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Probability Distribution of the Maximum Response
of Structures Subjected to Nonstationary Random
Earthquake Motion
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Presented are the results of a theoretical analysis of the statistical properties of
the maximum structural response to nonstationary random earthquake motion. Two
approximate methods were developed to obtain the probability distribution of the
maximum earthquake response on the basis of the pure-birth process equation and the
peak envelope distribution, which should be adopted alternatively depending on the
range of the structural and excitation parameters. Also discussed is a concept of
structural design for random earthquake loads on the basis of the numerical results.

1. Introductien

When civil engineering structures are subjected to random excitations of
the earthquake type, their dynamic responses obviously fluctuate in a random
manner as well. Similar cases occur when wind forces which are distributed
randomly either in time or space act upon flexible structures or when random
pulses of vehicular loads move along bridge girders.

In discussing the strength of structures in withstanding such random
loads, we are primarily interested in the probability of structural safety during
the service life, which is referred to as the reliability function defined® by

R/(T)={"0,(Y, T>/:(Y, T)dY

where @,(Y,T) denotes the probability that the structural ‘“‘response level’”
will not exceed Y in the future interval T, and f:(Y,T) is the probability
density of the ‘‘strength” Y of the structure.

If we neglect the effect of the random distribution of the strength of struc-
tures about its mean value Y, and set

;¥ =Y =Yy
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then we have
R(T)=§ 0,(¥, TYOY ~YdY =0,(¥., T

which implies that the reliability is directly given by the probability that the
“response level”” will not exceed the mean strength Y, throughout the period
T.

It is frequently the cases in design practice that structural safety is stip-
ulated as the requirement that the maximum response given either in terms
of stress, deflection, or displacement be not in excess of the prescribed allowa-
ble value, in which case ¢,(Y,T) coincides with the probability distribution of
the maximum response, the main subject of this paper.

Compared with the instantaneous probabilistic properties of the random
structural response, the theoretical discussion of the maximum response of a
structure in somé finite duration of continuous excitation poses a very difficult
problem due to the vibrational characteristics of structures; this seems to have
limited the appearance of very many successful papers in this field.

E. Rosenblueth and 'J. I. Bustamante!” analyzed the ‘‘response’ 7, which
is approximately proportional to the square root of the sum of the kinetic
energy and the strain energy of a simple structure subjected to a white-noise
excitation, and obtained the probability distribution of its maximum value in
the transient state with the aid of a diffusion process analogy; this was fol-
lowed by a d‘is_cu'ssio'n in relation to the earthquake-resistant design of struc-
tures. As far as the author khows, this work was the first successful attempt
to obtain a theoretical expression for the probability distribution of the maxi-
mum structural response to earthquakes. It is, however, confined to a white-
noise excitation which vcannx_lot take account of the nonstationarit,y in amplitﬁde
and non-white spectral characteristics of general earthquake ground motions.

A. M. Freudenthal and. M. Shinozuka® derived formulae for the upper and
lower bounds of the probab111ty distribution of the maximum structural re-
sponse to an arbitrary random excitation of the earthquake type. However,
the results of the apphcatmn of their method to structures with a single de-
gree of freedom show that the upper and lower bounds thus obtained are
sometimes apart by one or two decimal points'® which could not be said to be
close enough for engineering application.

A. G. Dairenpdftz’ and S. Komatsu'® discussed the probability distribution
of the maximum response of structures under wind loadings.' Their methods
of analysis differed in the concept of the time dependence of the mean intensity
of the wind load, but they both assume that the statistical properties of the
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response at a certain instant are independent of its past history. This means
that the process of the upward or downward crossing of a certain response
level becomes a Poisson process if the response is stationary. Y. Yamada and
H. Takemiya®” derived the non-excess probability of the maximum structural
response to random earthquake motions under the same assumption. This
assumption was also used by the author®™® and has proved appropriate in the
analysis of earthquake ground motion, which contains a relatively wide range
of frequency components..

On the contrary, this assumption fails to be accurate in the discussion of
the random vibration of structures. The difficulty arises from the fact that
many civil engineering structures exhibit relatively low dynamic damping, say
1~20 percent of critical damping. When such structures are subjected to
random excitation, their response behaves as a cortinuous narrow-band random
process which implies a high correlation between the response amplitudes at
different times. Hence, the simple assumption of the history-independence of
response, the Poisson process approximation in the case of a stationary re-
sponse, needs to be examined as to its accuracy.

Thus, there are some basic problems left to be solved with regard to the
theoretical representation of the probability distribution of the maximum re-
sponse. -In this study, two methods of analysis have been developed to furnish
better approximate solutions; one, by taking due consideration of the above-
mentioned correlation of responses at different times in solving the pure-birth-
process-equation, and the other, by applying the technique of the peak enve-
lope distribution. It has been proved on the basis of the results of numerical
surveys that these two methods can be applied alternatively to cover a wide

range of parameters of practical interest.

2. Representation of Random Earthquake Acceleration

When we discuss the maximum ground motion in a‘strog earthquake, it
suffices to treat the ground motion as a stationary random process®®. How-
ever, when the structural response is in question, its transient part must be
considered in the analysis since the effect of the initial conditions on the
response is appreciable. Hence, in this section we shall introduce a statistical
model of nonstationary earthquake motion to be used in the subsequent analy-
sis. » _ ‘
The ground acceleration Z(®) in earthquakes shall be expressed in the
forms®-®

=Bt D8 e o
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where g(?) is a stationary random process with zero mean value, the variance
of unity and the power spectrum S,(w), f(¢;7) is a deterministic shape func-
tion which exclusively assumes positive values, and B is a constant with the
dimension of acceleration.

The appropriateness of representing the ground acceleration by the form
of Eq. (1). was discussed by K. Toki!®” in connection with its spectral
characteristics and was admitted for some typical strong motion accelerograph
records. The shape function f(#;7) may take any form, varying with the
location of the observation site relative to the hypocenter, the characteristics
of the seismic pulses generated at the origin, the path characteristics, the
observation site conditions, etc. In the present study, an expression with a
linear initial set up and an exponential subsiding tail® shall be adopted; i.e.,

(1+1/§)

ViIGE)) =Q—_{-$§;,_ est(l—e 8 e )

where s and ¢ are the parameters determining the shape of f(¢;7). This
J(;7) assumes the maximum value of unity at

P
t=tn=rlog(1+&)

Fig. 1 shows the shape function f(¢;7) of this type, and the values of § for
various st are tabulated in Table 1. The variances and the correlation coef-
ficient related to Z(¢) thus defined and the probability distribution @s;(«) of the
maximum ground acceleration can be discussed in the same manner as in the
earlier studies®®, from which the expected value E(a] of the maximum ground
acceleration « is calculated (see Appendix) from

5
t/T
Fig. 1. Shape Function f(¢; 7) of Earthquake Motion.

E@={{-0@)}a e 3

The duration of the ground motion for the present type of f({;7) cannot
be defined explicitly since the exponential tail vanishes onljr in the limit of
t—co. Hence the “equivalent duration” r shall be defined as the duration of
a portion of a stationary ground motion Bg(#) whose expected value E(a] of
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the maximum ground acceleration is equal to that of the nonstationary ground
motion in the present discussion. Hence if the power spectrum S,(w) of g(¥)
is specified, we can determine the relationships between the equivalent dura-
tion 7, the mean maximum ground acceleration E(a), and the parameters s
and € in Eq. (2). This procedure is illustrated in Fig. 2 for the case where
the power spectrum S,(w) takes the form adopted in references 6)~8) and g(®) is
a Gaussian stationary process. The s/w,—E[a)/8 relationship in quadrant (a)
of the figure has been obtained by applying the present model of the ground
motion. On the other hand, the E(al/f—17/Ts curve in quadrant (b) can read-
ily be drawn from the results of the studies in references 6)~8) in which the
stationary model of the ground motion has been adopted. Then the s/wo—7/T
relation is obtained as in quadrant (c¢) by following the route shown by the
dotted line. The s/wy—t/T, curves thus obtained and plotted in logarithmic
scales are nearly straight lines. The result in Fig. 2(c) would allow us to
express it as

wi(): c<TLO>_1'°9 e @)

The numerical values assigned to the coefficient C are indicated in Table 1.
The t/T, scale in Fig. 2 has been determined in such a manner.

S/ (¢c)

Table 1. Parameters to Characterize
the Shape Function.

Stm 5 C

1.0 0.0 0.166

0.8 0.539 0.136
100 0.6 1.579 0.108

0.4 4.047 0.077

0.2 13.30 0.050

(b)

E(al/B
Fig. 2, Determination of the Equivalent
' Duration of Earthquake Motion.
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In the analysis of structural response in subsequent subsections, it is de-
sirable that. the hight of the peak of the power spectrum S,(w) be chosen
arbitrarily according to an independent parameter. Hence, in the sequel, S,(w)
shall be represented in the following form analogous to the power spectrum of
the relative velocity response of a simple structure subjected to white-noise
excitation :

‘4ho (w/ (Do)z
7wy {1— (0/wo)2}2+4he?(w/wo)?

Sy(w) =

in which w, is the predominant circular frequency. In the above structural
analogy, %, corresponds to the damping factor. However, it does not neces-
sarily stand for the damping factor of the ground of the observation site, but
should be understobd as a general parameter inclusive of other factors which
would affect the peak value S,(w,) given by .

So(wo) = ;hl—oa; ............ (6)

It is readily verified that Eq. (5) satisfies the condition that g(¥) should have
the variance of unity:

S:S,,(w)da)'=1

It is expected that there would need to be some modification of Fig. 2
when S,(w) of the form of Eq. (5) is used with various values of %#,. Nevertheless,
for simplicity, we shall use this figure to relate the equivalent duration = of
the nonstationary earthquake excitation to its relevant parameters.

3. Variances and Correlation Coefficients of Structural Response
(1) Simple Structure Considered

Throughout this study, we shall deal exclusively with a simple structure
which can be represented by linear oscillator with a single degree of freedom.
The equation of motion for such a system subjected to a ground acceleration
Z(®) is given by

IO +2hawny D)+ w2y =—Z2@) e )
where y(#) : relative displacement, w.=+/%/m: natural circular frequency, h»
=c/2y/mk : fraction of critical damping (damping factor), and m, &, and c:
mass, spring constant, and damping coefficient of the system, respectively.

The solution of Eq. (7) under the initial conditions y(0)=0 and y(0)=0 is
represented by the well known convolution integral:
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G Y I PYICOL B ®

in which . .
h(t) =e—hnont Sin @at;  @n=1/1—halon
Likewise, the velocity response y(#) is obtained as

1

IO == b=z p— ©

where
h(£) = @ne~ P01t (COS @t — Fin SiD @al)
Fin="Ha/y/ 1= hs?
(2) Variances and Correlation Coefficients of Response
When the excitation Z(#) in Eq. (7) is a random process with zero mean
value, the variances ¢,2(%), 06;,2(f) of y(®), 5)(1_5) are given, respectively, by

1
@n®

o @O =Ey*®]=
and ’ D TN (10)
0 () =E(3 (D) =g | h(t—t0at | ht—t B2 2dt”

@r°

[nc=dar | na—tOBE@YZE DAL

In the sé.me manner, the correlation coefficients p,;(¥) between y(t)_and y(@®,
ouy(ti, 1) between y(¢)) and y({), and py(h, £) between y(¢) and y(#.) are
represented, respectively, in the form ’
ou® =ELy®3 D)0, Doy}
1 ¢ Y ’ ‘s 1 SO 5 (H N "
0y (b, 1) =E(y )y )] /{oy(tDay (1)}
——1_— “ — / f2 ! e aYie L 1/ ”’(11)
=G e @B, M= A | [t t DB
our(ty, t2) =E(y (D9 )] /{ay ()03t} _
1 i “ N (2 1" SOH Ny (417 1"
S ATTAT R RAC PR =t DE2(@)2(H)dt
When 2(?) takes the form of Eq. (1), we have
EZ@D2z@ D))=/ ;0DfW" ; DEgE ) g

—BfE DD S @ cos 0t —tDde e az

On substitution in Egs. (10) and (11) from Egs. (2), (8, (9), and (12),
and after an analytical procedure of integration with respect to time, we obtain
the variances and the correlation coefficients of the nonstationary response in
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the form

Caughey and H. J. Stumpf?,
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of integrals with respect to the frequency.'®* If we make an ap-
proximate evaluation of these integrals by means of the method of T. K.

gration leads to the following approximate formulae:

where

in which

o2 ()= ‘9352 A S () K, 5, ©

o) = “‘fv :‘1 Solwn) (Kot 5, &) —2nKos(t, 5, &) + tni K2, 5, ©)}

o) = TR O (Kon(t, 5,6~ ity 5, ©0)

2
ouyCty 1) = a%ﬁsﬂ;”:gw{ml(n, to, 5, &) + Kults, 1, 5, )}

. wh2A%S,(wn)
0wty 1) = w*0y (tvs a;(t2)

—h—n{Kcl(tl, tZ; S, 5) +K54(tly tz' S! e)}j J

EKM (tb tg, S, e) +K85(th t2y S, 6)

Kos(t, s, & =Loi(, $) +Loi(t, A+8)9)
- oi(t, S, (1+$)$) —Uoi(t, (1+£)S, S) H (i=1’ 29 3)

- & st p—thnont(1 2 A i 0
L“(t’s)_42(s)(’2+22(s)){e 25t — g—2h t<1+———c sin 2@nt

Z ) sin? (D,J)}

c
__ ¢ 29\ e g
L, (2, SD*WCT'"T(S)_){(LFZ 1 >e 25t — g—2hnont

<1— ACS) sin 2w,.t+21 () cos? @ t)]

Lo3(t, s)= W*-i—cT(s)) [e 2St—(a-i’hvww‘(cos 2@t + (C) sin 2wnt)]
N <
Ul &30 =@ 1) CHEEH P
—e~2hnont{24, (s, 5") COS? @t + 242 (S, 8") Sin? @nt
— (ua (s, s") — pa (s, 87)) sin 2@nt})

e

Uonlls 8 80 =50 72673) @ )y e (S e+
—e=2hnont{241,(S, 5") €OS? @t +2p1 (s, s') sin? @t
+ (ua (s, 8") — ps (s, 87)) sin 2@at})

U,.(t N — '_Cz /
03( » S, S )—2(1(8)+I(S’))(C2+ZZ(S))[<F‘3(S’ S )

S/) e—(s+s"t

then some cumbersome algebra of contour inte-

- (13)
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_ﬂ4<s, s/))e—(s+s')t__e—2hnwnt{(ﬂ3(s’ s’)
—14(8, §7)) cos 2@t + (1 (S, 8') — 12 (s, 7)) sin 2@4t}]

and
Kei(ty, ta, 5, &) =Leoi(ty, to, 8) + Lei (b1, 22, 146)S)
_Uci(tly tZ! S, <1+e)3) _Uci<t1) t2$ (1+$)S, S) H (t=1’ 3)
K (b, b2, 5, &) =Lsi (b1, te, S) + L (8, ta, A+8)s)
_‘Usi(tl, tZ, S, (1+§)$) —Usi(tly t2, (1-{-5)3, S) H (i=4y 5)
in which
3 ¢ —(2st1+hnon(t2—t1))
Le(ty, b2, 8) ]2t1—t220=m[e sty +hnonltz—t1
. {cos @n(ta—t) + X(g) sin a'),,(tz—t,)] + %e‘hnwn(tr{'tl)
. [cos @nta—t) + z(Cs) sin @a(fa+1;) +2 ’Izc(f) sin @ats sin a')nt,]
1

— Te— (hnon(t2+t1)—22(wn(tz— 1)) [COS @n(ts—1y)

2
+ -Z—(glsin @n(3t,— 1) +2i§-)~sin @ty Sin @n (2t1—tz)]J

2
Les(ty, s, 5)|2t1—t220=m‘g_(cc%[e_o”ﬁhw“(”_“”

. [Mcos @, (t2— 1) + 2(s) sin @n» (tz—tl)} =+ 'l—e‘hnwn(t2+t|?
¢ < 2
. [sin @n(ta—1) — Z(CS) cos @n(t2+1) —2 ch(f )—cos @l Sin a‘)nt,]

— .é—e— (hnwn(t2+t1)—24(Dwn(tz—11)) {sin @, (t2—1))

2(8)
e

+ x—(slcos @3t —1t) +2

: sin @t cos @, (2t — tz)]]

—r2
Ls4 (t], tz, s) |2t1-—1220 = 87(‘8)(:23‘—12(5))[e_hnwn<t2+h)

2
feos @uct—t + A(Cs) sin @a(ty+) +24 C(ZS) sin @.t: sin @,

— g~ UnonCta+ 1) =22(DonCta— 1) [cos @n(ta—1D)

+Lg)sin Dn(Bt— ) +2 Zzéf) sin @ut, sin Ga 2~ 1))

_
L (2, ta, $)|2t1—ta20= Zg—m [e—(ZStx +hnon(t2—11))

(1+ -PC(;‘) Jsin @ate—t) e a0 (sin @u(ty—1)
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_ ——1?) €08 @n(ta+1) —2 Zzés ) Eos @nlz sin @ntl}

—_ —é—e— (hnon(t2+t1)—22(dwn(t2—#1)) [sin @ (ta—11)

KC) Cos @, (3t —1t,) +225 A éz) sin @qt; cos @ (2t — tz)]]

L, (t, ta, 3)I2t1 tzSO—‘--C'—— —(2st1+hnoa(tz—1t1))

. {cos @n(ta—1t) + () sin a'),,(tz—tl)] — = haon(t2+t1)

¢
%” sin @a(ta+t) +2 Péf) sin Gty sin @uti} )

. [cos @n(t—t) + A

Los(ty, ts, [e—(25t1+hnwn(t2 )

)2t -t2s0= gx(s)(f’2+22(5))

. [ 1(3) cos (Dn(tz—‘ tl) —sin @n(t2_t1)} +e—hnwn(tz+t1)

¢
. {sin Dn(fe—1) — Z—%lcos @n(ta+t)—2 (s) COS @tz Sin @nt, ]]
Luy(ty, ta, 9 l2n—trso= %)(TFP o)) (o-Costithumncea—r
. [COS @On(—1) + <C) sin a'),,(t_g—t,)} — e—hnon(ta+t1)
{cos (1) + ( $) sin @ (f;+1) +2 A éf ) sin @t; sin a‘)nl,]]
Lys(hy, ta, 8 |2ti—tas0= H6) (EZC_: - (s))[e—(éstmh,.w;(tz—t,))'

. [sin @n(f2— 1) — ( ) ==4-008 @n(t— ,)] — ehnoalta+t)

{sm @n(s—1) — ( ) Cos a),,(t2+ t)—2 (s) COS @nl; sin wntl]]

. P2
N — S

Ue(t, b, 5,5") 2Q0) FAG)) (C+2(s))

+x2t—t) e~ (s’t2+st1+l($)wn(t2—t1))}{#l (s, ") cos @, (t,—1)

[{e-c<s+s'>t1+hnwn(tz—t1>)'

—p3(s, 8" sin @ (t—1)} — —%—e‘hﬂ‘""(’?”l)

«{2p:1(s, 8") COS @ntz COS @nti+2p5(S, S7) Sin @ats Sin @at;
— (e (s, 8") — pa(s, 87) sin @b+ 1)}
—x(2t—1;) e~ (hnon(ta 1D =2SDwnlta=tD{ 11y (s, §") COS Bnl; COS Bn (2t —1)

+ 212(8, §") Sin @ty Sin @n (2t —15) — p15(S, S") COS @nly SIN B (2t —12)

+ 1145, 8') Sin @aty €08 Ba(2hi— 1)} ]



Probability Distribution of the Maximum Earthquake Response 253
Un(h, by, 5, 8) = s (
AND BT 2Q0) +aD) @+

{3 (s, s7) €08 @u(ta—1) +pu(s, s") sin @.(f2—1,)}
— 22l — ) e~ st +ADanlts= 1) { 1, (s, §') €OS Da(t2—11)

e—((s+s")t1+hpon(tz—t1))

+112C5, ) SN Bafa— 1)} -0~ FranCtr+tD

«{2p2(s, §) €OS Dtz SIN Bty —2421(S, ") Sin @tz COS @ty

— (s (s, 8 — pa(s, 57)) cos @n(te+1)} .

+ 22t — by) e~ (hnonlta+t) = 22(Sonlt2— 1) { 41, (5, §') sin @at; COS @1 (28 —1)
— 1 (S, ") €08 @ty Sin @a (2 —12) + ¢3(S, $7) €OS Gty COS B (2 —12)

4 4(s, §) Sin @uty Sin G (24 —15) }]

= & —((s+s’ non(ta—
Us (s, by, s’s)—Z(X(s)+X(S’))(C2+12(S))[{e UstsDt1thawn(t2—10)

—x(21 —1;) e~ ' tatst1+a(Denlta—t0)} {0, (5, s") cos @n(f2—11)
. 1
—5(5, 8') 8in @n(fr— 1)} — —5e~ BnonCtate)

{2p11(s, ") COS @ntz COS @nt1+2p1(S, §") $in @nty Sin @nt;
— (s (s, 8°) — 4 (S, §7)) sin @ (fe+1)}
+ x(28; — 1) €~ (hnon(t2+ 20~ 2(SDom{t2= 1) { 1) (5, §') €OS @nl; COS @ (2, —1;)
+ p2(s, §") Sin @ty Sin @21 — 1) — pa (S, §') €S @ty sin @. (21 —1,)
+25(s, §') sin @nt) cos @2t —t2) }]
_CZ
Ustti o 8 ) =300 T CHE®)

{pa(s, 8" cos @n(t2— 1) +pu (s, 8" sin @ (2 — 1)}
+2(2ty— b)) e~ ta¥stiHienlte= {1, (s, 87 €08 But— 1)

e—((s+s)t1+hrwn(ta~1t1))

+12(5, $) iR Bu(la— 1)} — € FmanCtz 1>

{24, (s, ") Sin @nts COS Bnt1—2p2(S, S') COS Bnt, SiN @l

+ (s (5, 87) — 1 (5, §7)) oS @n (e +10}

+2(2t) — tp) e~ (hnonltz+ 1) = 22(en(te=11){p1 (5, §") COS @nt; Sin B (21, —13)
— 12(5, §") sin @at; COS @n (2t —t2) + 3 (S, §7) sin @aty sin @. (28— 1)

+ p4(s, 8") cos @ty cos @n (2t — tz)}]

(s, ) ={ai(s, sNas(s, ') +ax (s, sDas(s, $')}/ (s, ")
128, ") ={as(s, N as(s, 8 +au(s, sDas(s, ')}/ m(s, s
13(s, 8") ={a(s, N as(s, s —a(s, sDas(s, ')}/ (s, s
24(s, ) ={a.(s, sHas(s, s')—as(s, sDas(s, s}/ (s, s7)
(s, 87) = (42— 22(s) + A2 (")) + 165225 (s)
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ai(s, s) =20 = 2()+A(HAEN,  ax(s, s =LBAS ~A(sD)
as(s, ) =202—422(s) —2()A(s") +22(s")

as(s, s") =L B +A(D)) — I—(CQ(P(S) =2

as(s, ') =422-522(s) + 2(s"), as(s,s)= 1%—8)(852—12(3) +2%(s"))

1, >0

"(t)={0 <0

Numerical computation for Eqs. (13) and (14) have been carried out for
the set of parameters st,=0.4, 7/To=3, 10, 20, k,=0.02, 0.05, 0.1, 0.2 and &=
0.9. The value of &, determines '_i'_che peak sharpness of S;(w). As could be
expected, %, would vary with the site conditions, and, in many cases, from
earthquake to earthquake. Throughout this study, however, we shall keep %,
fixed at 0.9, which was determined in connection with the values of the mean
response spectra as will be explained and discussed later, in chapter 6.

The results of computation are plotted in Figs. 3 and 4. Fig. 3 shows the
time variation of the r.m.s. response, in which ¢,(H)®.*/8 and ¢;(t)w./B are so
close that they are inseparable. It may be observed that the maximum value
of the r.m.s. response takes place later than the time #». of the maximum in-
tensity of excitation. - It is obvious that this result is partly attributable to
the vibrational characteristics of the structure which are manifest in the unit
impulse response k(f) in Eq. (8); i.e., the response assumes its maximum
value necessarily later than the excitation. It is obvious that this effect is
remarkable in structures with long.er natural periods; this is also true for a
shorter duration of the excitation. Indeed, the former statement is justified
by Fig. 3(b) and the latter by Fig. 3(a). In addition, this time lag is greatly
affected by the damping factor %.. When a structure initially at reat is sub-
jected to random excitation, its r.m.s. response increases until the rate of
energy dissipation due to the structural damping copes with the mean energy
delivered by the cxcitation per unit time. Thus, it follows that if 4, is small,
gy,(t) continues to increase for the time being even after the excitation level
f(t;7) has begun to decrease as shown in Fig. 3(a)._ These results demonstrate
that a transient effect is present to a considerable extent in the case of non-
stationary earthquake -excition, but with the intensity of response varying
slowly compared with the case of sudden action of a stationary excitation.®

Smooth curves in Fig. 3 imply that Eqs. (13) may further be closely approxi-
mated by neglecting the sinusoidal members and the higher order terms in %,
in the formulae, which reduces Eq. (13) to the following simple form:
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Indeed, the numerical values of ¢,(¢) and gy (t) from Eq. (15) are sufficiently close
to those in Fig. 3. The same simplification is also possible for the correlation
coefficients in Eq. (14). However, the resulting formulae proved not neces-
sarily to g1ve sufficiently accurate numerical values.

As a measure of the 1nten51ty of the nonstationary response, the maximum
value Oymax of ¢,(t) is shown in Fig. 5 in a form similar to ‘that of the re-

sponse spectra.
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4. Probability Distribution of the Maximum Response
from the Pure-Birth-Process Equation
(1) Basic Solution

Let Y denote the maximum absolute value of the response y(¢) in the du-
ration considered. Then the probability distribution @(Y) of Y is represented
by

o) =Plmax|y(D|=Y; 0=t e as) .
Eq. (16) can be formulated in terms of the fundamental differential equation
of the pure-birth-process’®, from which we obtain

oY) =a,(Y) exp {— S:co &, dt] ............ an

where

a(Y) =P(ly(0)[=Y)
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P(y(+dd|>YNmax[y(#)|SY ; 0t <8)

c(¥, Ddt= Plmaxly ()| =V; 07 <7

(2) Approximate Solution

The solution for the probability distribution @(Y) of the maximum re-
sponse given in Eq. (17) cannot be represented in an explicit form since it is
extremely difficult to obtain an explicit expression for ¢,(Y, t) in Eq. (18) due
to the correlation between responses at different times on the continuous time
axis. Therefore, we shall make an approximation to Eq. (18) in a manner
more general than those in the former studies cited in Chapter 1.

In the exact solution, Eq. (18), is required to hold throughout the con-
tinuous time axis. Here, let ¢,(Y, t) satisfy Eq. (18) only at discrete instants
tyy Loeeerer , &t such that

0=t <tyeree <tr <t
Namely, we set
PUIyt+dDI>YNYOISYINAEISYY o iy »

z = dt
Py O SYN{AYEISTH &T, D

(Y, Hdt=

where
Qu¥, Ddt=PU{yt+dDI>Y NIy OISYIN Oy tol<TY)

Qu(¥, Hadt=PUy®ISYN{ytoISY )

If we let E_O(Y, t) in Eq. (19) approximate ¢,(Y,?), then an approximate for-
mula for Eq. (17) is obtained as

O(Y)=a,(Y) exp { — S:Eo &, D dt] ............ 20)

In Egs. (19) and (20), the effect of correlation between the response at dif-
ferent times is taken into account, though in an approximate manner, which
describes the phenomenon more precisely than the simple approximation of
of the independence of the response from its past history adopted in earlier
papers on the maximum response. The approximation of history-independence
of response is contained in Eqs. (19) and (20) as a specific case of »=0. In
the subsequent discussions, this case shall be referred to as the first approxi-
mation, the case of 7=1, as the second approximation, and so on. The ap-
proximation error is expected to reduce with increasing values of 7.

Next, @Y, and @,(Y,#) in Eq. (19) shall be represented in a more
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explicit form. Set, for simplicity, y(#)=y1, &) =z, ==, Y(E) =Yr, (&) =01,
y@ =3.. On applying the method of analysié of the threshold-value crossing
problem developed by S. O. Rice!® to the present rmulti-dimensional random
varlables, Q:Y,t) and Q.(Y, ) are reduced.to - -

QY -2 Y/Y;ﬂde R S (P AP

""" ’.Er, _— §z>d$L )

+,So §¢¢1n($1, g veeenr V&, e St)dét} de, T e ,(21)
) _ Y/o1 Y/o2 - Y/or Y/a: .
QY =" d&s| 7 ey (T A8 gl 6 e 6 G0dE:
............ @2
In which ¢in(é), &, -+, &, &, 8D and don(€y, &, -+, &, &) are the joint proba-
bility density functions of the nondimensional variables &, &, -+---- , &, &, & and

1, gy veeeee , &, & defined by

§i=Yyi/0:; (i—l 2, oo R 5t=yt/o'ty €t=5’t/0'v
ai={ELya)V2; (i=1,2, - 1), o={E(yA}2, o={E(y2}?

The joint probability density functions in Egs. (21) and (22) may take
arbitrary forms, out of which the typical case of the normal distribution which
is of primary importance in application shall be described below.

When a linear structure is subjected to an excitation represented by a
random process with a normal distribution, white or non-white, its response
also has a normal distribution since an arbitrary linear combination of normal
random variables is normal as well. Hence, in such a case the joint proba-
bility density functioné in Eqgs. (21) and (22) become multi-dimensional normal
distributions with respect to each of their indepenident variables. Furthermore,
for the normal distribution, the number of multiple integrations representing
Q:Y,t) and @Q.(Y,#) can be reduced analytically by one, in which case Eq.
Q0 is rewrltten as

h<

o, t) =erf ( T )exp[— S:EO(Y, t)dt} e 23)

where

) @, )=\, D/QX, D, co={E(y*WO)]}
Q: (Y, ) and @Y, ) in Egs. (21) and (22) for the normal distribution yield

Q0= e (e 42) (G
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. 1 r
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For specific cases of r=0,1, the expressions for @,(Y,t) and @.(Y,?) are
somewhat simplified®!#.,

The expected value E(Y] of the maximum response can be represented in
the following form analogous to Eq. (3):

E(Y])= S:{l —o(WYY e 24

(3) Numerical Results and Discussion

By use of the variances and the correlation coefficients of the response
obtained in 3, numerical values have been computed for the probability distri-
bution @(Y) of the maximum deformation Y in response to a nonstationary
Gaussian random excitation of the earthquake type, with the aid of the ap-
proximate formula (23) derived from the pure-birth-process method for the
various values of the parameters k., T»/T,, and z/T,. The second approxima-
tion, =1, has been adopted and the time ?, to introduce the correlation effects
of the response was taken as

t1=t—%
from the results of the approximation error survey.?

Along with the analytical procedure, numerical simulation of the maximum
response Y has been carried out. For each set of parameters, 40~50 sample
accelerograms have been generated, from which the experimental probability
distribution has been obtained as the cumulative probability of the maximum
structural response to them.

Some numerical examples of the analytical and the simulated results are
shown in Figs. 6~8. From these figures, it is obvious that the discrepancy
between the analytical and simulated results grows greater with increasing
T,/T, and with decreasing 7/Ty and k.. For t/Ty=3 and T./T,=1, 4, Fig. 6,
fairly good agreement between the analytical and simulated results seems to
attained only for %.=0.2 and an extremely high level of Y for lower damping
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factors. This result is considered to be a consequence of the approximation
procedure which was adopted in the pure-birth-process method, and it Woulq
demonstrate that a careful choice of parameters must be made in applying
this method to the problem of the statistics of the maximum earthquake re-
sponse. These error characteristics could be explained in the following manner.

i) The ._pure-birth-process method so far discussed takes account of the
correlation effects between the responses only at a limited number of discrete
times, though it has been improved' if compared with the former studies with
the history-independence assumption. As a matter of fact, however, it is ex-
cessively time consuming to carry out numerical computations with a high
order of approximation, say »=3,4 or more. Hence, if the damping factor %.
is very small and there occurs as a consequence a high correlation between
the responses at times separated by several times the natural period, then
pure-birth-process method fails practically to be applicable with a sufficient
accuracy. '

ii) A great part of the error due to a small %, is considered to be caused
by the subsiding tail of the r.m.s. response ¢, for a large . It was pointed
out in 3. (2) that when o, attains its maximum value and begins clearly to
decrease, the excitation level f(¢;7) has already decreased to a considerable
extent if 4, is small. Hence in such a case, the subsiding tail of ¢,(?) is
considered to represent primarily the effect of damped free vibration, and the
maximum response is expected to occur exclusively in a relatively short time
interval containing the maximum of ¢,(#). However, due to the procedure
which, starting from the exact solution Eq A7), led to the approximate for-
mula (20), this subsiding tail has in effect been treated as though it possessed
a more random nature which might affect the ma}éirnum response. In this
sense, if h, is so small that this kind of error grows large, the pure-birth-
process method will. overestimate the maximum response, and Eq. (14) will
give a lower bound of the probability distribution @(Y). Indeed the results
for 2,=0.02 in Figs. 6~8, for example, seem to support these arguments.

iii) If T./T, is very large or 7/T, is very small, which implies that the
input is impulsive rather than a continuous excitation of slowly varying in-
tensity, then the maximum value of ¢,(f) appears much later than that of the
excitation, as we observed in Fig. 3, the case of T./T,=6, for example. Then,
analogous to the discussion in ii), the r.m.s. response following this maximum
value is also considered to represent the subsiding tail due to free vibration,
not the effect of forced vibration. Thus, large 7./To and small 7/T, also have
the same effects as small %, and tend to increase the approximation error in
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o). .

From the foregoing discussions.on the dccuracy of the approximate pro-
cedure, it would be obvious that the pure-birth:process method so far developed
furnishes a good approximation to the probability distribution of the maximum
response for a limited range of parametefs; i.e., for larger k. and r/T, and
smaller T»/T. If we admit the judgment that the analytical and simulated
values for %,=0.05 and 7T./To=1 in Fig. 7 are in appreciable agreement and
let them give a limiting degree of tolerable error for practical use, we can
separate the successful portion of the whole analytical results.!¥ The range
of parameters in which the pure-birth-process method is apphcable in the
sense of the above statement is shown in F1g 9. The domam on the “A”
side of each curve correspondmg to the probablhty levels ¢(Y) is the area
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where the pure-birth-process method is valid and that on the ‘B’ side is where
it fails to be. In the case of Fig. 9(b), for example, the pure-birth-process
method is applicable to structures with %,=0.1 and T»/T,=2 in the range @)
>0.4. It should be noted, however, that these curves are only representative
of error criteria, and we should undefstand that the error caused by the ap-
proximation changes rapidly but continuously somewhere about them.

A more reasonable method of analysis for the range of parameters in the
“B’”’ domain is discussed in the next chapter in connection with the peak en-
velope distribution.

5. Probability Distribution of the Maximum Earthquake Response
in Terms of the Peak Envelope Distribution

(@ Analytical Procedure

It has been shown in the previous chapter that when the pure-birth-
process method for analyzing the maximum structural response is applied to
the problem of earthquake-type excitation, its approximation error tends to be
large in some ranges of ruling parameters. Hence for such ranges of para-
meters, there is required an alternative method of analysis.

It was pointed out in 4. (3) that the approximate formula Eq. (20) fails
to be accurate when the subsiding tail of the r.m.s. response o¢,(#) for a large
t primarily represents the effect of the damped free vibration and does not
contribute to the maximum response. Thus, in discussing the maximum res-
ponse for such cases, it is desirable to adopt a method which evaluates ex-
clusively a relatively short interval of time in which the maximum value
Oymax 0f 0y(?) takes place. In this chapter, we shall employ the peak envelope
distribution developed by S. O. Rice!® as such a method and apply it to our
present problem.

It is obvious both from the foregoing discussion and from evidence shown
by many authors that the random response y(#) of a slightly damped linear
structure, the object of analysis throughout this study, can be treated as a
sinusoidal time function with a slowly varying random amplitude A(f) and a
random phase angle ¢(®) ; i.e.,

yBO=A® sin (wat+¢(®)
as illustrated in Fig. 10. The envelope W (%) is given by

_ yZ(t) 1/2~ i
W= (rn+0 2 =aw

The slowly varying envelope W(#) is also a random process and takes on
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Fig. 10. Illustration of Amplitude y(#), Envelope W),
and Peak Envelope (Maxima of W(?)).

maxima and minima from time to time. Such maxima, or peak envelopes*,
are considered to be the maximum values of |y(#)| in the time interval in
which only a single peak envelope is contained. Since, as discussed above,
the subj'ect of this chapter is the maximum response determined exclusively
in a relatively short time interval in which ¢,(#) attains its maximum value,
it would be appropriate to let a peak envelope taking place in or in the vicinity
of such an interval represent the maximum response Y.

The probability distribution of the peak envelope of a narrow-band sta-
tionary Gaussian process has been discussed by S. O. Rice'® from which the
solution was derived in an explicit form for a process with a power spectrum
symmetrical about its mid-band frequency. Although the structural response
discussed herein is mnonstationary, we shall employ Rice’s result as an ap-
proximate expression for the probability distribution of the maximum response
Y. For, in the time interval in which ¢,(f) assumes its maximum value ¢ymax,
o,(®) and other statistical parameters of the response assume nearly constant
values and, among them, p,;(#) almost vanishes, thus proving that y(®) is
almost stationary in this interval which is of interest to us in this chapter.

Thus on applying Rice’s result on the peak envelope distribution!® to the
present problem, we obtain the probability density of the maximum response
in the following form :

4 =g (G (5,0) ) e[ (5]

Oym Oym
o e vy tEeA
"ngor(%Jr%)(aym) /Z°r<%+%> ------ @5)

where

* This terminology shall be used hereafter.
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1; n=0 .
A= A y3N. _ L
n+1+m221<2)<2>m! (m 2)(n—m+1)b’"; n=1
b=—;—(3—a2), a= b:’—‘a,,m
bs

2 b=
bk=S:(w—wn)"§y(w)da) s k=24

and I'(x) is the gamma function.
The probability distribution of the maximum response is then given by

OXY)=0:(Y)= S:q)E(Y)dY Cveeere (26)

In Eq. (25), oym is to assume some representative value of ¢, in the time in-
terval of highest response level. S,(w) should in principle coincide with the
power spectrum S;(w) of the response in this time interval. However, since
Eq. (25) is valid only for a power spectrum symmetrical about its mid-band
frequency, we need to represent S,(®) by some suitable function and let it
simulate the response power spectrum. Determination of Sy(®) is discussed
below, and oy» is determined in the next section.

The power spectrum S;(w) of the response y(?)-in the time interval in
discussion is closely approximated by
4h,  0%m
rw. H(w)

Sv ()=
where

Hew)={1- (&)} +ans(-2)

Wn

The coefficient. on the right-hand side of Eq. (27) has been determined so
that

S:Sy (@)dw=0c%n ‘ : ceoereesones (28)

Sy(w) has its peak at w=+/1—2h,0w.=w, for which we have

S _ 2 2
Sy <“/1 - Zhnzw”) = ﬂhn (IU_VZnZ) (l)ng ﬂ'(;l«z(r(n)n - Sy ((Dn) ........... (29)

For such S,(w), the simulating spectral function S,(w) shall be represented
in the form

S,,(w)=2’:;—exp[—»7,17<—c%—1>4] REIE V)
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for which v and 7 are to be determined later. This form was chosen to make

it vary in the same manner as S,(w) near the spectral peak; i.e., as'a poly-

nomial function of degree four in w. S(w) in Eq. (30) is synix:_netrica;l about

its¥midband frequency w.. The parameters v and 7 are determined by reference

to Egs. (28) and (29); i.e,* \
S:”S‘y(a))dw=02ym

and

Sy (@ — Py
YA thawn

From these conditions we obtain:

- "Zym, r= 2eh, (31)
ha F(‘i‘“) :

By use of Egs. (30) and (31), the parameters necessary for evaluation: of Egs.
(25) and (26) are obtained as

py= 20" 1‘<1), b,=Mr<i>

/ [( Ve(r()r ( =)} =0.4319

(2) Numerical Results and Discussion

With the aid of the results in the previous section, the probability density
and the probability distribution of the maximum response in terms of the peak
envelope have been computed from Egs. (25) and (26) the result of which is
shown in Fig. 11 whose abscissas are normalized with respect to oy». Then
the mean value E(Y] is obtained by a numerical integration as '

E[Y]gS:Y¢E(Y)dY=2.50380ym ------------ (32

To obtain the pfobability distribution of the maximum response from these
results, we must determine gy». It is not always reasonable to let g, be equal
to the maximum r.m.s. response Oymax Shown in Fig. 5, since oymax is only

* The interval of integration is extended to negative infinity. However, its effect on the
result of integration is neglible as long as Eq. (29) is used.
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the peak value and the average r.m.s. response in the time interval contain-
ing oymax is somewhat lower. Fig. 12 shows the reduction factor represented
by the ratio of o;» t0 oymax Which has been so determined as to give best
agreement between analytical and simulated values of @#(Y) for higher levels of
of Y. Hence, by reference to Figs. 5 and 12, the average r.m.s. response ¢y
is determined, and on substituting it into Egs. (25) and (26) or applying it
to Fig. 11 we obtain the probability distribution of the maximum response in
terms of the peak envelope distribution.

The peak envelope method adopted in this subsection is an approximate
method, as was the pure-birth-process method, in obtaining the probability dis-
tribution of the maximum response. Hence, its accuracy has been examined
in relation to the experimental values obtained from numerical simulation.
Figs. 13~15 show some examples of the analytical and the simulated results
for the same values of parameters as in Figs. 6~8. It is observed in these
figures that the analytical and the simulated values are in better agreement
for larger T./T, and smaller 7/T, in contrast to Figs. 6~8 showing the result
of the pure—birthiprocess method. Since Eq. (25) derived from the peak en-
velope method has been obtained by neglecting the effect of the subsiding tail
of 6,(), the error caused by it becomes greater, as this subsiding tail has
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that the two methods of analysis of the probability distribution of the maxi-
mum earthquake response can be combined with each other to cover a wide
range of the structural and the excitation parameters.

6. Probabilistic Parameters of the Maximum Earthquake Response
Related to Structural Design Criteria

The foregoing discussions in this study have been devoted to the develop-
ment of methods of analysis with which to obtain the probability distribution
of the maximum earthquake response of simple structures, of which the. pure-
birth-process method and the peak envelope method have proved to give good
approximations for certain ranges of parameters. If we use these methods
alternatively, we can obtain the statistics of the maximum earthquake response
for a wide range of parameter values, on the basis of which there can be
deduced several probabilistic parameters relevant to structural design practice.
As pointed out in 1, the probability distribution @(Y) of the maximum re-
sponse is in itself an important parameter directly connected with the relia-
bility function of the structure. In design practice, however, it is desirable
that these statistical data be represented in more compact forms to facilitate
reference by engineers. For this purpose, this chapter presents the numerical
values for the mean value and the relative dispersion of the maximum re-
sponse represented in the form of response spectra, by which the over-all
statistical characteristics of the maximum response can be discussed.

(1) Mean Response Spectra
By setting

Sp=E[Y]), Sv=w.Sp, Sa=w.?Sp R SRREATELE 33
and plotting them against the natural period of the structure, we obtain the
mean response spectra of displacement, pseudo velocity, and acceleration,
respectively. In this manner the concept of the average response spectra
developed by G. W. Housner'! was generalized to response statistics with a
broader probabilistic background, or, conversely, the analyses developed in
this chapter can be discussed in direct relation to the results of the response
analysis for real earthquake records. _

Thus Figs. 17 and 18 show the mean response spectra obtained by use of
the pure-birth-process method and the peak envelope method, respectively, both
plotted along with the experimental values due to the numerical simulation.
The analytical values have been. calculated from Eqs. (24) and (32). It is
noted from these figures that the approximation error caused by the two



272 Hiroyuki KAMEDA

0.02 theory
ar 005 ... simulation
E
A3
<
)
[o] 2 4 6
- T/ To 3
3 i
Sa- g
< s
> ]
w
2t
0 ) . n . .
[o] 2 4 6
T/To -
_l2F bhr=002 "o
g 0.05 <
E‘ 0.1 3
< 8+ 0.1 <
N B
w
4k
o Z
o

®) (t/Tv=10)

theory
. 05  mememem simulation

Sy /(dm/We)

SD/(dm/woz)
@®

o

6
Ta/ To
(©) (t/To=20)
Fig. 17 Mean Response Spectra Based on the Pure-Birth-Process Method.



Probability Distribution of the Maximum Earthquake Response 273

theory
simulation

theory
...... simulation

) 4 Y,
Tn/TO
. ~
3 3
T hp=0.02 E
3al 005 g4
< 0.1 >
3 /__ /—0.2 @
2r i 2
/‘/;'
o ) ) ) . 1 o
0 4 )/
Tn/To
12 + i3
- ~§'2
S T
BE o
<° #°
3 ()
. 4
o o]
(b) 7/Te=10
~ ha=0.02 theory
BE 4 oos simulation
3 .
<
o
2
o
o
3
~
€ 4
3
<
>
@ 2

Sp/(%m/ uB)

() ©/T=20
Fig. 18. Mean Response Spectra Based on the Peak Envelope Method.



274 Hiroyuki KAMEDA

methods behaves in the same manner as discussed for oY) in the foregoing
chapters ; i.e., the pure-birth-process method is valid for relafively small T,/T,
and large /T, and k., and the peak envelope method, for large 7./T, and
small 7z/7,. -

It is noted also that when the damping factor k. is small the response
becomes higher with increasing r/7,, which implies that for impulsive earth-
quakes of short duration the response does not grow large. This argument
coincides with the result of the observation of real earthquakes.” Hence, in
discussing the maximum response, the estimation of the duration of excitation
plays an important role. '

It is readily understood that the shape of these mean response spectra is
affected by the parameter %, in Eq. (5) to determine the sharpness of the
spectral density of excitation. The value %2,=0.9 used herein has been chosen
so that the acceleration spectra might take on peak values somewhat close to
those in the average response spectra for real earthquakes.!’»'? However, it
should be kept in mind that those average response spectra for real earth-
quakes are based on various types of accelerograms which cannot be said to
have been picked up from a single population. In this sense, the value 4,=0.9
is by no means to be fixed for all earthquakes, but it is to vary with various
ruling parameters related to the site conditions and the intensity of the earth-
quakes. Including this problem, the analysis of earthquake motion supported
by strong motion accelerograph networks is an important future task by which
to establish reasonable models of earthquake motion.

(2) Relative Dispersion Spectra

Let C, denote the relative dispersion of Y. Then C, represents the stan-
dard deviation gy of Y normalized with respect to its mean value; i.e.,

_or {ECY-EXDHP>
Cv——sb - E[Y] (34>

Hence, for the evaluation of C,, the mean square E(Y?] must be obtained in

advance. The mean square of Y according to the peak envelope method is
obtained by numerical integration as

BOYD=( VgAY =7.32690%, e 35

Since the pure-birth-process method provides only the distribution function
oY), we shall use Eq. (A.4) of the Appendix valid for an arbitrary random
variable. Since Y assumes only non-negative values, we have

By -2{ ar("1-eqnyy e 36)
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The numerical results for C, are shown in Fig. 19. It is remarkable that
the numerical values for the pure-birth-process method (p.b.p.m.) are greatly
smaller than those for the peak envelope method (p.e.m.). The p.e.m. value
is equal to 0.41083 by virtue of Egs. (32) and (34). The p.b.p.m. value varies
slightly but takes on almost constant values regardless of parameter values
considered herein. On the other hand, the simulated values, on the whole,
vary between these two analytical values, in which it is natural, from the
foregoin discussion of the approximation error, that the simulated results are
close to the p.b.p.m. values for small T,/T, and large z/T, and to the p.e.m.
values for large T»/T, and small z/7T,.

Table 2. Maximum Response Relative to Its
Mean Value for Various Non-Excess
Probability Levels.

) Y/EQY)
oY) pure-birth- peak envelope
process method* method
0.98 1.287 1.927
00 : 2 - L ‘; L é 0.95 1.216 1.725
W 0.9 1.157 1.548
(@) T3 0.8 1.092 1.350
[ha-o02 0.7 1.051 1.198
osf simulation | g.gs\/___ 0.6 1.017 1.078
> e \>\\ “““ 0.5 0.9878 0.9705
©0.4 Foaa8s o ;
A hn=0.05, T»/To=1, ©/To=10.
gl Similar results have been obtained for
0.2 — P-"-"~% other cases.
00 ' 2 l 3 ' 6
(b) 7/To=10 To/To < &0 : /
= r pure birth process method
) ~ [nhn=0.02 g " —— peak envelope method /
o6r simulation { %'35%/""
0.4F g
o02r
o 1 1 1 1 I 1
(] 2 6 10
{e) T/To=20 To/To d(Y)
Fig. 19. Relative Dispersion Spectra of the Fig. 20. Maximum Response Relative to Its
Maximum Response (p.b.p.m. : pure- Mean Value vs. the Non-Excess Prob-
birth-process method, p.e.m.: peak ability.

envelope method; Cy=0¥/Sp).
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From the viewpoint of structural design, it should be noted that due to
the large value of C, for large T./To, the maximum response of a structure
with a relatively long natural period disperses in a wider range about its mean
value than the case of a relatively short natural period. In other words, even
if a structure is so designed as to have the strength of a constant value times
the response level read off from a mean response spectrum, the non-excess
probability of the response, or the probability of structural safety, varies with
the natural period. Thus, under the requirement of an equal probability of
structural safety, a higher level of the maximum response relative to its mean
should be chosen as a design criterion for large T./T, than for small T,/T,.

For cases where either the pure-birth-process method or the peak envelope
method is valid, the value of the maximum response corresponding to a given
non-excess probability can be read off from Figs. 6~8 or Figs. 13~16, or when
the discussion is made in terms of the ratio Y/E(Y], from Table 2 and Fig.
20. The results of the pure-birth-process method in Table 2 and Fig. 20 are
given only for h,=0.05, T./T,=1, and ¢/T,=10. However, as long as the ratio
of the maximum response to its mean value is under discussion, similar results
have been obtained for other values of parameters. Thus, it could be stated,
for example, that to ensure a 95 percent probability of structural safety, it
suffices to adopt as design criteria 1.2 times the ordinate of the mean response
spectra for structures with relatively short natural periods and 1.7 times for
structures with longer natural periods.

7. Conclusions

This study has dealt with the probability distribution of the maximum
response of linear structures subjected to' random earthquake excitation, from
which the following conclusions have been derived.

(1) In discussing the random earthquake motion, various types of non-
stationarity in amplitude can be discussed in terms of the equivalent duration
proposed in this study. '

(2) There have been developed two methods of analysis of the maximum
structural response to random earthquake excitaticn, which have been ten-
tatively called the pure-birth-process method and the peak envelope method,
respectively.

(3) From the error survey made with the aid of a numerical simulation,
it can be said that the pure-birth-process method is applicable to a structure
with a relatively short natural period subjected to an earthquake motion of a
relatively long duration and the peak envelope method, to the case of a rel-
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latively long natural period and an impulsive earthquake motion.

(4) The pure-birth-process method and the peak envelope method combine
with each other to cover a wide range of structural and excitation parameters.
To know which of the two methods should be adopted for a given set of
parameters, Figs. 9 and 16 for precision zoning are available.

(5) For design purpose, it would be convenient to make use of data, re-
presented in a compact form of the mean response spectra and the relative
dispersion spectra, Figs. 17~19, and of the relation between the maximum
response relative to its mean value and the specified non-excess probability,
Table 2 and Fig. 20, by which the maximum response is discussed in terms
of the mean value and dispersion about it.

(6) The relative dispersion of the maximum earthquake response varies
with the natural period and the duration of the earthquake. For a specified
probability of structural safety, a higher level of the maximum response rel-
ative to its mean value should be adopted as the design strength for struc-
tures with long natural periods than for those with short natural periods.

As pointed out in this chapter, it is in general difficult to obtain an exact
solution for the probability of a structural event in a finite duration of random
vibration. Hence, in most cases a theoretical treatment can only provide us
with approximate results, for which the approximation error can be inspected
with the aid of a numerical simulation, which has been the general procedure
adopted in this study. It is noted that the numerical simulation itself can be
a powerful tool of basic analysis, since it will offer results as close to the
exact solution as we wish if a sufficiently large sample size is taken. However,
analytical methods, even if approximate, are far superior to the numerical
simulation in investigating the details of the phenomena and their physical
significance, by which insight into the problem is greatly deepend. Hence,
in the study of structural safety in earthquakes by means of the random
vibration theory, it is desirable to make effective use of these two methods

together.
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Appendix. Representation of the Mean Value and Higher Moments
of a Random Variable in Terms of the Probability
Distribution Function

The moment E(z") of degree ‘n of a random variable z is defined as
.EEZ"3=S” 2¢(D)dz - . e (A1)
where ¢(2) is the probability density function of z which is related to the
probability distribution function @(2) in the form

(" p@de=0xy e (A-2)

It is often the case that only the distribution function @(2) is known to
us either in an analytical or numerical expression. In such a case, Eq. (A-1)
to give the moment E(2*) fails to be available, and it may in general cause
a great error to obtain ¢(2) by numerical differentiation of Eq. (A-2). Hence,
in what follows we shall derive a formula which gives E(2"]) in terms of in-
tegrals involving only the distribution function @(2).

First, we shall consider the mean value E(z]). Let G be an arbitrary
positive number. Then we have

[ @dz=20@) - o@az
~[0(® -0@)dz-{’ {0~ 0(-G)}dz=Di(6)
Since @(0) =1 and #(— ) =0, we obtain
E@=limDi(G)=[ (1-0@}de—{ @@dz s (A-3)
The mean square E(#%) is obtained in a similar manner; i.e., we have
[ ocotemeoco o ocoin] 21 oot
=2[(daf (0(G) - 0GYda+ (] daf” (0 ~0(~G)}dz |- Du(6)

Hence, E(2?) is obtained as
E(z?2)=1im D,(G)
G—oo
=2de218~{1—(p(22)}d22+So dzlgz1 ¢(Zz)ng] ............ (A-4)
0 F41 —oo =y
For the general case of the #-th moment E(z*], the discussion can be made
in the same manner by means of successive integration by parts and of the
relation
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G G

Ge=Hl| da

0 21

Thus we obtain the following general formula:

E(z"]) =n![8:dz,g

oo
z

dzeeoe S:Al{l—(b(zn) Ydzn

—co

+ (=D _daf" deyn ("0 dz]





