", 3 and s"m, 3• 

The characteristic condition is therefore given by the vanishing of the deter­

minant of the coefficients of these quantities. After some manipulation we have 

x3 = o (2.8) 

or 

(2.9) 

When (2.8) holds, from (2.7) we can assign arbitrary values to P,s x", 3 Skm, 3 

(k, m=l, 2). When x3 =l= 0, it means the characteristic surface propagates normally 

with respect to material particle, relation (2.9) must hold necessarily. 

The characteristic surface condition (2.9) is represented relative to the above 

special y system. In order to express it in invariant formulation, we substitute 

(2.10) 

into (2.9), where U is the local speed of propagatfon and n denotes the unit 

normal on I(t). Then we have 

det ( Q1,m (n) - : u2 g1,m) = 0 , (2.11) 

where 

(2.12) 

is called the acoustical tensor. This is the necessary condition for the existence of 

a characteristic surface. 

3. Acceleration Waves 

We consider a singular surface across which the deformation x and its first 

derivative are continuous, but at least one of the second derivatives suffers a jump 
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discontinuity. The geometrical and kinematical conditions of compatibility are 

[L] = -Ua©n, [x] = U2a, (3.1) 

where the bracket denotes the jump occasioned, a is called the amplitude and 

means the strength of discontinuity, n is a unit normal to the surface, and U is the 

local speed of propagation. See Truesdell and Toupin.4 > 

In addition we assume 

[S] = 0 

and then the compatibility conditions are 

[S] = -UA, [divS] =An, 

where A is a tensor specifying the jumps in the derivatives of S. 

(3.2) 

(3.3) 

Taking the jumps of (2.2) and (1.3.18) across the singular surface yields the 

equation 

An=.!!_ U 2 a, -UA = P(S)(-Ua©n), 
µ 

(3.4) 

where we assume p, f, µ are continuous across the singular surface. From (3.4) 

we obtain the propagation condition 

( Q(n) - : U 2 1 )a = o, (3.5) 

where Q(n) is defined in (2.12) Then we have 

.!!_ u2 = a•Q(n)a. (3.6) 
µ a2 

In Secs. 2 and 3 until now we have not considered the concrete structure of 

the response function P, therefore the concerned material includes broader class 

of materials, so-called hypo-elastic materials introduced by Truesdell.I. 1> The com­

parison of the characteristic surface condition (2. ll) and the acceleration wave 

propagation condition (3.5) gives: for any hypo-elastic material, if a characteristic 

surface exists, it is necessary that it propagates with the, same speed as an acceleration wave 

front having the same normal of the characteristic surface. 

In an elastic state we have the propagation condition 

(3.7) 

where 

(3.8) 

If the stress state satisfies the yield condition (I.3.1) but the material remains in 
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elastic state in the both sides of wave and if the proper vector is the same as that 

in plastic flow of the same stress state for the same normal n, we have from (3.5), 
(3. 7) and (I.3.17) 

!!._ (EU2-U2)a2 = a(A(n)-Q(n))a 
µ 

fkf>ab S* S* fcdCmq) a a n n = ab all kmPq 

S*:E:S* 

= [D:E:S*][,fr], (3.9) 

where we use the incompressibility of plastic flow and then we have the same 

numerical value of p in both cases and ,fr is a material function, which relates the 

plastic stretching pD and S * as 

pD = ,frS* (3.10) 

and 

-US*:E:(a®n) =[,fr], -U(a®n):E:S* = [D:E:S*]. 
S*:E:S* 

(3.11) 

From (3.10) and the yield condition (1.3.l) we have 

[,fr] = _I [tr(SpD)]. 
211:2 

(3.12) 

When the elastic materials in both sides of wave remains static, we have D = pD 

=1/rS* and then 

[D:E:S*] = [,fr]S*:E:S*, 

Inserting (3.12) and (3.13) into (3.9) we obtain 

!!._ (EU2-u2)a2 = S*:E:S* [tr (SD)]2. 
µ 411:'U2 

(3.13) 

(3.14) 

The quantity tr (SD) denotes the rate of work done by stress per unit volume. 

Hence we can say in the case of S*:E:S*>O that the speed of propagation of an 
acceleration wave in plastic .flow is numerical?, less than that for a static elastic state, which 
has the same stress state and the same proper vector, if, and only if, the rates of work done by 
stress on the plastic flow per unit volume are different at adjacent points on the two sides 
of the wave. In the zeroth order approximation in an isotropic material we have 

S*:E:S*=411:2. 
The obtained two conclusions in this section correspond to the generalizations 

proved by Thomas.I.a> 

In the case of an isotropic material we can expand Q with respect to S by 

(1.3.17) and (2.12) and we have 
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EQ 0(ntm = (a1+I)n"nm+g"m, 

Q (n)"m - _ __!_S*"P S*mqn n Po - /C2 pq, 

EQ1(n)"m = (/31+/32) tr(S)n"nm+[/32 tr (S)+( ! a6+1 )spqnpnq]g"m 

1 c,lms ( 1. 1 )s"P m ( 1 + 1 ) "Smp +-a6 ,1 + -a5 +-a6 npn + --a, -a6 n np, 
4 2 4 2 4 

Q (n),.,,. = _ _!_(a -2)tr(S*
2
)S*"Pn nm+__!_a n"S*mpn 

p 1 2 5 2tc2 p 2 ' p 

- as+ 2 (S*"Pn S*m S*"qn +S*"" S*Pn S*mqn) 2tc2 p 1' q T p q 

(3.15) 

(3.16) 

where Ao and Ao have the magnitude of zeroth order of ,c and p;Q1 and pQ1 that 

of first order of tc, a's are elastic constants and /31 and /32 are given in (1.2.13). 

For usual metals, e.g. steel, iron, copper, brass and aluminum, the ratios of 

yield strength to shear modulus are between 10-a and 10-2. In this approximation 

we can adopt Q 0=Ao+PQo as the acoustic tensor even in the yield stress state. 

Taking the principal axes of stress as coordinate system we have 

(no sum on k and m) (3.17) 

where St (I'=l, 2, 3) are the deviatoric principal stresses. 

4. Principal Wa-Yes and Acoustical Birefringence 

When the normal of a wave is parallel to a principal axis of stress, it is called 

the principal wave. 

In the isotropic elastic material the response function E of (1.2.9) is given 

explicitly by Truesdell and Noll (p. 142).1-9> Let n1 be a unit vector parallel to a 

principal axis of stress, the acoustical axes of p;Q(n1) defined by (3.8) coincide with 

principal axes. On the other hand we have 

Ekpabs* S* £cd(mq)n n 
Q(n )lms- Q(n )km = ab ctl 1P 1q • 

1 E 1 S*:E:S* 
(4.1) 

Therefore Q(n1)-A(~) also has the same axes of A(n1). Hence, in an isotropic 

material, every principal wave is either longitudinal or transverse. 

From ( 4.1) it is easily verified that 
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(4.2) 

in an isotropic material, where n2 is a unit vector perpendicular to nl! Hence we 

have, in an isotropic material, transverse wave has the same speed with one_ in elastic state in 

the same stress state: From this and the result obtained in Sec. 3 we can say that, 

on the two adjacent sides of a principal transverse wave, the rates of work done by stress 

on the plastic flow per unit volume are the same. 

From (3.6) and (3.15) the propagation speeds of principal waves may be easily 

calculated and we have in the zeroth-order approximation 

!!_ uif = al +2-sr2 =A+~~ - rr2' 
µ ~2 µ ~ 

!!_ ij<O> - 1 
1\1 - ' 

(4.3) 
µ 

where II is any direction perpendicular to n1, k = µ~ and U,.m means the k th 

principal wave having the m th polarization direction. 

The first order approximations Ufi> and Ug' • .. are also easily obtained and 

transverse waves are polarized into the principal axes of S, which are the cause of 

the term S in i.Q1 and we have 

(4.4) 

where 113 denotes a second-order elastic constant introduced by Toupin and 

Bernstein5> and p 0 is the density in undeformed state. 

Relation (4.4) indicates that the acoustical birefringence shows the same results 

for isotropic elastic material, that is, two principal transverse waves polarize along the 

principal axes of stress and the difference of their propagation speeds is proportional to the 

difference of the principal stresses along the polarized directions. These results coincide 

with those for elastic materials, which were obtained by Tokuoka and Iwashimizu2> 

and by Tokuoka and Saito.3> 

Acknowledgement 

This work was supported partially by a grant from the U.S. National Science 

Foundation to The Johns Hopkins University. 

The author wishes to thank Professor J. L. Ericksen for his comments on an 

earlier draft of the manuscript. 



200 Tatsuo TOKUOKA 

References 

l) T. Tokuoka: Mem. Fae. Engng Kyoto Univ., 33, 186 (1971) 
2) T. Tokuoka and Y. lwashimizu: lnt.J. Solids Structures, 4,383 (1968) 
3) T. Tokuoka and M. Saito: J. Acous. Soc. Amer., 45, 1241 (1969). 
4) C. Truesdell and R.A. Toupin: "The Classical Field Theories", Handbuch der Physik (Edited 

by S. Fliigge) Bel. 111/1, Springer-Verlag, Berlin (1960) 
· 5) R.A. Toupin and B. Bernstein: J. Acous. Soc. Amer., 33, 216 (1961) 


