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The growth and decay of the acceleration waves in elastic materials and of the 
propagating acceleration boundary burfaces between elastic and plastic states are the­
oretically investigated. The deformation states of elastic materials before the waves or 
boundaries are assumed to be static and homogeneous. The principal transverse 
waves and boundaries can propagate with constant strength. The principal longitu­
dinal waves and boundaries may grow boundless for one of dilatational or compressive 
initial disturbance and they may coalesce respectively into shock waves and shock bound­
aries. Numerical evaluations for iron are calculated. 

1. Introduction 

201 

The variations in strength of acceleration waves in elastic materials and of 

propagating boundary surfaces between elastic and plastic ,states were analyzed by 

Thomas.1.8)** The elastic material is restricted to be isotropic with a linear stress­

strain relation. The prandtl-Reuss materqil is restricted to be incompressible. 

For both materials he showed that the streng{:h remains constant along propagating 

direction in plane wave and in plane sruface. 

With respect to the effect of non-linearity to the variation in strength Chu1> 

treated shear wave in incompressible elastic material of stress free state and reported 

that the shear waves may coalesce into transverse shock waves. Varley and 

Dunwoody2> investigated also the possibility of formation of shock waves in hypo­

elastic materials of the hydrostatic state. They applied the technique described 

by Courant and Hilbert3> for bi-characteristic curve in linear equation to quasi­
linear equation. 

In this paper by the method given by Varley and Dunwoody I investigate the 

* Department of Aeronautical Engineering 
** 1.8) denotes Reference 8) of the first paper4> of this series 



202 Tatsuo TOKUOKA 

growth and decay of acceleration wave and boundary surface between elastic and 

plastic state bf the generalized Prandtl-Reuss plastic materials proposed by 

Tokuoka.4> The deformation states before the wave and boundary are assumed 

to be static and homogeneous and we restrict our attention to the principal waves 

and boundaries whose normals coincide with a principal axis of stress. 

2. Fundamental Relations in Bi-Characteristics 

As the technique used in this paper is the same given by Varley and 

Dunwoody, 2> only the essential results will be depicted here. 

We adopt a new set of independent variable (x, a) in place of (x, t), where 

a=</J(x, t) or t='/Jf(x, a) and a=O represents the acceleration wave or the 

boundary surface. We have the important formula 

where 

V grad '/JI' = V grad W - ?JfC')n , 

'/Jf(x, t) = W(x, a), 

?JfC') = a'/Jf = a</J aw 
at at aa 

(2.1) 

(2.2) 

(2.3) 

and '/JI', V and n represent respectively any kind of scalar, vector or tensor quantity, 

the speed of propagation of surface a =0 with respect to co-ordinates and the unit 

normal vector of the surface. Here we assume all of quantities, S, V=X P, f, 

which were defined in the papers ofTokuoka,4 ' 5> are continuous across a=O. 

Applying (2.1) to (II.2.1)* and (II.2.2) yields that 

and 

We can apply (2.1) to the constitutive equation 

dS -=H:L, 
dt 

(2.4) 

(2.5) 

(2.6) 

where H corresponds to E or P, given m (1.2.9)** and (1.3.17), according as 

elastic and plastic region respectively. Then we have 

* (II.2.1) denotes Equation (2.1) of the second paper5> of this series 
** (I.2.9) denotes Equation (2.9) of the first paper4> of this series 
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usc1)+H: (vC1)@n) = V(H: gradv)-.v•gradS) = C, (2.7) 

where A, B and C involve only derivatives for a =constant, and 

U = V-v•n (2.8) 

denotes the speed with respect to the material. 

Eliminating sci) from (2.4) and (2. 7) gives 

(2.9) 

where 

(2.10) 

is the acoustical tensor for n. 

Differentiating (11.2. l) and (2.6) with respect to t and applying (2.1) to them, 

we have 

and 

SC2)n+!!_ uvc2) = V(div SCl)_ p v•grad ijCl) 
µ µ 

usc2)+H: (vC2)@n) = V(H: (grad ;;c1
)) 

+H(l): (grad v)-vC_l)•grad s+v•grad S(l)) 

+(SC1)n•v(l)-Rc1): (vc1)@n)) = Y, 

where 1JIC2) = 82
'1JI • 

at 2 

Eliminating sc2
) from (2.11) and (2.12) we obtain 

(2.11) 

(2.12) 

(2'. I 3) 

In the front side of a =0 we assume the elastic deformation state is static and 

homogeneous. Therefore all of the quantities appearing in A, B, and C vanish 

and they are continuous across a =0, if grad '1JI exists and is continuous across a =0, 

then on the contiguous back side of a=O they must vanish and we have from (2.4), 

(2.5), (2.7) and (2.9) 

s(l) n = - p U V(l) l 

µ 

pn•vc1
)..:.... U pc1) = ·0, 

(2.14) 

(2.15) 
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us(l) = -H: (vCl)@n)' 

( Q(n) - ; U2 l )v(I) = o, 

(2.16) 

(2.17) 

where all of the quantities are evaluated on the contiguous back side of a =0. 

If we demand I v< 1
) I =!= 0, the propagation condition 

(2.18) 

must hold and v<1
) and _!}__ U 2 must coincide respectively with a right proper vector 

µ 

and the corresponding proper number of Q (n). If a is a left proper vector and U a 

is the corresponding speed, operating a from left to (2.13) yields 

(2.19) 

This is the required compatibility condition. 

Using (2.14), (2.15) and (2.16) and assuming v=0, V=U=Ua and 

grad 1JI =0 we have 

(a©n): H: (gradv<1))+(a@grad): H: (vCl'@n) 

-U-;;2a•Q(n)v<1)(n•v<1))-U-;;1a-Q<1)(n)v<1
) = 0. 

If we take the right unit proper vector as b, we have 

(2.20) 

(2.21) 

where a denotes the magnitude of strength of acceleration induced by pass of the 

wave or the boundary. Because the state in front of a=O is homogeneous, unit 

vectors n and b of a plane wave hold the constant directions. The first and second 

terms in (3.20) are proportional to the slope of a. Q(n) is a function of S then 

Q<1)(n) is proportional to a by insertion of (2.16). The third and fourth terms in 

(2.20) are therefore proportional to a2
• 

Hereafter we restrict our attention to a principal wave, which is defined by 

the condition that its normal n coincides with a principal direction of stress n 1 • In 

this case left and right proper vectors coincide with each other and are parallel to 

principal directions. 

In the longitudinal wave, putting n=a=b=ni, we can obtain 

2 P U 2 da P 2 U -1 QCI)( ) _ 0 - 11 ---a - 11 n1• n1 n1a - ' 
µ dl µ 

(2.22) 

and in the transverse wave, putting n=ni, and a=b==n2 , we can obtain 
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(2.23) 

where we-used (1.3.19) and (2.10), 

da 8a -=n,.-
,dl 8x" 

(3.24) 

means the variation of a along the propagating path, U ,.m denotes the speed of the 

kth principal wave with the mth polarization direction and S,. is the kth principal 

stress. 

The remaining task is to calculate the last terms in (2.22) and (2.23) for two 

cases, i.e., wave and boundary. If it is done we will have 

da +r(S) a2 = 0, 
dl 

where r is in general a function of stress. We can obtain 

(2.25) 

(2.26) 

where a0 is the initial disturbance at l=O. When a0 r>O a decays monotonically, 

on the other hand when a0 r<O, a will be unbounded at 

(2.27) 

At the critical point where the discontinuous accelerations grow unbounded, 

we assume as Chu1> and Varley and Dunwoody2> that the acceleration wave and 

boundary will be changed to shock wave and shock boundary. 

3. Acceleration Waves in Elastic Materials 

We will consider the plane principal acceleration wave in the elastic material 

governed by (11.3.4) in static and homogeneous state. From (1.3.2l)i, (2.10) and 

(2.18) we have 

(3.1) 

where O(JC) denotes the quantity of the first order of JC. We have in this connection 

(3.2) 
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for steel, iron, copper, aluminium etc. 

3.1 Longitudinal Wave 

After some manipulation with (I.3.21)1, (I.3.21)2, (2.10), (2.16) and (2,22.) 

we have 

(3.3) 

and 

1 p 
. ' 2(a1+2) µ 

(3.4) 

1 _ aa+as+a.-312 p 
Er1 - (a1+2)2 µ-' 

(3.5) 

where (3.4) corresponds to r for the linear stress-strain relation and (3.5) for non­

linear one. In this paper linearity means the linear relation between the stress 

rate and the stretching and does not mean that of the stress and infinitesimal 

strain. In the latter case ThomasI.8
) proved that r vanishes. 

3.2 Transverse Wave 

and 

From (I.3.21) 2, (2.10) and (2.23), we have 

R2•QC1)(n1) n2 = 0 

Er~= Er~= o 

da 
-·=O. 

dl 

Thus the transverse wave holds its value along the propagating ,path. 

4. Propagating Boundary Surfaces Between Elastic 

and Plastic State 

(3.6) 

(3.7) 

(3.8) 

We now consider the propagation of plastic region governed by (I.~.18) into 

elastic region governed by (I.2. 7)-. We assume that the boundary surface is a plane 

and its normal coincides with a principal axis n1 and the elastic region is in stati.c 

and homogeneous state. Then inserting P=E-F as H into (2.10) and (2.18) and 

referring (I.3.21) 1 and (I.3.21)2, we have 

!!_ U z a +2 ·K2+0(r) J!_ U212 = l+O(,c)' u·= 1 - ~-, µ µ 
(4.1) 

where 
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(4.2) 

4.1 The Zeroth Order Approximation 

We can easily calculate the last terms of the left sides in (2.22) and (2.23) 

and we have 

and 

n 1 •QC
1)(n1)n1 = 2 ~(2a1+ !-K2)a, 

~( 2a1+f-K
2
)+-½ (a1+2-K

2
) P 

(a1+2-K2)2 µ 

n2 •Qc1)(n1)n2 = 0, 

pT/ = 0. 

The transverse boundary disturbance remains constant along its propagation. 

4.2 The First Order Approximation 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Here we assume the expansion formulae (1.3.21) holds in the yield state. 

After some manipulations we have 

-{P1+2,82-(,a2+ ! a 6 + ! )K2} (3a1+2-K2) 

-( - ! a 4+ ! a 5+a6 +1) (a1+2-K2) 1 

- ~ { ! a 4 ~ ! a 5+1-3(a6 +2)K2+½ (a6 +2)Ktr(( ~* )) 

-( 2,82+ ! a6+ ~ )K tr ( !) } (2-K2) - ! (a6 +2) K2(2-K2)( K2
- ~) 

=R, (4.7) 

where we use 

(4.8) 

which is reduced from (2.16). 
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Substituting (4.1) 1 and (4.8) into (2.22) we have 

R+(a1+2-K2
) !!_ 

2(a1+2-K2
)

2 µ 
(4.9) 

· In the transverse disturbance case we can easily verify from (1.3.21) that 

and then 

5. Discussions 

5.1 The Higher Order Approximation 

(4.10) 

( 4.11) 

When we take into account the second and higher order of S in the expan­

s,ion ofE and P, the value ofr deviates at most one percent from (3.2). Therefore 

we can neglect them, because, as we will see in Subsec. 5.5, the experimental error 

latitude is larger than the corrections. 

5.2 Transverse Disturbances 

For all kinds of principal transverse waves and boundary surfaces, the coeffi­

cients r vanish from (3. 7), ( 4.6) and ( 4.11). Then the principal transverse 

disturbances can propagate with constant strength. But we note that Chu1> 

verified that the transverse wave may grow boundless if there is shear stress. 

5.3 Longitudinal Disturbances 

For all kind of longitudinal waves and boundary surfaces, the coefficients r 
have non-zero values from (3.4), (3.5), (4.4) and (4.9). Therefore they may grow 

boundless for appropriate sign of initial disturbance a0• From (2.15) and(2.21) 

a0~0 correspond respectively to p~1
)~Q and then to compressive and dilatational 

disturbance. Therefore from (2.26) we can conclude that the longitudinal distur­

bance may produce infinite acceleration deviation and form shock wave or shock 

boundary on the contiguous rear surface of wave or boundary, 

when r>O for dilatational disturbance 
and (5. l) 

when r<O for compressive disturbance. 

For the acceleration wave in elastic region, r is independent of the stress 

state, but for the acceleration boundary between elastic and plastic region, r 
depends essentially on the stress state. 
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5.4 Numerical Evaluation 

In order to obtain the numerical values of r's, we must know the first and 

second order elastic constants and the yield stress. Fortunately the elastic con­

stants of iron and ·copper are given by Seeger and Buck6> in terms ofµ, bulk modulus 

k, Murnaghan's second order elastic constants l, m, n. a's are connected with 

them by the formulae 

2 ..? =k--µ, 
3 

where we must assume the restriction 

a,-a5 = 2(a1-l). 

See Truesdell and Noll (p. 230).I. 9) 

n 
a 6 =4-8-, 

µ 
(5.2) 

(5.3) 

Then we can obtain Table 1 for iron, where we adopt the yield stress i- =3.2 

x 10 kg/mm2 in simple tension test and have IC =r/v'3 µ and where the experimental 

error latitudes are omitted. 

Table I. 

IC a1 I as I a, I as I a& 

2.24x 10- 3 1.4 I -l.3x 102 

I 
-2.2x 102 

I 2.2x 102 

I l.5x 102 

For simplicity we consider a special stress state in the case of elastic-plastic 

boundary surface, that is, the principal stresses take values IC, 0, -IC. Then we 

have 

tr (S) = tr (S*3
) = 0 (5.4) 

and 

K = 1, 0, -1. (5.5) 

Substituting Table 1, (I.2.13), (5.4) and (5.5) into (3.4), (3.5), (4.4), (4.7) 

and (4.9), we have Table 2. The values in the lowest line of Table 2 mean the 

initial acceleration magnitudes to coalesce into shock after one centimeter propa­

gation for respective cases, where they are calculated by (2.27) and g means the 

acceleration of gravitation of earth. 

Table 2 shows that I. in elastic wave the effect of non-linearity is predominant 

and the necessary initial disturbance to break out shock is reduced to one sixtieth 

in comparison with linear case; 2. in propagating elastic and plastid boundary 
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Table 2. 

Elastic Wave Elastic-Plastic Boundary 

Zeroth 
I 

First Zeroth Order I First Order Order Order 

K I 0 -I I 0 -1 

r.!!_ -1.4 8.4 -3.5 -1.4 3.5x 102 -3.8 1.3 3.2 X 102 
0 x10- 1 X 102 x10- 1 X 102 

Oo 
7.6 X 108 -1.3 3.1 X 105 7.6 X 108 --3.1 2.8x 105 -8.l -3.3 

g X 107 X 105 X 107 X 105 

the effect of yielding is predominant and the necessary initial disturbance is reduced 

to one sixtieth in comparison with elastic non-linear case; 3. but, when the devi­

atoric stress along the propagation direction vanishes, a large disturbance is de­

manded to break out shock; 4. for the elastic and plastic boundary, when the 

material is tensioned, the necessary disturbance to break out the shock is com­

pressive and when it is compressed, it is dilatational. 
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