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The Theory of the Determination of Stress in an
Anisotropic Elastic Medium Using an Instrumented
Cylindrical Inclusion

By
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The present paper describes the theoretical aspect of the determination of the
stresses in rock unaffected by a borehole with an instrumented cylindrical inclusion.
The stress fields of the elastic matrix (isotropic or anisotropic) containing a cylindrical
inclusion are discussed and the formulae to be used in practice to determine the
stresses in rock are presented. The results of calculation are shown by several

numerical examples.

1. Introduction

The measurements of the state of initial or variational stresses in rock
are of importance in obtaining design data for underground structures and in
clarifying the problem of strata pressure that occurs in the earth’s crust.
Several authors!~® have been made attempts to analyze the stresses in rock
by the use of boreholes or drifts. Since the rock is generally in a three-
dimensional stress state and behaves frequently as an anisotropic elastic
medium, the determination of the stresses in the rock is very complicated.
Taking these conditions into consideration, the present paper describes a method
of stress determination using a borehole with an instrumented inclusion such
as in Rocha and Silverio’s method.?? This study has been carried out on the
assumptions that:

(a) the rock is homogeneous and isotropic or anisotropic elastic body with
arbitrary inclinations of the principal elastic axes,

(b) the stresses applied at infinity in the rock medium are three-dimen-

sional, and
(c) the length of the inclusion is sufficiently larger than its diameter.
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2. Method of Analysis

As in Fig. 1, we refer the body under consideration to a rectangular
Cartesian coordinate system (%, y, z) where the z-axis is directed along the
axis of cylindrical inclusion. In this case, the principal elastic axes of the
matrix, assuming that the surrounding material is homogeneous and isotropic
or anisotropic elastic body, incline in arbitrary directions against this coordinate

system.

Fig. 1. Coordinates and boundaries of matrix
and elliptical inclusion.

2.1 Basic Equations and Complex Analytic Functions

The stress-strain relations for an anisotropic elastic matrix are given by the
generalized Hooke’s law as follows.

5y=a1202+ a220”+ ........................... +azesz,

E:=Q110:+ 120y + Q130¢+ Q14T ye + Q15T ze + Q16T 2y, ]
€'=a“gz+azsay+ ........................... +a361':”’ J (2.1)

T2y =160+ Q260 y + Q3603 + QueTyc+ As6T 2z + Ae6Tzy.
In which a;;, aig, -+ , ass are the elastic constants of the matrix under con-
sideration. From the third equation of Eq. (2.1),

&z
Q33

1
Os= - a—as (@136 = @230y + Q34T ys + 35T 2 + A3eTzy) 2.2

Substituting from Eq. (2.2) into the remaining equations of Eq. (2.1), we

obtain :
€:=P110z+ B120y + Br4Tye + B15Tze+ ProTy+ Z:: €z,
€y =P120z+ Bealy+ ooreeerrmeneenniianiainna + Q23 &,
Q33
Tyz=ﬁl4a‘+ﬁ24av+ ........................... + Q3¢ Ee, (2'3)
Q33
Toy= ﬁlea’+ ﬂzﬂal/ +ﬂ46rﬂl + ﬁSers +ﬂeoT:y + z:: Ee.
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In which,
Bu=ay—“22, G, j=1,2,4,5,6). @.0
The same will hold for the inclusion, but instead of a:; and B;; the elastic con-
stants of the matrix are a;; and B;; respectively. In the case when the uni-
form stress components a3, g3, 03, 73,, t2, and t%, are applied at infinity in the
matrix without the inclusion, the Airy’s stress functions F° and ¢° can be
given by
Fo= %(a‘,’,xz— 2t3,xy+ 0599, 1
. 2.5)
, 0=73,y— 5., ' J
From general results on elliptical or ellipsoidal inclusion in an infinite
anisotropic medium, it is well known that the stress and strain fields in the
inclusion are homogeneous.” This fact is used in the following analysis.
Assuming that the uniform stresses in the inclusion are represented as
G%, Oy, Gsy Ty T and 7i,, the stress functions F’ and ¢’ for the inclusion are
also given by
Flm (2= 2ray 0y, |
2.6)
@ =Ty —TyaX.
Then the formulas for stresses and displacements in an infinite medium with
an inclusion can be written in the following manner.59 ‘

0:=0%+2Re( 1,20, (20) + po’ps’ (22) + p132Aaps’ (23)],
oy=0%—2Re(¢,’ (21) + ¢’ (22) + 3¢5’ (25)], 1

© Tye=Ty:— 2Re(N11' (21) + 202" (22) + 4" (22)], @.7
Tze =75+ 2Re( A1’ (21) + prehehe’ (22) + fradhs’ (20)], {
Tey=T3y—2Re(p1y’ 2)) + b’ (22) + prakads’ (25)], )
u=u'+ 2R€k§ Dudr(Z) — @y + u,,
=]
v=10"+2Re 3 qrpi(2r) + @°x+ vy, ( 2.8)

w=w'+2Re ] 7epr (2x) +wo. )

Where Re is the notation for the real part of the complex expressions, ¢.(zr)
are analytic functions with the argument of the complex variables z,=x+ uY,
and px, Ak, Dr, qx and 7 (k'= 1, 2, 3), are complex vconstants related to the roots
of the characteristic equation of the anisotropic elastic matrix and elastic con-
stants 8;;. The real constants «°, %, vy and w, characterize rigid rotation and
rigid displacements of the body which are not accompanied by deformations.
When the matrix and the inclusion are perfectly bonded, the boundary
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conditions on the contact surface can be written as (see Fig. 1),
Xn=_ 1’1.’ n=_Y;L, =—Z;19
X ¥, Zn } 2.9
u=u, v=v’, w=w’'.

Here, X5, Ya, Z, and u, v, w are the stress components and displacements
along the directions of the coordinate axes on the contour of the matrix. The
prime on the right sides of the above equation indicates the stresses and dis-
placements for the inclusion. After some algebra, these boundary conditions
reduce to the following equations.

2Re(¢1(21) + ¢2(22) + Asps(2) )= ‘gx“(F’ —F9+C, ]
2Re (111(21) + praho (2) + ptadagps (26) ) = %«(F '—F%)+C,, J 2.10)
2Re (A1 (2)) + Aepe(22) + s (20) ) =¢' —¢°+Cs,

ZRekzi D (z) =o' —u®— (0 — 0®) y+ (o’ —tho),
2Re 3 qrpr(z1) = V' — 00+ (@' — 0D x+ (v’ —vo), | .11
2Re ) rige(zr) =w’ —w+ (wo’ —wo).

Ci, C; and C; are determined on the basis of some additional conditions, de-
pending on the matrix shape and distribution of forces. It is not necessary to
consider these for the present case.
Let us assume that the shape of the inclusion is elliptical with semi-axes
a and b along the coordinates (x, y). The contour of this inclusion is re-
presented by
Xo=acosf, y,=bsind, .12
in which § is an angle parameter varying from 0 to 2z in a counter-clockwise
direction on the contour. By replacing the x and y of Egs. (2.5) and (2.6) by
the %, and y, of Eq. (2.12) in turn, and substituting into Eq. (2.10), we obtain
the following.
2Re($1(21) +¢2(22) +Asp3(25) JI=2Re(d1e7'7], )
2Re(p11¢1(21) + p2$2(22) + psdsps (25) J=2Re[ b e~7%], 2.13)
2Re(2191(21) +A22(22) + ¢35 (25) J=2Re(C1e™*]. J

where,

a= - {atoi— oD —ibGi =), w
[a(z-'w—z-gv)—z'b(a;—ag)], 4 @2.19

G—— %[a(f'y,_rg,) —z‘b(r;,—r‘iz)] : J

Thus, we can express. the analytic functions ¢.(2:) in the case of an elliptical
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opening as
éx(2e) =IudnZe+ T'uli™?, (k=1, 2, 3), (2.15)
where,

tm (@ imb) ot (a+imd)0 ). (2.16)
In which {» on the contour of the cross section of the opening takes a wvalue

equal to ei7. Thus, on substituting from Eqs. (2.14) and (2.15) into Eq. (2.11)
and solving the simultaneous equation, it may be reduced to

ATy = (pta— paAeAs) 31+ Qeds— 1) by + A3 (s — 122) T,

A+Toy= (ushids—p) a1+ (1 —)5123)51 +23(t1— p3) 1,y 2.17
A5y = (Ao — pod) 1+ (A —22) b+ (pta— 1) 1.
A=pto— p11 + AoAs (s — p3) + 1As (s — p22) . @2.177)

2.2 Determining Stresses in an Inclusion

Let us consider the displacements #°, v° and w° in the matrix by the use
of Eq. (2.1). Relations among strains, rotations, and displacements are gener-
ally written as follows:

0o _0u o, =@i o o _ 00 ou

&= x> T Taxr 2T 5 }

b, av awo . oW 5 '
=Gy Thm gt 20%— -0, (2.18)
o_ oW’ 0 _ ow® 324_ o _0u® _ ou®

&= T== ¢ T , 205= 0z ox °

Since the external stresses in the matrix are applied at infinity, the body is
considered to be in a state of plane strain, and we can assert that all com-
ponents of stresses, rotations and displacements with one exceptional case
related to the ¢!, will not depend on z. Thus,

By integrating Eq. (2.18), we obtain displacements as follows.

=$zx+ %Txyy wzz/y"'uﬂy 1

VW=gy+ %Tg,,x+co2,,x+vo, J 2.18

=7.x+75.y+elz+w,.
The displacements #/, v/ and w’ for the inclusion are represented similarly as
follows.
, 1., . .
w=ex+ TTzvy_wzvy'*'um

v=ey+ —é—r;,,x+w;,,x+ Vs J (2.18)

w =7, x+7,.y+ez+w,.
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Therefore, substituting from expressions (2.18) and (2.18’) into the right side
of Eq. (2.11), we obtain the following expressions

W — = (@ = 0y + (s’ — ) = (6= D T+ - (o= 7% = 2003,

vV =0+ (0 -0 x+ W —vo) =(e,—e)y+ %(T:rT“:ﬁZw)x,  (2.19)
W —w'+ W' —wo) = O L= X+ (.~ 13y + (e:— €Dz, |
o=@ —o°) + (Wzy— Wzy). J

From the assumption that the length of the cylindrical (or elliptical) inclusion
is sufficiently larger than its diameter, it is reasonable that the axial strain
along the z-axis, ¢;, in the inclusion can be assumed to be equal to that in the
matrix, &f; it is impossible to establish a theoretical determination if this
assumption is not made.

By means of Egs. (2.19) and (2.15) and by some calculations, the boundary
conditions (2.11) are reduced to

3 .
23 il =a (ei—eD) +gib (=% —20), ‘l
k=1
25 QL= e —Th+20) +ib (=), | (2.20)
|
23 nlu=a(,—1%) +ib (T, —75.). )

Substitution from Egs. (2.14), (2.17) and (2.1) into Eq. (2.20) gives six simul-
taneous linear equations with unknown constants o, 0y, Ty, Tz, Toy and o.
Thus by solving these equations, we can obtain the uniform stress components
Gy Oy, Ty Tz and 7, in the inclusion and rotation . The stress com-
ponent, g;, can be estimated as below, since the axial strain ¢; is equal to .

0
, € 1 Py ey e e . -
0,=—————(ayuo,+ A0y + ATy, + AT+ asefzv) ’ Q. 21
Qs Qs :
where,
€0=0130%+ G230+ Q3302+ 34Ty, + A3sTh, + A3eToy. (2.21)

Using the above method, we can also calculate the stress components a9,
gy, 03, Ty, 73, and 73, applied at infinity in the matrix by means of the
measured uniform stress components d;, ¢,, 0;, Ty, Trz: and Toy.

3. Numerical Examples

Let the stress components applied at infinity in the matrix beé defined by
al, 05, 0, 5., 73, and 7%, as follows.

0?=Flo,+Fio,+ Fio,+ Firy,+ Fir,,+ Ft,,,
(i=x,y,2), 3.1
/ .
ng = Ht!ja-‘; + Hf']”?’l + H%ja; + H:jT;u + H?jr.’u + ngz-;:yy J
i, j=x,9, 2, ixj).
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Here, F! and HY (k=1, 2, ,6) are constants to be determined from the
elastic constants and their directions with respect to the matrix and the inclu-
sion. These coefficients can be easily calculated by the theoretical solution
described above. The coefficients F} and HY represent the influence coefficients
of stress from which ¢¢ and t); may be determined by measured stress com-
ponents ¢; and 7;; in the instrumented inclusion.

If these influence coefficients of stress are obtained, then we can find the
stress components in the matrix from Eq. (3.1). In the first case, let us take
an example such that the matrix and the inclusion are both isotropic bodies
for which the elastic constants of the cylindrical inclusion are E,=3.0 x 10¢%kg/
cm? and v,=0.360. Then, the influence coefficients F%, Fi, Hi,, H, H, H;,
HS,, H., H:, H. and H, are equal to zero in this case. The influence
coefficients for this case are shown in Fig. 2 with varying parameters of

3
12.0 ' ;/FZ]

. ! =039 i:1)-015
Y=o.15 1 3 2
100 :

e.o” Hy ~v} —
) s

NWY

Eo=3.0 >‘|04kg/crn2i F, F:P$§
T Vo=0.360 . ' RN

Fig. 2. Influence coefficients of stress F¥ and Hj when the matrix and
cylindrical inclusion are both isotropic bodies (Young’s modulus and
Poisson’s ratio of the inclusion are respectively, Eo=3.0x10'%kg/cm?
and v0=0.360).
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Young’s modulus E and Poisson’s ratio v of the matrix as an isotropic elastic

body.

5.0

E,=E3=6.0410* %2
Viz =Yz = 0180

N

4.0 Vo3 = 0.260  —
10.0 e=EyEZ=E‘/E:
3.0 5.0 Eo = 3.c1xxo4k°/m
I £ Vs = 0360
2.0 ———%5
T e=.0 \k\

0.0 %‘_—:__j.:glo_;%aﬂ,—:-_——;é?::::l.o:

1 s B
- TFy 100 THyy FYT~_ 50
1.0 XH —
-2.0
0°  22.5° 45° 67.5° 90°
Y (&=8=0°)
@
4.0 ‘
10.0 .
ny
3.0
L X2 _10.0 5.0 \
B |
2.0 =70 T
. Y] 20— —_'_‘;::_ti\_\~
ezl.0
1.0
- F2 20~100_
0.0 K‘:‘-:::——‘ :::: — 20— _<__.___j‘_:_-—-_
\\\\ \*;\\] ~5‘%O_. ) —.i-".‘:;—'::'j}//
T N Hyz| 00557 -
\ ’ rd
\ N ey
-1.0 \\ < - _L/’; y
+ 0\ 50 "1 Fx /
\\ 7/
-2.0 N p
N e
I 100~
-3.0
o° 22.5° 45° 67.5° 90°

Y  (=8:0)

©

20

- T

- —2x

V

=

i
b

-

Fig. 3.

22.5° 45° 67.5° 90°

Y (#==0
()]

Influence coefficients of stress
F% and H{ when the Young’s
moduli E; and E: of the matrix
rotates in-plane with respect to
the z-axis.
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In the second case, let us consider the cross-anisotropic elastic matrix such
that the elastic moduli and Poisson’s ratios are given respectively by E,=E;=
6.0x10*kg/cm? and vi2=v13=0.150, v23=0.250 and the moduli of rigidity are
defined by the following formula :

et G-1,2,3). 3.2
In this case, we assume that the principal elastic axes of the body coincide
with the coordinate axes of the rectangular Cartesian system (x'//, y'’’, 2/'")
before performing the rotations of the coordinates.!” The influence coefficients
of stress, in the case where the principal elastic axes of the matrix are inclined
to in-plane or out-of-plane for the plane perpendicular to the z-axis of the
inclusion, are shown in Figs. 3~4. In the following numerical examples, it
was assumed that the elastic constants of the inclusion were equal to E,=3.0
x10¢kg/cm? and v,=0.360. Fig. 3 (a), (b) and (¢) show the influence coeffi-
cients in which the axis of the principal elastic modulus E; (or E;) rotates in-
plane with respect to the z-axis (that is, corresponding to plane orthotropy),
when the ratios of the elastic moduli, ¢e=E,/E,=E,/E;, take several values.

5.0 Kg/. |
Ee= Ey=60x10* "9/em?
V=3 = 0.160
4.0 iy = 0.250  —
_Ei, _Ey
F - &= /Ez' /E:
30 M 10.0 . |
' 50 E, = 3.0X10%K9 2
Vo = 0.360

o° 225° 45¢° 67."\5" 90°

8 (Y-a:0) bos

®
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_-10.0
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(o) 225° 45° . 675° 90°
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//
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/ FZs \
\
4.0 1007/ ~ \
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/ X2 / \‘
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/ 5 ) P . \
: / < \\ \
2.0 20 ‘
: e=1.0 / s A !
;7 \ 1
, /// \\‘ ‘=
1.0 7 .20 \
A7 =TT T 100ES ~o \l
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S 20 ===
0.0 £ " T .
~— — - '//
''''' i T2
\\. /’/ /
.0 N .
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\ -Fe
-2.0 \. 100
r\-/'/
-3.0
o° 22.5° 90°
s
Fig. 4.

Influence coefficients of stress F¥
and H% when the plane contain-
ing the principal directions of E1
and E: of the matrix rotates out-

of-plane with respect to the y-
axis.

Although the coefficients F}; and HE, are not given in this figure, these coeffi-
cients are determined as in the following expressions.

3.3
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Here, 7 is an angle of rotation around. the 2z’-axis.!® Fig. 4 (a)~(e) shows
the influence coefficients in which the plane containing the principal axes of
the elastic moduli, E; and E:, rotates out-of-plane with respect to the y'’-
axis.!? :

When the elastic constants and their directions with respect to the matrix
and the inclusion are known in advance, stress components applied at infinity
in the matrix can be easily determined from the measured stress components
in the instrumented inclusion in the following ways. '

As an numerical example, consider the case that the elastic constants of the
matrix and the inclusion take the values shown in Figs. 2~4 and the measured
stress components in the inclusion are given as

,=2.0kg/cm?, o,=3.5kg/cm?, 0,=4.3 kg/émz, ] 3.4)
7,.=15kg/cm?, t,,=1.0kg/cm?, z,,=—1.2kg/cm?.
When the elastic constants and their directions with respect to the matrix are
given that
(@) E=3.0x10°kg/cm?, v=0.150,
(®) E;=3.0x10°kg/em? E,=FE;=6.0x10*kg/cm?, v;2=v13=0.150, v33=0.250,
T=45°, a=4=0°,
(© E,=3.0x10°kg/cm?, E,=E;=6.0x10*kg/cm? viz=v13=0.150, vz3=0.250,
B=45°, a=7=0°,
the stress components applied at infinity in the matrix are determined by the
use of Figs. 2~4 as follows.

(a) 02=1.39, o0)=7.57, 03=23.48, 7},=9.64, 7%.,=6.41, 73,=—4.94,

() o07=261, o0y=5.61, :=5.09, 73.,=2.71, 7%, =1.51, #3,=-3.19,

© 0%=-3.35, ¢5=—-1.11, 02=11.75, ¢3,=2.75, t3,=4.44, %, =—1.58.

In other cases when the elastic constants and their directions with respect
to the matrix and the cylindrical inclusion take arbitrarily different values, the
same analysis as described above may be easily applied.

4. Concluding Remarks

In the present paper we have analyzed the theoretical stresses in isotropic
or anisotropic elastic matrices with a cylindrical inclusion in which the length
is sufficiently larger than the diameter. The results of calculation have been
explicitly shown by several numerical examples. This method is very appli-
cable for practical usage such as for stress measurements in rock masses.
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