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The ring test is often used to estimate the tensile strength of rock-like materials. 

The results of the test, however, are not well interpreted by the classical theory of 

elasticity. The present paper, with the .intention of a better interpretation of the 

results, discusses the effects of couple stresses on the stress distributions in a ring 

test specimen. An analytic solution was obtained by the Fourier-Bessel expansion 

method. Results show that the effects of couple stresses are remarkable. As the 

intrinsic internal length of material increases, the stresses rapidly decrease and be­

come more uniform. The Poisson's ratio decreases, and more uniform stresses are 

developed. However, its effects are secondary in comparison with the intrinsic in­

ternal length of material. 

1. Introduction
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The ring test is often used to estimate the tensile strength of rock-like 

materials in preference to the Brazilian test, because the stress field in the 

former is simpler than in the latter. 11 The theoretical foundation of the ring 

test has been given in several papers.2~4> Unfortunately, as was reported by 

Addinal and Hackett,1> Koyanagi et af, 5
> and further discussed by Hudson,6> 

all the test results indicated widely different tensile strengths. The main 

reason for the variation of the tensile strength was reported to be that the 

calculated stress based on the classical theory of elasticity is not the 'real' 

stress for rock-like materials. 1
•

6> 

As is well known, the classical theory of elasticity assumes the homogeneity 

of the constituent materials to an infinitesimal element of volume, that is, 

mass density is continuous and remains constant if any volume element is 

continuously shrunk to zero. This continuum approximation is violated for 

many materials composed of several distinct constituent materials, for example, 
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for polycrystalline mixtures such as rocks, and for composite materials. The 

classical theory of elasticity is successfully applied to the analysis of stress 

wherever the overall dimension of the concerned problem is larger than the 

average dimension of the intrinsic discontinuities in the material, for example, 

average grain size or inter-grain distance. However, as the ratio of the overall 

dimension of the problem to the average internal length of material approaches 

unity, the classical theory of elasticity is expected to fail. In such a case, a 

more presise theory which reflects the effects of the constituent materials must 

be sought for. 

The couple stress theory7
•

8 > or the micropolar theory9 > may find applica­

tions in a wide variety of situations from crystal lattices to rocks or composite 

materials. As was discussed by Eringen9 > and Cowin,10 > the couple stress 

theory is an extreme of the micropolar theory and the classical theory is ano­

ther extreme. In other words, the real response of materials falls between 

that predicted by the couple stress theory and that predicted by the classical 

theory. 

The present paper discusses the effects of the average internal length of 

material on the stress distributions in a ring specimen subjected to diametral 

compression. Similar effects in the Brazilian test specimen were discussed in 

a companion paper.111 These results may provide some explanation for the 

variation of the ring tensile strength. 

2. Description of the Problem

A ring specimen of external radius a and internal radius b was loaded by 

a radial load applied over the opposite arcs of its outer surface as shown in 

Fig. 1. The specimen was assumed to obey the couple stress theory of elasti­

city and to be in a state of plane strain. 

According to Mindlin,71 the governing equations of the couple stress theory 

of elasticity are expressed in the general coordinates xa (a = l, 2) by the two 

stress functions' </1 and ¢ as follows: 

LJ4</l=0 

(1 -l2172) 172¢ = 0 

(1-l2172)¢la = -2(1-11)l253a/3gf3rl72</Jlr

where 

(2.1) 

(2.2) 

(2.3) 

ga/3, e3a13, 11 and l are the fundamental metric tensor, the permutation tensor, 

the Poisson's ratio, and the internal length of material implying the bending 

『＝
1 6 
”6xd (v;gd(J 

6 ox(J)，『＝『 •172. g=det I ga(Jl 



Effects of Couple Stresses on Stress Distributions in a Ring Test Specimen 235 

Fig. 1. Schematic diagram of the ring 
test and the coordinate sysem. 

rigidity of a micro-element, respectively, and ¢Id implies the covariant deriva-

tive of ¢ by炉．

Stresses are expressed by the stress functions : 

占＝C3arc30喝lr8+c3ra¢lTB

μ8d =<Pia 

(2.4) 

(2.5) 

whereてdf3and μad are the Cauchy stress and the couple stress, respectively. 

When l=O, these expressions are reduced to those of the classical theory 

of elasticity. 

The solution of the problem of the couple stress theory of elasticity is thus 

obtained by solving the governing equations (2.1) to (2.3) with appropriate 

boundary conditions. 

The boundary conditions of the present problem are expressed in the polar 

coordinates (r, O) as follows: 

ar(a,{}） ＝PC{}),'Cro(a,{}） ＝0, mr(a,{}） ＝0 

ar(b,{}） ＝0, てro(b,{}）＝0, mr(b, (}) =0 

(2.6) 

(2.7) 

where notations for stresses are redefined such that(J” ちo,and mr express 

the components of the normal stress, the shear stress, and the couple stress, 

respectively. 

The surface load of the present problem is expressed in the Fourier cosine 

senes as 
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1 ~ 
p(()) ＝―fo十 ~fncosnO 
2 n=1 

fn＝-?-f PCB) cos nOdO 
冗'0

ヽ

0

J
(2.8) 

3. Analytical Solution 

The analytical solutions of Eqs. (2.1) and (2.2) of the present problem 

are expressed 

oo 

¢=Aふr+B記＋ L](Anrn+2+Bn戸＋Cnr-n+2+Dn戸）cosn{} （3.1) 
n-2,4• ・ • 

c 

<J,=a必r十~ (an介＋bnr-n)sinn{} 
”ー2,4,．．．

＋ぶ{dふ(f)+eふ (f)}sinn{} (3.2) 

where In(f) and K:名） arethe modified Bessel functions of the first and the 
second kind, respectively, and A。,B。,An,Bn,•…··, a。,an,bn,…,．． are constants 
to be determined. 

Substituting Eqs. (3.1) and (3.2) into Eq. (2.3), the following relations are 

obtained 

a。=0

ご悶＿ーツ望悶悶:l 
Stresses are obtained by substituting Eqs. (3.1) and (3.2) into Eqs. (2.4) 

(3,3) 

and (2.5) as follows : 

a,= r-1</>,r+ r-2<p,QQ-rー1<p,rQ+r和，o

=r-2A。+2B。
c 

＋区 {(-n+2)(n+l)たAn-n(n-l)rnー2Bn
n-2,4,••• 

-(n+2) (n-l)r-nCn-n(n+ l)r-n-2Dn}cos nO 
co 

十~ {-n(n-l)r己 an+n(n+1)r-nー2如｝cosnO
n•2,4,••• 

+ 2J {n(r-2In-r-1じ）dn+n（戸Kn-Y-1 Kn')en}COS n(} （3.4) 
n-2,4,... 

(Jo=<p,rr+r祁，00-r-2¢,o 

=-Y-2Ao+2B。
c 

＋区 {(n+2)(n+l)介An+n(n-l)rn-2Bn
n-2,4,••• 

+ (n-2) (n-l)r-nCn+n(n+l)r—n-2Dn}cos n(} 
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co 

+ L] {n(n-l)rn-2an-n(n+l)r-n-2妬｝cosn{) 
n-2,4,．．. 
co 

+ ~ {n(-r2In+r-lfn')d叶 n(-r-2Kn+r-1Kn')en}cosn{} （3,5) 
n-2,4,••• 

m=  -rー1¢,To+r-2¢,o-rー1¢,r-r-2¢,00 

= -r-2a。
.. 
＋区 {n(n+l)r”ふ＋n(n-1)rn-2Bn 
n -2,4,．．． 

-n(n-l)r-nCn-n(n+ l)r-n-2Dn}sin n{} 
00 

+ I:: {n(n-l)rn-2an+n(n+l)r―”ー2妬｝sinn(}
n-2,4,••• 
oo 

＋区 {(n2r-2J”―戸ln')dn+(n2r-2Kn-r-1Kn')en}sin n8 (3. 6) 
n-2,4,"• 

”T= -rー1<p,ro+rー2¢,o+¢,”

=-r-2a。
oo 

+ }J {n(n+l)たA,.+n(n-1) rn-2B,. 
n-2,4,••· 

-n(n-l)r-nCn-n(n+ l)r-n-2Dn}sin n{} 

+ ~ {n(n'--l)r”ー2釦＋n(n+l)r-nー2妬｝sinn{} 
れー2,4,•• • 
c 

+ ~ Un"dn+Kn"en}sin n{} 
n-2,4,••• 

mr=r/J,r 

=rーla。
CO 

+ I] {nrn-lan-ny-n+I妬｝sinn8 
n-2,4,••• 
c 

+ I:: {/n'dn+Kn'en}sinnO n~2,4,.., 

mo=rー1¢,0
c 

= 2] n｛介ー1佑十r-n-1妬｝cosnO
n-2,~,••• 
CX9 

+ lJ nr-1{/ndn+K忍n}cosnO
n•2,4,••• 

(3. 7) 

(3. 8) 

(3. 9) 

where [,.'and K,.1 represent derivatives of In(T) and K行） byf, respec→ 
tively. 

Substitution of Eqs. (3.4), (3.6) and (3.8) into the boundary conditions 

(2. 6) and (2. 7) furnishes the following system of linear equations of unknown 

coefficients : 
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1 a-2A。+2B。--f。
2 

(-n+2)(n+l)がAn-n(n-l)が―2Bnー (n+2)(n-l)a-nCn-n(n+ l)a-n-，2Dn 

-n(n-l)an-z佑＋n(n+l)a-n-2妬

+n(a-2In-a-1In1)d叶 n(a-2 Kn -a-1 Kn')en 

=fn 
n(n+l)かふ＋n(n-l)an-2Bn-n(n-l)a-nCn-n(n+l)a-n-2Dn 

+n(n-l)an-z釦＋n(n+l)a-n-2妬

+ (n2a-2In-a-1ln')dn+ (n2a-2Kn-aー1Kn1)en

=0 

nan-1an-na-n-1bn + In'dn+ Kn'en =0 

(3.11) 

(3.12) 

(3.13) 

炉 Ao+2B。=0 (3.14) 

(-n+2)(n+l)かAn-n(n-l)bn-2Bn-(n+2)(n-l)b―”―1Cn -n(n + 1) b-n-2 Dn 

-n(n-l)bn-z釦＋n(n+l)b-n-z妬

+n(b-2fn-bーIIn'）d叶 n(bー2Kn-b-1Kn1)en

=0 

n(n+l)がAn+n(n-l)bn-2B”― n(n-l)b—nCn-n(n+I)b-n-2Dn 

+n(n-l)bn-2佑＋n(n+l)b-n-2妬

＋（がbー2In-bーlfn')dn+（がbー2Kn -b-1 Kn')en 

=0 

nbn-lan -nb-n-1妬十ln'dn+Kn'en=O

(3.15) 

(3.16) 

(3.17) 

The unknown coefficients are 8n+3 and can be determined from the 6n+ 

2 equations of Eqs. (3.10) to (3.16) and the 2n+l equations of Eq. (3.3). 

In the numerical computations, the higher terms of the equations are 

forced to truncate due to the limited capacity of the computer. In the present 

computation, the terms higher than n=52 and n=32 were truncated for -':--~ b a=  
0.5 and 0.3, respectively. The values of the modified Bessel functions were 

calculated by Miller's method. 

4. Results and Discussion 

The collected results of stresses on typical diametral sections are shown 

in Figs. 2 to 4. The results correspond to the case in which the surface load 

p is uniformly distributed over the opposite arcs 2aa, with a=2.5°. Stresses 

are also normalized by P／冗a(P=2aap), which is the tensile stress at the 

center of the specimen of the Brazilian test obtained by the classical theory 
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Fig. 2. Effects of the internal length of material l on the stress 
b distributions when ~=0.8 and l,l=Q.2. 
a 

-20 

b 
で-=0.5 

， 

＿・＿

一ず0005 Closs□―o 

OI = 2.5° 

）） ＝0.2 

0.1 

0.2 

(x上
ira ） 

20 

Fig. 3. Effects of the internal length of material / on the stress 
b distributions when―=0.5 and 1,1=0.2. 
a 
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Fig. 4. Effects of the internal length of material l on the stress 
b distributions when ____':'._=Q.3 and 11=0.2. 
a 

of elasticity. These figures indicate the remarkable influence of the internal 

length of material, l. As l increases, the stresses are strikingly reduced and 

become more uniform. Also, as the ratio of the inner radius to the outer 

increases, the stress distributions are more nearly approximated by those ex-

pected from the bending theory of bars. On the other hand, as the ratio 

decreases, the stress distributions are expected to become more and more uni-

form over the whole region of the specimen as anticipated from the Brazilian 

test results (except near the inner boundary). 

Stresses at the inner edge on the diametral section in the loading direction 

are shown in Fig. 5 as a function of the ratio of the inner radius to the outer. 

Reduction of stress concentration with an increase of l is clearly demonstrated. 

However small the inner radius is, stresses at the edge of the hole do not 

reduce to those of the Brazilian test. As the internal length of material in-

creases, the former gradually decreases toward the latter. However, it must 

be noted that the limiting condition, i.e. b/a→0, is meaningless in the couple 

stress theory, because the internal length of material should be smaller or at 

least on the same order of the diameter of the hole, otherwise the real'signals' 

of stress concentration are lost amid the background'noise'of the intrinsic 

discontinuities of materials. These results may help the interpretation of the 
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Fig. 5. Variations of stresses at the inner edge on the diametral 
section in the loading direction with the ratio of the. inner 
radius to the outer. 
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Fig. 6. Effects of the Poisson's ratio on the stress distributions. 
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variation of tensile strength by the ring test. 

The influence of the Poisson's ratio on the stress distributions is shown 

in Fig. 6. As the Poisson's ratio decreases, more uniform stress distributions 

are developed. The effects, however, are not so predominant as those of the 

internal length of material. 

5. Concluding Remarks 

The analytical results indicate that couple stresses have remarkable effects 

on the stress distributions in the ring test specimen. The reduction of stress 

concentration with an increase of the internal length of material is striking. 

The fact may suggest the appropriate interpretaion of the ring test results. 
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