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The present paper describes the theoretical aspect of the determination of the 

stresses in rock unaffected by. a borehole with an instrumented cylindrical inclusion. 

The stress fields of the elastic matrix (isotropic or anisotropic) containing a cylindrical 
inclusion are discussed and the formulae to be used in practice to determine the 
stresses in rock are presented. The results of calculation are shown by several 

numerical examples. 

1. Introduction

221 

The measurements of the state of initial or variational stresses in rock 

are of importance in obtaining design data for underground structures and in 

clarifying the problem of strata pressure that occurs in the earth's crust. 

Several authors1 ~6> have been made attempts to analyze the stresses in rock 

by the use of boreholes or drifts. Since the rock is generally in a three­

dimensional stress state and behaves frequently as an anisotropic elastic 

medium, the determination of the stresses in the rock is very complicated. 

Taking these conditions into consideration, the present paper describes a method 

of stress determination using a borehole with an instrumented inclusion such 

as in Rocha and Silverio's method.3> This study has been carried out on the 

assumptions that: 

(a) the rock is homogeneous and isotropic or anisotropic elastic body with

arbitrary inclinations of the principal elastic axes, 

(b) the stresses applied at infinity in the rock medium are three-dimen­

sional, and . 

(c) the length of the inclusion is sufficiently larger than its diameter.

* Department of Civil Engineering
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2. Method of Analysis

As in Fig. 1, we refer the body under consideration to a rectangular 

Cartesian coordinate system (x, y, z) where the z-axis is directed along the 

axis of cylindrical inclusion. In this case, the principal elastic axes of the 

matrix, assuming that the surrounding material is homogeneous and isotropic 

or anisotropic elastic body, incline in arbitra訂directions against this coordinate 

system. 
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x

Fig. 1. Coordinates and boundaries of matrix 
and elliptical inclusion. 
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2. 1 Basic Equations and Complex Analytic Functions

The stress-strain relations for an anisotropic elastic matrix are given by the

generalized Hooke's law as follows. 

ら ＝a11(Jェ十a126!/＋の西＋aum.＋a15口＋a16”’
eII

= a126ェ十a22av+··..…•……...・・・・・・・・• • + a26て工1/9

ee 
= a13(Jェ十a236II+•..．．．....,…··・・・・・・・・・・・十a36m, l (2. 1) 

··········· · · ·· · ······ ·· ·· ·· ·· ·· · · · ········ · · ··· · ·· ···· ·· · · · ···
, 

石＝a16(Jェ十a266u+a866•+a46TII•+a56Tェz+a66m. ［ 
In which au, a12., … ••,a61 are the elastic constants of the matrix under con­

sideration. From the third equation of Eq. (2. 1), 

e霧 1
q, =― --（a186ェ 十a23(Ju+a“m.+a35て工•+a36m)． （2.2) a38 a33 

Substituting from Eq.. (2. 2) into the remaining equation!;) of Eq. (2. 1), we 

obtain: 

ez=喰116ェ十P126u+Pum.＋P15ち•+P16Ts!/+ a18
a33 

e.,

eu= f312aェ十f322av+ ········••·••· .. ············ + a23 

a38 
e,,

r v• = Pu(Jェ十P24(Jv+ ........................... J..� ．．．．．．．．．．．．．．．．．．．．．．．．．．＋ー
a33 

e., (2.3) 

rェu-P16(Jェ十826(Jv+P46石•+P56てェ・＋P66てゥ＋
a66 e..a88 ー、
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In which, 

ai辺j8 . ．
批＝ai1-�, (i, j= l, 2, 4, 5, 6). a33 (2.4) 

The same will hold for the inclusion, but instead of ai1 and趾the elastic con­
stants of the matrix are aりand /3りrespectively. In the case when the uni­
form stress components a�, (J:, (Jg, r;Z9 てら and ,!, are applied at infinity in the 
matrix without the inclusion, the Airy's stress functions F 0 and ¢0 can be 
given by 

1 F ° =--（(J；が一2,比i:y+(J�yり，2 
炉 ＝てしzy-rにぶ・

ヽ

ー

、

(2.5) 

From general results on elliptical or ellipsoidal inclusion in an infinite 
anisotropic medium, it is well known that the stress and strain fields in the 
inclusion are homogeneous.7> This fact is used in the following analysis. 

Assuming that the uniform stresses in the inclusion are represented as 
¢, (J；, (J;, TしZ9て:., andて五， the stress functions F' and炒 for the inclusion are 
also given by 

1 F 1 =--（(J；がー2て五xy+(J；炉），2 
砂 ＝て戸y-ぢ岱•

l
f

(2.6) 

Then the formulas for stresses and displacements in an infinite medium with 
an inclusion can be written in the following manner.8•9> 

(Jx=(J�+2Re〔約
2対(z,)+µ仕紅(z2)+ µ3丸斡(z3)〕，

(Jy
=(J�-2Re〔糾（z1)＋伽'(互）＋え3蒻（％）〕，

巧z
＝ ヰー2Re〔ふ釘（互）＋A2r/J2'(z2)＋蒻(%)〕,

戸 ＝ r�,+2Re〔がふ釘（互）＋µ必紅(22)+ µ3蒻(z3)〕,
てエリ ＝てらー2Re〔約向(z,)+ µ2心（む）＋µ山蒻(%)〕,

(2.7) 

U=u0+2Re区P心(zk)-w0y+u。,
k=l 

v= v0+2Re � qゆ（な）＋w0x+vo,
w=w0+2Re� r心(zk)+wo. 

Where Re is the notation for the real part of the complex expressions, か（Zk)
are analytic functions with the argument of the. complex variables zk= x+ µky,
and µk, Ak, pk, qk and rk (k= l, 2, 3), are complex constants related to the roots 
of the characteristic equation of the anisotropic elastic matrix and elastic con­
stants f3iJ• The real constants w0, u。, v。 and w。 characterize rigid rotation and 
rigid displacements of the body which are not accompanied by deformations. 

When the matrix and the inclusion are perfectly bonded, the boundary 

(2.8) 
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conditions on the contact surface can be written as (see Fig. 1), 

Xn= -X�, Yn= -Y�, Zn= -Z�, }
U=U', v=v', W=W'. 

(2.9) 

Here, Xn, Yn, Zn and u, v, w are the stress components and displace'ments 
along the directions of the coordinate axes on the contour of the matrix. The 
prime on the right sides of the above equation indicates the stresses and dis­
placements for the inclusion. After some algebra, these boundary conditions 
reduce to the following equations. 

2Re(¢1(zi)+¢2(z2)+,h¢a(Za)J= :x (F'-F 0)+Ci.

2Re (µ1¢1 (z1) + µ2¢2 (z2) + µaAacfia (za) J = t-cF' -F0) + C2, 

2Re CJ.1¢1 (Z1) + A2¢2(z2) +¢a(Za) J =c// -¢0+Ca, 

2Re 2J h<fok(zk) =u' -u0 - (w' -w0) y+ (uo'-uo), 
k~l 

2Re 2J qk¢k(Zk) = v' - v0+ (w' -w0)x+ (vo'-vo), 
2Re 2J rk¢k(Zk) =w'-w0 + (wo'-Wo). 

(2.10) 

(2.11) 

Ci, C2 and Ca are determined on the basis of some additional conditions, de­
pending on the matrix shape and distribution of forces. It is not necessary to 
consider these for the present case. 

Let us assume that the shape of the inclusion is elliptical with semi-axes 
a and b along the coordinates (x, y). The contour of this inclusion is re­
presented by 

Xo = a cos{}, Yo = b sin{}, (2.12) 
in which {} is an angle parameter varying from O to 2n: in a counter-clockwise 
direction on the contour. By replacing the x and y of Eqs. (2. 5) and (2. 6) by 
the x0 and Yo of Eq. (2.12) in turn, and substituting into Eq. (2.10), we obtain 
the following. 

where, 

2ReC ¢1 ( Z1) + ¢2 (z2) + Aacfia ( za) J =2ReC liie-i8J, 
2Re(µ1¢1 (z1) + µ2¢2(Z2) + µala¢a(Za)J=2Re(b1e-i8J, 

2Re(J.1¢1 (z1) + J.2¢2 (z2) +¢3 (z3) J=2Re(i\e-i8J. 

- - 1 { ( , ') .b( , o )} a1 -y ll a,-a, -i 7:,,,-1:xy , 

51 =+{ac.�.-1:�,)-ib(a;-a�)}, 

"c1 = --½-{ac.;.-1:�.)-ib(1:�.-�.)}. 

(2.13) 

(2.14) 

Thus, we can express. the analytic functions ¢k(zt) in the case of an elliptical 

ヽ

~
1
,

、

'

,



opening as 

where, 
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伽(zk)= I'klnごk+I'k1(ご, （k= I, 2, 3), 

1 Zk ＝
万

― ｛(a-iµicb)(k+(a+iµ山）（Kー
1}．
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(2.15) 

(2.16) 

In whichらon the contour of the cross section of the opening takes a value 
equal to ei�. Thus, on substituting from Eqs. (2.14) and (2.15) into Eq. (2.11) 
and solving the simultaneous equation, it may be reduced to 

2.2 

.J•I'11= (µ2-µ必Aa)ti1+ (A必ー1)ふ＋え3(µ3-µ2涸，
4·r21= （µ8Ali3 ―-µ1)di+（1-ili3)61+i3(µ1-µ3)でb

4•I'31 = (µ必 ― µ必）ふ＋（］1-A2)ふ＋⑯—µ1)で1・
.d= µ2-µ!＋え必(µ1-µa)+;必(µ3-µ2).

Determining Stresses in an Inclusion 

(2.17) 

(2.17') 

Let us consider the displacements u°, v0 and w0 in the matrix by the use 
of Eq. (2.1). Relations among strains, rotations, and displacements are gener­
ally written as follows : 

e�= 8u0 

fix'

8v0 
eヤ＝ 一—

8y'

か亙竺
fiz ' 

rら＝ 8u0 . av0 

＋ 6y 6x'

r° = 6v°
十竺” 6z 6y'

aw0 . au0 

r�.= �+ 
釦 b2―'

2(J)ら＝ 8v0 8u0 

紐 8y'

2(J)；
Z

= ---珈0
fJVO 

6y 6z' 

2(J)iZ
= 8u0 8w0 

6z 6x •

(2.18) 

Since the external stresses in the matrix are applied at infinity, the body is 
considered to be in a state of plane strain, and we can assert that all com­
ponents of stresses, rotations and displacements with one exceptional case 
related to the e�, will not depend on z. Thus, 

6U 6v ＝ ＝ 
6z 6z 0. 

By integrating Eq. (2.18), we obtain displacements as follows. 

1 u0= e�x+.;-rらy-(J)らy+uo,2 
1 v0= eiy+.;-rらx+(J)らx+vo,2 

w0= rい＋rにy+e�z+wo.

(2.18) 

The displacements u', v' and w'for the inclusion are represented similarly as 
follows. 

1 u'= e;x+ ―r石y-(J)五y+u;,2 
1 

V' ＝釣y十互
―r五x+(J)�vx+v;,

w'= r:ぶ＋和y+e;z+wふ

(2.18') 
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Therefore, substituting from expressions (2. 18) and (2. 18') into the right side 
of Eq. (2. 11), we obtain the following expressions 

U1-U0- (w'-w0)y+ (uo'-Uo) = (e;-e�)x+-½-(r�.-r�.-2w)y, 

v' -v0 + (w'-w0)x+ (vo'-Vo) = (e;-eDy++ (rx.-r�.+2w)x, (2.19) 
W' -w

0+ (Wo1 -Wo) = (r�z-r�z)x+ (r�z-r�,)y+ (e;-e�)z, 
(1) = (W1 -m0) + (W�y-Wxy). 

From the assumption that the length of the cylindrical (or elliptical) inclusion 
is sufficiently larger than its diameter, it is reasonable that the axial strain 
along the z-axis, e:, in the inclusion can be assumed to be equal to that in the 
matrix, eJ; it is impossible to establish a theoretical determination if this 
assumption is not made. 

By means of Eqs. (2. 19) and (2. 15) and by some calculations, the boundary 
conditions (2. 11) are reduced to 

2k
�/kI'k1 = a (e;-e�) ++ib(r�.-r�.-2w), 

2 L] qkI'w= -½-acr�.-r�.+2w) + ib(e�-e;), 

2 L] rkrkl =a(r�.-r�z) +ib(r�.-r�z>• 

(2.20) 

Substitution from Eqs. (2.14), (2.17) and (2.1) into Eq. (2. 20) gives six simul­
taneous linear equations with unknown constants a�, a�, -r�., -r�., -r�. and w. 
Thus by solving these equations, we can obtain the uniform stress components 
a;, a;, -r�., -r�. and -r�. in the inclusion and rotation w. The stress com­
ponent, a:, can be estimated as below, since the axial strain e: is equal to e�.

(2.21) 

where, 
(2.21') 

Using the above method, we can also calculate the stress components a�, 
a;, a�, -r�., -r�. and �. applied at infinity in the matrix by means of the 
measured uniform stress components a�, a;, a:, -r�., -r�. and -r� •. 

3. Numerical Examples

Let the stress components applied at infinity in the matrix be defined by 
ai, a�, a�, -r�., -r�. and -r�. as follows. 

a)= Fta ;+ F;a� + FJa;+ Ft,;z + F:,�.+ Ft-r�v, 
(i = x, y, z),

-r11 = H}p; + H;,a; + H;;a: + H:i<�• + H:1-r�. + HJ;-r� •• 
(i,j = x,y, z, i�j). 

(3.1) 

＇ 

•( 

ヽ

e: 1 
(1；=―---.-(a;3(1~+a;s(1;+a;.て~.+a五て~.+a;。て~v)
a83a39 

i.~=a13(1い＋ a23(1i+a83(1い＋am:.+a85#け-a86てら·

ヽ

I
 

、

し
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Here, Ff and Hf1 (k=l, 2,……，6) · are constants to be determined from the 
elastic constants and their directions with respect to the matrix and the inclu­
sion. These coefficients can be easily calculated by the theoretical solution 
described above. The coefficients Ff and Hもrepresent the influence coefficients 
of stress from which a� and てぶ may be determined by measured stress com­
ponents ai and てiJ in the instrumented inclusion. 

If these influence coefficients of stress are obtained, then we can find the 
stress components in the matrix from Eq. (3.1). In the first case, let us take 
an example such that the matrix and the inclusion are both isotropic bodies 
for which the elastic constants of the cylindrical inclusion are E。 =3.0x 104kg/
cm2 and 凶＝ 0.360. Then, the influence coefficients Ff, Ff, H}1, H;1, Hl1, Ht., 
H�., H;., H!., Hら and Hらare equal to zero in this case. The influence 
co.efficients for this case are shown in Fig. 2 with varying parameters of 

二1 JJ= 0.15 i 
0.35 ／ 
//））= 0.15 1
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l‘ 

Fig. 2. Influence coefficients of stress Fr and H1� when the matrix and 
cylindrical inclusion are both isotropic bodies (Young's modulus and 
Poisson's ratio of the inclusion are respectively, Eo =3.0 x IO'kg/cm2 

and ツo = 0.360).
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Young's modulus E and Poisson's ratioッ of the matrix as an isotropic elastic 

body. 
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In the second case, let us consider the cross-anisotropic elastic matrix such 
that the elastic moduli and Poisson's ratios are given respectively by E2 = Ea = 

6.0xl04 kg/cm2 and 11 1 2
= 1113 =0.150, 112a = 0.250 and the moduli of rigidity are 

defined by the following formula : 

_!__ = _!_ + l+ 211ij 
c· · 1 2 3) G;1 E; Ei E; ' z, 1 = ' ' · (3.2) 

In this case, we assume that the principal elastic axes of the body coincide 
with the coordinate axes of the rectangular Cartesian system (x'", y'", z"')

before performing the rotations of the coordinates. 10
J The influence coefficients 

of stress, in the case where the principal elastic axes of the matrix are inclined 
to in-plane or out-of-plane for the plane perpendicular to the z-axis of the 
inclusion, are shown in Figs. 3~4. In the following numerical examples, it 
was assumed that the elastic constants of the inclusion were equal to Eo = 3.0 
x 104 kg/cm2 and 110

=0.360. Fig. 3 (a), (b) and (c) show the influence coeffi­
cients in which the axis of the principal elastic modulus E1 (or E2) rotates in­
plane with respect to the z-axis (that is, corresponding to plane orthotropy), 
when the ratios of the elastic moduli, e =Ei/E2 =Ei/Ea, take several values. 
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Here, r is an angle of rotation around the z'-axis.10> Fig. 4 (a)~(e) shows 
the influence coefficients in which the plane containing the principal axes of 
the elastic moduli, E, and E2, rotates out-of-plane with respect to the y" -
axis.10> 

When the elastic constants and their directions with respect to the matrix 
and the inclusion are known in advance, stress components applied at infinity 
in the matrix can be easily determined from the measured stress components 
in the instrumented inclusion in the following ways. 

As an numerical example, consider the case that the elastic constants of the 
matrix and the inclusion take the values shown in Figs. 2~4 and the measured 
stress components in the inclusion are given as 

a;= 2.0 kg/cm2, a; = 3.5 kg/cm2, a:= 4.3 kg/cm 2, }
.�. = 1.5 kg/cm2, .�.= 1.0 kg/cm2, .�y

= -1.2 kg/cm2. 
(3.4) 

When the elastic constants and their directions with respect to the matrix are 
given that 

(a) E = 3.Oxl05 kg/cm2, 1.1 = 0.150,
(b) E, = 3.Oxl05 kg/cm2

, E2
= E3= 6.Oxl04 kg/cm2, 1.1,2

= 1.113 ,:,. 0.150, 1.123= 0.250, 
r = 45°, a= /3= 0°,

(c) E, = 3.0 x 105 kg/cm2, E2= E8 = 6.0 x 104 kg/cm2, 1.1,2
= 1.113= 0.150, 1.123= 0.250,

/3= 45°, a=r= 0°,
the stress components applied at infinity in the matrix are determined by the 
use of Figs. 2~4 as follows. 

(a) a�=l.39, a�=7.57, a�= 23.48, .�.= 9.64, .�.= 6.41, .�y
= -4.94,

(b) a�= 2.61, ai= 5.61, a�= 5.09, .;,= 2.71, .�.= 1.51, •�v
= -3.19,

(c) a�= -3.35, a�= -1.11, a�= ll.75, .;,= 2.75, .�.= 4.44, .�y
= -1.58.

In other cases when the elastic constants and their directions with respect
to the matrix and the cylindrical inclusion take arbitrarily different values, the 
same analysis as described above may be easily applied. 

4. Concluding Remarks

In the present paper we have analyzed the theoretical stresses in isotropic 
or anisotropic elastic matrices with a cylindrical inclusion in which the length 
is sufficiently larger than the diameter. The results of calculation have been 
explicitly shown by several numerical examples. This method is very appli­
cable for practical usage such as for stress measurements in rock masses. 
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