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Presented are the results of a theoretical analysis of the statistical properties of 
the・ maximum structural response to nonstationary random earthquake motion. Two 
approximate methods were developed to obtain the probability distribution of the 
maximum earthquake response on the basis of the pure-birth process equation and the 
peak envelope distribution, which should be adopted alternatively depending on the 
range of the structural and excitation parameters. Also discussed is a concept of 
structural design for random earthquake loads on the basis of the numerical results. 

1. Introductien 

243 

When civil engineering structures are subjected to random excitations of 

the earthquake type, their dynamic responses obviously fluctuate in a random 

manner as well. Similar cases occur when wind forces which are distributed 

randomly either in time or space act upon flexible structures or when random 

pulses of vehicular loads move along bridge girders. 

In discussing the ・ strength of structures in withstanding such random 

loads, we are primarily interested in the probability of structural safety during 

the service life, which is referred to as the reliability function defined4> by 

R1(T)＝＼ <1>1(Y, T)f.(Y, T)dY 

where <1>1(Y, T) denotes the probability that the structural "response level" 

will not exceed Y in the future interval T, and f,(Y, T) is the probability 

density of the "strength" Y of the structure. 

If we neglect the effect of the random distribution of the strength of struc-

tures about its mean value Y, and set 

f,(Y, T)=B(Y:-Ys) 
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then we have 

R1(T) = [ </J1(Y, T)o(Y -Y,)dY =</JI(Ys,T) 

which implies that the reliability is directly given・ by the probability that the 

"response level" will not exceed the mean strength. Y, throughout the period 

T. 

It is frequently the cases in design practice that structural safety is stip-

ulated as the requirement that the maximum response given either in terms 

of stress, deflection, or displacement be not in excess of the prescribed allowa-

ble value, in _which case</J1(Y, T) coincides with the probability distribution of 

the maximum response, the main subject of this paper. 

Compared with the instantaneous probabilistic properties of the random 

structural response, the theoretical discussion of the maximum response of a 

structure in some finite duration of continuous excitation poses a very difficult 

problem due to the vibrational characteristics of structures; this seems to have 

limited the appearance of very many successful papers in this field. 

E. Rosenblueth and J. I. Bustamante17> analyzed the "response" r, which 

is approximately proportional to・ the square root of the sum of the kinetic 

energy and the strain energy of a simple structure subjected to a white-noise 

excitation, and obtained the probability _ distribution of its maxim~m value in 

the transient state with the aid of a diffusion process analogy; this was fol-

lowed by a discussion in relation to the earthquake-resistant design of struc-

tures. As far as the author knows, this work was the first successful attempt 

to obtain a theoretical expression for the probability distribution of the maxi-

mum structural response to earthquakes. It is, however,. confined to a white-

noise excitation which cannot take account.of the nonstationarity in amplitude 

and non-white spectral characteristics of general earthquake ground motions. 

A. M. Freudenthal and_ M. Shinozuka3> derived formulae for the upper and 

lower bounds of the probability distribution of the maximum structural re-

sponse to an arbitrary random excitation of the earthquake type. However, 

the results of the application of their method to structures with a single de-

gree of freedom ・ ~how thatヽthe_ upper and ・ lower bounds thus obtained are 

sometimes apart by one or two decimal points18> which could 11-ot be said to be 

close. enough for engineering ~ppHcation. 
A. G. Davenport2> and S. Komatsu15> discussed the probability distribution 

of the maximum response of structures under wind loadings. Their methods 

of analysis differed in the concept of the time dependence of the mean intensity 

of the wind load, but they both assume that the statistical properties of the 
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response at a certain instant are independent of its past history. This means 

that the process of the upward or downward crossing of a certain response 

level becomes a Poisson process if the response is stationary. Y. Yamada and 

H. Takemiya20l derived the non-excess probability of the maximum structural 

response to random earthquake motions under the same assumption. This 

assumption was also used by the author6-81 and has proved appropriate in the 

analysis of earthquake ground motion, which contains a relatively wide range 

of frequency components. 

On the contrary, this assumption fails to be accurate in the discussion of 

the random vibration of structures. The difficulty arises from the fact that 

many civil engineering structures exhibit relatively low dynamic damping, say 

1~20 percent of critical damping. When such structures are subjected to 

random excitation, their response behaves as a continuous narrow-band random 

process which implies a high correlation between the response amplitudes at 

different times. Hence, the simple assumption of the history-independence of 

response, the Poisson process approximation in the case of a stationary re-

sponse, needs to be examined as to its accuracy. 

Thus, there are some basic problems left to be solved with regard to the 

theoretical representation of the probability distribution of the maximum re-

sponse. In this study, two methods of analysis have been developed to furnish 

better approximate solutions ; one, by taking due consideration of the above-

mentioned correlation of responses at different times in solving the pure-birth-

process. equation, and the other, by applying the technique of the peak enve-

lope distribution. It has been proved on the basis of the results of numerical 

surveys that these two methods can be applied alternatively to cover a wide 

range of parameters of practical interest. 

2. Representation of Random Earthquake Acceleration 

When we discuss the maximum ground motion in a strog earthquake, it 

suffices to treat the ground motion as a stationary random process6~8l. How-

ever, when the structural response is in question, its transient part must be 

considered in the analysis since the effect of the initial conditions on the 

response is appreciable. Hence, in this section we shall introduce a statistical 

model of nonstationary earthquake motion to be used in the subsequent analy-

sis. 

The ground acceleration z(t) in earthquakes shall be expressed in the 

form6~s) 

ぇ(t)= /3f(t ;,) g(t) ・・・・・・・・・・・・(1)
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where g(t) is a stationary random process with zero mean value, the variance 

of unity and the power spectrum Sん）， f(t;て） isa deterministic shape func-

tion which exclusively assumes positive values, and /1 is a constant with the 

dimension of acceleration. 

The appropriateness of representing the ground acceleration by the form 

of Eq. (1) was discussed by K. Toki'9> in connection with its spectral 

characteristics and was admitted for some typical strong motion accelerograph 

records. The shape function f(t;て） maytake any form, varying with the 

location of the observation site relative to the hypocenter, the characteristics 

of the seismic pulses generated at the origin, the path characteristics, the 

observation site conditions, etc. In the present study, an expression with a 

linear initial set up and an exponential subsiding tai13> shall be adopted ; i.e., 

(1 +~)II+!/~) 
f(t;r)= — ---e-st (1-e-~•t) 

5 
--- ・・・・・・・・・・・・(2)

where s and t are・ the parameters determining the shape of f(t; r). This 

f(t; r) assumes the maximum value of unity at 

1 
t=tm= ~~log(l 十~)
st 

Fig. 1 shows the shape function f(t; r) of this type, and the values of t for 

various stm are tabulated in Table 1. The variances and the correlation coef-

ficient related toぇ(t)thus defined and the probability distribution ([),(a) of the 

maximum ground acceleration can be discussed in the same manner as in the 

earlier studies6~8>, from which the expected value E〔心 ofthe maximum ground 

acceleration a is calculated (see Appendix) from 

T/T。=3
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 Fig. 1. Shape Function f(t; !') of Earthquake Motion. 
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The duration of the ground motion for the present type of f(t；て） cannot

be defined explicitly since the exponential tail vanishes only in the limit of 

t→oo. Hence the "equivalent duration"てshallbe defined as the duration・ of 

a portion of a stationary ground motion pg(t) whose expected value E〔a〕of
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the maximum ground acceleration is equal to that of the nonstationary ground 

motion in the present discussion. Hence if the power spectrum Sa((J)）of g(t) 

is specified, we can determine the relationships between the equivalent dura-

tion,, the mean maximum ground acceleration E〔心， andthe parameters s 

andぐinEq. (2). This procedure is illustrated in Fig. 2 for the case where 

the power spectrum Sa((J)）takes the form adopted in references 6) ~8) and g(t) is 

a Gaussian stationary process. The s/(J)。-E〔幻／ftrelationship in quadrant (a) 
of the figure has been obtained by applying the present model of the ground 

motion. On the other hand, the E〔心／9-て／T。curvein quadrant (b) can read-
ily be drawn from the results of the studies in references 6)~8) in which the 

stationary model of the ground motion has been adopted. Then the s/(J)。―て／T。

relation is obtained as in quadrant (c) by following the route shown by the 

dotted line. The s/(J)。―て／T。curvesthus obtained and plotted in logarithmic 

scales are nearly straight lines. The result in Fig. 2(c) would allow us to 

express it as 

-f;;=c(*)―1.09 ・・・・・・・・・・・・(4)

The numerical values assigned to the coefficient C are indicated in Table 1. 

Theて／T。scalein Fig. 2 has been determined in such a manner. 
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Table 1. Parameters to Characterize 
the Shape Function. 

stm | E 
1.0 I 0.0 

! 0.8 I 0.539 

0.6 I 1.579 
0.4 i 4.047 

0.2 ¥ 13.30 

C I 

0.166 

0.136 

0.108 

0.077 

0.050 

41 
E[Cl]/P 

Fig. 2. Determination of the Equivalent 
Duration of Earthquake Motion. 
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In the. analysis of structural response in subsequent subsections, it is de-

sirable that the hight of• the peak of the power spectrum Sg((J)）be chosen 

arbitrarily according to an independent parameter. Hence, in the sequel, Sg((J)） 

shall be represented in the• following form analogous to the power spectrum of 

the relative velocity response of a simple structure subjected to white-noise 

excitation : 

Sg((J)）= 
•4h。 ((J)1(J)。）2
T(J)。｛1-((J)／(J)。)乎＋4h。2((J)／(J)。）2

・・・・・・・・・・・・(5)

in which(J)。isthe predominant circular frequency. In the above structural 
analogy, h。correspondsto the damping factor. However, it does not neces-
sarily stand for the damping factor of the ground of the observation site, but 

should be understood as a general parameter inclusive of other factors which 

would affect the peak value Sg((J)o) given by 

Sa(wo) 
1 
nh。m。 ・・・・・・・・・・・・(6)

It is readily verified that Eq. (5) satisfies the condition that g(t) should have 

the variance of unity: 

¥OOSg((J)）d(J)＝1 

It is expected that there would need to be some modification of Fig. 2 

when Sg((J)）of the form of Eq. (5) is used with various values of h。.Nevertheless,
for simplicity, we shall use this figure to relate the equivalent duration 1: of 

the nonstationary earthquake excitation to its relevant parameters. 

3. Variances and Correlation Coefficients of Structural Response 

(1) Simple Structure ・ Considered 

Throughout this study, we shall deal exclusively with a simple structure 

which can be represented by linear oscillator with a single degree of freedom. 

The equation of motion for such a system subjected to a ground acceleration 

ぇ(t)is given by 

Y(t)+2hn(J)nJ(t) +(J)註y(t)＝-z(t) ・・・・・・・・・・・・(7)

where y(t) : relative displacement，伽＝vk/iii:natural circular frequency, kn 
=c/2v頑： fractionof critical damping (damping factor), and m, k, and c: 

mass, spring constant, and damping coefficient of the system, respectively. 

The solution of Eq. (7) under the initial conditions y(O) =0 and y(O) =0 is 

represented by the well known convolution integral: 
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1 、
y(t) ='--±J: h(t~,')z（が）dてI.. ;•••••••••••(8) 

Wn Jo 

in which 

h(t) =e-h呼 ntsin巫t, 砿n=,Vl-hn2(t)n

Likewise, the velocity response y(t) is obtained as 

1 t 
沢）＝―盃＼ h(t-て＇）2（て')dて＇ ・・・・・・・・・・・・(9)

where ゜
h(t)＝巫e-hn叫 (cos匂ー凡sin叩）

凡＝hパ 1-h註

(2) Variances and Correlation Coefficients of Response 

When the excitation z(t) in Eq.. (7) is a random process with zero mean 

value, the variances a以t),ai(t) of y(t), y(t) are given, respectively, by 

and 0バt)＝E〔炉（t）〕＝：2}：h(t-t'）dt'¥：h(t-t”)E(z(t')ぇ(t”)〕dt”l.（10) 

叫）＝E〔炉(t)〕＝ (jj註しh(t-t')dt'しh(t-t")E〔以t')t(t”)〕dt"l 
In the same manner, the correlation coefficients pyy{t) between y(t) and y(t), 

pyy(ti. t2) between y(t1) and y(t2), and pか;(ti.tz) between y(t,) and JCt2) are 

represented, respectively, in the form 

約が：t)=E〔y(t)j(t)〕／{ay(t)ail(t)}

1 t t 

＝がt)が t)釦 th(t-t')dt'！。k(t-t")E〔ぇ（t')z(t”)〕dt"
Puy(t!，わ）＝E〔y(t,)y(t2)J/{avCt,)ay(t2)} 

1 勺伶
-6y(t図 (t遁』。h(t, -t')dt'):2 h(t2-t'')E〔え（t')z(t”)〕dt"

゜Puii(t1, t2）一E〔y(t,)j(f2)〕／{ay(t1)aが(t2)}

- 1 ！勺 t2.

6y(t1)aii(t2)＠註。h(t1 -t')dt'[hCt2-t")E〔且（t')z(t”)〕dt"

゜
When z(t) takes the form of Eq. (1), we have 

E〔ど（t／）z(t”)〕=/32f(t1;'C')f(fll；て）E〔g(t1)g(t”)〕.. 

・・・(11)

=f32f(t1;'C')f(tfl碍 So(w)cos w(t1 -t11)dw 
゜

・・・・・・・・・・・・(12)

On substitution in Eqs. (10) and (11) from Eqs. (2), (8), (9), and (12), 

and after an analytical procedure of integration with respect to time, we obtain 

the variances and the correlation coefficients of the nonstationary response in 
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the form of integrals with respect to the frequen~y.13,u> If we make an ap-

proximate evaluation of these integrals by means of the method of T. K. 

Caughey and H. J. Stumpf1l, then some cumbersome algebra of contour inte-
gration leads to the following approximate formulae: 

where 

in which 

祁2A2
O'y2(t)二 Sg((J)n)K。1(t,s, ~) 
(J)ふ？砧t)~~s,（心{K。2(t,s, 5)-2凡K03(t,S, 5)心 K.,(t,s, i)) } ・・・(13)叫乎A2

(Juu(t)ニ
咽がs,（叫）
(J)n2C(Jy(t)(JuCt) 

{K。s(t,S，ど）ー凡K。,Ct,s, ~)} 

呻 A2S,（叫）
(Jyu(t1• わ）ニ {ka(h,t2, s，ど）＋底(h,t2, s, 5)｝ 伽で(Jy(tl)(Jy（わ）

祁2がs,（叫）
(Juii(t1, t2)ニ〔KC3(t1,t2, S, 5)＋K85(t1, t2, S, 5) 砧 :(Jy(ty)(J、(t2)

-hn{ka(t1, t2, s, 5) ＋Ks4(t1, t2, S, 5)｝〕

K。,(t,s, ~) =L。t(t,s) +L。t(t,(1 +~)s) 

-U。tCt,s, (l+~)s)-U。,(t, (l+~)s, s); (i=l, 2, 3) 

Lo,(t,s)=~{ 4A(S)（ぐ＋が(s))
e-2st-e-2h匹叩＋ ¥sin2砿 t

こ

+2え誓sin2@り｝
(2 炉(s)

L。2(t,s)=ms)（ぞ江屈(1+2―戸―)e-2st-e-2hn叫

・(1-知-sin2叩＋2入誓cos2四）｝
c i(S) 

Loa(t, S) ＝如＋ーが(S)）{ e-2st -e-Zhnwnt(COS 2叫＋て sin2四）｝
，，2 

Uo1Ct,s,s1)=~ 
2(;.(s) +l.(sり）（：汗l2(s))

;c;-[2μ1 (s, s')e-Cs+s')t 

-e-2h匹 n1{2μ1(S,s1) cos2 Wnt+2μ2(s, S1) sin2 Wnt 

-(μa(s, sり一μ4(S,S1)) sin 2@nt}〕

，，2 
u。2(t,s, S/) ＝-ゞ

2(1(-s) +l(sり）（ぐ十炉(s))-〔2μ氏s,s')e-(s+s')t 

-e-2hn叫 {2μ2(s,s') cos2砿 t+2μ1(S,S1) sin2 Wnt 

+ (μa(s, s')-μ4(s, s')) sin 2wnt}〕

u03(t, s, S/） ＝ 
_,2 

2(l(s) +l.(s')) ((2十入z(s))〔（μa(S,Sり

．．．．．．．．・(14)
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―μ4(s, s1))e-(s+s')t-e-2h匹 nt{(μ3 (s, s') 
-μ4(S, S1)) COS 2@nt+ (μ1(S, S1)-μz(S, S1)) sin 2@nt}〕

Kei(ti, t2, s, e) =Lei(ti, t2, s) + Let(ti, t2, (1 +e)s) 

-Uei(t1,t2,S, c1+e)s)-Uei(t1,t2, (1十ど）s,s); (i=l, 3) 

K,i(ti, t2, s, e) =L,i(ti, t2, s) +L,t(ti, t2, (1十e)s)

-U,i(ti, t2, s, (l+e)s)-U,i(ti, t2, (l+e)s, s); (i=4, 5) 

c2 
L., (t1, t2, s) l2t, -t2~0= ~(e-(2st1+hn町Ct2-t1))

4J(s)（ク＋JZ(s))
A(S) •{cos似い）＋―-sin <iJ心—叫＋上e-hn叩（わ十ti)
C 2 

• {cos叫い）＋撃sin<iJふ＋t1)+2l誓sin砂 sin砒 t1}
1 ―万e-(hnwnCt叶 t1)-2,(s)wnCtrt1)){ COS <iJ悲ーt,)

え（s) が(s)
+-C-Sin鯨 3t1-t2) + 2~fLsin砧 sin 血(2t! —叫〕

(2 
ら（l1,t2, s) l2t,-t2~0＝釈s）（C;＋が(s)）〔e-(2st1+hn叩 (t2-t1))

•{.M/2-cos 叫t2-f1)喜sin叫f2-t1) ＋上e-hnwn(t2切）(-~v =,.,.. ・v • (2 

• {sin 叫い）—撃cos 伽(t叶 t1)-2 炉]:)-c:S砂 sin 叫｝
1 —―e-(hn町(t叶t,)-2,(s)叩Ct2-t1)){ sin叫 t2-f1)
2 

l(s) が（s)+―-COS釦3t1-t2)+2Wsin叫 cos 砒(2t, —叫〕c c 

L84(t1, t2, S)|2h-t凶＝
-C2 

欧s)（C2＋が（s））〔
e-h匹 n(t叶 t,)

• {cos叫 t2-t1)+
A(S) 

c sin叫 t叶 t,)+21誓sin砂sin砂｝
-e-(h呼 n(t叶 t1)-2,(s)wn(trt1)){ COS→-t1) 
＋ 
J(s) 
sin砒 (3t,-t2)+2

が(s) ．
c c2 sin叫 sin 伽(2t!—叫〕

L,5(t1, t2, s)l2t,-t2~0=-,.--,: 
-C2 

4i(s) （＜吐だ(s)）〔
e-(2st1 +hnwnCt2-t1)) 

•(l 十が(s)) ． 1 
こ2 sin <iJn(t2-f1) ~,; 

2 
-e-h匹 nCt2+ti){sin伽 Ct2-t1)
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J.(s) 
cos (ij晶＋ti)-2

沢s)
ここ2

cos砧 sin砒 t1}

1 -+e-(hれ叩(t叶 t,)-2.l(s)叩 Ct2-t1)){ sin砿 Ct2-t1)

＋亨 cos叫3t1-t2)+2警sin叫 cos 砒(2t1 —叫〕

Lei (t1, f2, s) 12炉鰭o=
(2 

8l(s万立叩〔e-(2st1+h呼 n(f2-f1))

J.(s) 
• {cos叫 t2-f1)+¥sin砒 (t2-f1)}-e-h匹 n(t叶 t1)

＜ 

•{cos 血(t2-f1)+製-sin 砿(t叶t1)+2誓sin砧 sin 伽t1} 〕

LC3(t1, t2, S) 12t己 2;;,o=o 々
8A(s)（ぐ＋が(s)）〔e-(2sti+h匹 nCt2-t1)),

• {紐-COS砒 (t2-t1)-sin叫 t2-t1)＋e-h呻 n(t2切）
こ•{sin 砒(t→)一撃cos· 血(t叶 t1)［ 2 入誓 cos砧 sin 叫｝〕

L,4(f1, f2, s)l2t1-t2;;;0= 
p 

SJ.Cs) ((2＋が（s))
〔e-(2st叶 h叫 nCt2-f1))

•{cos 砒(t2― f1) ＋翠 sin 叫t2—叫ーe-h匹知＋t1)
i(s）が（S）

• {cos 砿(t2-t) ＋一—Fsin叩t叶f1)+2~sin砧 sin 砒t1} 〕
ゞこ

-C2 
LS5(t1, t2, S)|2tI-t2三o= ――-〔e-(2st,+hn叩 (tz-t1))

8).(s)（ぐ＋炉(s))

• {sin伽 Ct2-t1)-饂 _cos(ij晶—叫―e妬叫t叶f1)
こ

• {sin叫 t2-to---
J.(s) 
r cos叫 tけ ti)-2

だ(s)、 ~cos砧 sin 叫｝〕
r2 

Uc1(t1, f2, s, s') =~ 
2().(s)+J.(s'））（こ吐が(s))

―-〔｛e-((s+s')t1+h匹 n(t2-tl)）
+x(2t1 -t2)e-(s't叶st1+.l(s)wn(t2-t1))}{μ1(s,s') COS Wn(t2-f1) 

1 -μ仄s,s') sin 血(f2-f1)}-..,-~e-h匹nCt2+f1)
2 

・{2μ1(s, s') cos w必cosainf1 + 2μ2 (s, s') sin aiふsinwふ
-(μa (s, s') -μ4 (s, s')) sin血 (t叶 f1)}

-x(2f1 -t2)e-Chn叩Ct2+t1)-2,l(s)~nCtz-t1)){µ1(s, s') cos (VふcosWn(2t1 -t2) 

+μ氏s,s') sin wふsin釦 (2t戸 f2)-μa(s, s') cos li叫 sin£i以2t1-t2)

切 (s,s') sin wふcos叫 2t1-t2）｝〕
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u.a(ti, t2, s, s') = 
-C2 

2(i(S)＋A(S'））（ぐ＋が(s)）〔
e-((s+s')t1 +h匹 nCt2-t1))

・{μa(s,s') cos巫 (t2-t1)+μ1(s,s') sin砒 Ct2-t1)}

-x(2t1 -t2)e-Cs'ゎ＋st1+).(s)mnCt2-t!)）｛叫s,s') cos叫 t2-t1)

+ μ2(s, s') sin砿 Ct2-t1)}+-¼-
2 
e-h匹 n(t叶 t1)

・{2μ2(S,s') COS Wふsin<i叫I-2μ1 (s, s') sin Wnらcos(ijふ

-(μa(s, s')-μ4(s, s')) cos w,翡＋t1)}

+x(2t1-t2)e-Ch匹 nCt2+t1)-2).(s)wn(t2-t1)）伍(s,s') sin wふcosWn(2t1 -t2) 

―μ1 (s, s') cos wふ sinWn (211 -t2) + μa (s, s') cos wふ cosWn(2t1 -t2) 

+μ4(S, Sりsin叫 sin叫 2t1-i2)}〕

u,4(t1, t2, s, s') = 
(2 

2(,l.(s)+,l.(sり）（四が(s))
〔｛e-((s+s')t1+h砂 nCt2-t1))

-x(2t1 -t2)e-(s't2+st1十え(s)wn(t2-t心｝｛μ1(s, s') cos血 (t2-ti)

—µ氏s, s') sin砿 (t2-f1)}--¼-e-hnmn(t叶t1)
2 

・{2μ1(s, s') cos砂 cos砧＋2μ1(s, s') sin砧 sin叫

-(μ3(s, s')-μ4(s, s')) sin砒 Ct2+t1)}

+x(2t1 -t2)e-Ch匹 nCt叶 ti)-2,(s冷 Ct2-t1)){μ1(s,s') cos wnt1 cos Wn(2t1-t2) 

+μ氏s,s') sin叫 sin釦 (2t1-t2)洒 (s,s') cos砧 sin砒 (2t1-t2)

王 (s,s') sin砧 cos伽 (2t1-t辺〕

U,5(t1, t2, s, s') = 
-C2 

2(A(s)+A(S'））（ぐ＋が(s)）〔
e-((s+s')t1 +h四 nCt2-t1))

・{μa(s,s') cos伽 Ct2-t1)+μ1(s,s') sin血 Ct2-t1)}

+ x(2f 1 -f2) e-(s't2+sti +,(s)mnCts-t1)){μ4(S, s') COS砒 (t2-t1)

玉 (s,sりsin砿 (t2-f1)}--}e-h匹祁＋ti)
2 

・{2μ1(s, s') sin w山 cos(ijふー2μ氏s,s') cos wふ sin砒 t1

+ (μ3(s, s')-μ4(s, s')) cos血 (t叶 ti)}

+x(2t1-t2)e-Chが町(t2+tI)-2i(s)叩 Ct2-t1)){μ1(s, s') cos 6int1 sin Wn(2t1 -t2) 

―μ2(s, s') sin Wnf1 cos Wn(2t1-t2)+μa(s, s') sin Wnt1 sin Wn(2t1-t2) 

切 (s,s') cos砂 cos叫 2t1-t2)}〕

μ1(s, s') ={a1(s, s')a5(s, s') +lじ2(s,s')a6(s, s')}/μo(s, s') 

μ2(s, s') ={aa(s, s')a5(S, s') +a4(S, s')aa(s, s') }/ μo(s, s') 

μ3(s, s')={a2(s, s')a5(S, s')-a1(s, s')aa(s, s')}/μo(s, s') 

μ4(s, s') ={a4(s, s')a5(S, s')-aa(s, s')aa(s, s') }/ μo(s, s') 

μo(s, s') = (4~2 ＿ぇ2(s)+ ;.2(s'))2+ l6(2,1.2(s) 
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a1(s, s') =2ぐー,l2(s)+-l(s),l(s'), a2(s, s')＝((3,l(s)-,l(s')) 

aa(s, s') =2(2-4が(s)-,l(s),l(s')＋だ(s')

,l(s) 
ll'4(S, S1)＝((5,l(s)+-l(s'))---（だ(s)ーが(s'))

＜ 
,l(s) 

a氏s,s') =4(2-5入2(s)＋が(s'), a6(s, s') =~(8?—炉(s) ＋が (sり）
こ

x(t) ={ 1, t>O 
0, t~O 

Numerical computation for Eqs. (13) and (14) have been carried out for 

the set of parameters stm=0.4, -r:/T。=3,10, 20, hn=0.02, 0.05, 0.1, 0.2 and h。=
0.9. The value of h。determines;the peak sharpness of Su(w). As could be 
expected, h。wouldvary with the site conditions, and, in many cases, from 
,earthquake to earthquake. Throughout this study, however, we shall keep h。
nxed at 0.9, which was determined in connection with the values of the mean 

response spectra as will be explained and discussed later, in chapter 6. 

The results of computation are plotted in Figs. 3 and 4. Fig. 3 shows the 

time variation of the r.m.s. response, in which<Jy(t)(I)註／~ and<JvCOwn/~ are so 
close that they are inseparable. It may be observed that the maximum value 

of the r.m.s. response takes place latet than the time tm of the maximum in-

tensity of excitation:. It is obvious that this result is partly attributable to 

the vibrational characteristics of the structure which are manifest in the unit 

impulse response h(t) in Eq. (8); i.e., ・ the response assumes its maximum 

value necessarily later than the excitation.. It is obvious that this effect is 

remarkable in structures with longer natural periods; this is also true for a 

shorter duration of the excitation. Indeed, the former statement is justified 

by Fig. 3(b) and the latter by Fig. 3(a). In addition, this time lag is greatly 

affected by the damping factor hn. When a structure initially at reat is sub-

jected to random excitation, its r.m.s. response increases until the rate of 

energy dissipation due to the structural damping copes with the mean energy 

delivered by the excitation per unit time. Thus, it follows that if hn is small, 

ay(t) continues to increase for the time being even after the excitation level 

f(t;て） hasbegun to decrease as shown in Fig. 3(a). These results demonstrate 

that a transient effect is present to a considerable extent in the case of non-

stationary earthquake excition, but. with the. intensity of response varying 

slowly compared with the case of sudden action of a stationary excitation.10> 

Smooth curves in Fig. 3 imply that Eqs. (13) may further be closely approxi-

mated by neglecting the sinusoidal members and the higher order terms in hn 

in the formulae, which reduces Eq. (13) to the following simple form: 
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・・・・・・・・・・・・(15)

where 

e1(t) = 
eo(s, s, t) ＋e。(（1+5)5,（1+5)s, t) 2 

i(5) え((1 十 ~)5) え(s)+ l((1 +~)s) 

•{eo(s, (1+~)5, t) +eo((l 十 ~)s, s, t)} 

e0(s, s', t) =e-Cs+s')t-e-2h匹 nt

Indeed, the numtrical values of u11(t) and Uy(t) from Eq. (15) are sufficiently close 

to those in Fig. 3. The same simplification is also possible for the correlation 

coefficients in Eq. (14). However, the resulting formulae proved not neces-

sarily to give sufficiently accurate numerical values. 

As a measure of the intensity. of the nonstationary response,.the maximum 

value O'ymax of tiy(t) is shown in. Fig. 5 in a form similar to that of the re-

sponse spectra. 
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4. Probability Distribution of the Maximum Response 

from the Pure-Birth-Process Equation 

(1) Basic Solution 

Let Y denote the maximum absolute value of the response y(t) in the du-

ration considered. Then the probability distribution<[)(Y) of Y is represented 

by 

(JJ(Y）一P〔maxiy(t)I ~y; O~t~句 ............ (16). 

Eq. (16) can be formulated in terms of the fundamental differential equation 

of the pure-birth-process7~9>, from which we obtain 

oo 

<P(Y) =a。(Y)exp{-¥。Co(Y,t)dt} ・・・・・・・・・・・・(17)

where 

ao(Y) =P(iy(O) I ~y]
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Co(Y, t)dt= 
P(ly(t+dt) l>Ynmaxly(t') I ~y; O~t ! ~t]

氏maxly(tり l~Y; o~心t〕
．．．．．．．．．．．・(18)

(2) Approximate Solution 

The solution for the probability distribution fb(Y) of the maximum re-

sponse given in Eq. (17) cannot be represented in an explicit form since it is 

extremely di:fficult to obtain an explicit expression for c0(Y, t) in Eq. (18) due 

to the correlation between responses at different times on the continuous time 

axis. Therefore, we shall make an approximation to Eq. (18) in a manner 

more general than those in the former studies cited in Chapter 1. 

In the exact solution, Eq. (18), is required to hold throughout the con-

tinuous time axis. Here, letでo(Y,t) satisfy Eq. (18) only at discrete instants 

t1, t2• ….., t, t such that 

o;;:;;t.<t2……<t,<t 

Namely, we set 

r 

阿{jy(t+dt)l>Ynly(t)j;;:;;Y}n位IYCtk)l;;i;巧〕
為(Y,t)dt= 

Q1(Y, t) 
r 

--- -.＿ = dt 
Q氏Y,t) 

P日YCO1 ;;:;;Yn{n lyCtk) 1 ;;:;;v}〕
k=I 

・・・・・・・・・・・・(19)

where 

Qi(Y, t)dt＝町｛ly(t+dt)l>Ynly(t) I ~Y}n{n!y(tり ,~y}〕
k=l 

Q2(Y, t)dt=P日y(t)I;£Yn｛直ly(tk)I ~y}]

If we letで。(Y,t) in Eq. (19) approximate co(Y, t), then an approximate for-

mula for Eq. (17) is obtained as 

</J(Y)；；；a。(Y)exp{-＼：為(Y,t)dt} ・・・・・・・・・・・・(20)

In Eqs. (19) and (20), the effect of correlation between the response at dif-

ferent times is taken into account, though in an approximate manner, which 

describes the phenomenon more precisely than the simple approximation of 

of the independence of the response from its past history adopted in earlier 

papers on the maximum response. The approximation of history-independence 

of response is contained in Eqs. (19) and (20) as a specific case of r=O. In 

the subsequent discussions, this case shall be referred to as the first approxi-

mation, the case of r=l, as the second approximation, and so on. The ap-

proximation error is expected to reduce'with increasing values of r. 

Next, Q1(Y, t) and Q2(Y, t) in Eq. (19) shall be represented in a more 
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e:l{plicit form. Set, for simplicity, YCti) =Yi, y(t2) =.h,……， y(fr) =Jr, y(t) =yり

y(t)＝汎 Onapplying the method of analysis of the threshold-value crossing 

problem developed by S. 0. Rice161 to the present ril.ulti-dinielisional random 

variables, Q1(Y, t) and Q2(Y, t) are reduced to 

Q1(Y, t) 
<1v (Y/t11,. (YI(12 • Y/(1r ((0 

＝一—\ dも{ d合・・・・・17t J-Y/t11 --J-Y/(12 .:...Y／町一～
¥ ｛＼ Iど，i如（も，令，．．．

••…·,ら，ーf, も）dも

＋ ！。～恥（名，ら……，ら，王，も）d糾dら ．．．．．`・・・・・・(21)

Q2(Y, t) = [1;~~.d糾妬2 必……＼Y／6r d糾妬t 伽（名，ら，••…·,名，的dら
-Y/01 ;_y;(J2 - J-YI(Jr -Y/6t 

・・・・・・・・・・・・(22)

In which 如（も，む……，ら，名，も） and 伽（名，む•…..,ら，ら） are the joint proba-
bility density functions of the nondimensional variables名，む……，ら，名，もand

名，令，・••…，名，どi defined by 

名＝yi厄； （i=l, 2,......, r)，ら＝Yt厄，ら＝）t／6v

ai={E〔炉〕｝112; (i=l,2,·•…•,r), ai={E〔兄〕｝112, IIv={EC沢〕｝1/2

The joint probability density functions in Eqs. (21) and (22) may take 

arbitrary forms, out of which the typical case of the normal distribution which 

is of primary importance in application.shall be described below. 

When a linear structure is subjected to an excitation represented by a 

random process with a normal distribution, white or non-white, its response 

also has a normal distribution since an arbitrary linear combination of normal 

random・ variables is normal as well. Hence, in such a case the joint proba-

bility density functions in Eqs. (21) and (22) become multi-dimensional normal 

distributions with respect to each of their independent variables. Furthermore, 

for the normal distribution, the number of multiple integrations representing 

Q1(Y, t) and Qz(Y, t) can be reduced analytically by one, in which case Eq. 

(20) is rewritten as 

飢Y,t),:;::;erfしし）exp{-＼。OO為CY,t)dt} ・・・・・・・・・・・・(23)

where 

為(Y,t) =Q1(Y, t)/Q2(Y, t), ao={E〔炉（O）〕}J/2

Q1(Y, t) and Q2(Y, t) in Eqs. ・ (21) and (22) for・the normal distribution yield 

Q1(Y, t) = 1 a0 1 μ t" Y 2 
μ四V(2冗）r＋2cla、 exp{―万に—元―)は）｝ 
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x \＿Y/；;びld名 \-Y/；：62dむ…·り＿Y/；；r 〔exp（舟）｛exp(—麿）

＋汀州＋er£（長））｝＋ exp（青）｛exp(—豹

＋昌叫l+erf（真））｝〕dら

T T 1 r 2 

U戸 U⑱,~2, ……，ら）＝翌炉ijらも一戸岱1μふ）

叫t(即-μ研i")乱（［tl(µii-~)~i}(f) 

T r 1 T 2 

妬＝疇，令，……，ら）＝邑恥らも一元（野ふ）

-2に（即ー μtvμ亨｝（[i=1 加~)~i}(f)
V1=V1（ら，む・・・・・・,tr)=- Y r 1 v元(μivご翫ら）

四＝疇，む……，ら）＝一土(μtv姜翌μふ）
C1=det Ci, 〔μij)=C1ー1

μit=μti=μりr+l= μr+I, i, μiv= μv, = μi, r+2 = μr+2, i 

μtv=μvt=μr+I, r+2=μr+2, r+l, μtt=μr+I, r+I, μvv=μr+2, r+2 

1釦......P1r Pit P1v 

C1= 

P21 1...... P2r P2t P2v 

Prl Pr2 ・ ・ ・ ・ ・ ・ 1 Prt Prv 

Pti Pt2...... Ptr 1 Ptv 

Pvi Pv2 ・・ ・ ・ ・ ・ Pvr Pvt 1 

Pi1=P1i=E〔ぐふ〕， Pit=Pti=E〔どふ〕
PivーPvi=E〔ら的， Ptv＝釦＝E〔5ふ］

Q2(Y 
1 Y/OI 匹 Y/ur

't) =2v7cz冗me。\-Y/qld筍— Y/U2dも…… !-Y/qTexp（号）
五ゴ:=__+v。 -y,c;;~-Vo 

• {erf( 真）＋erf(~)}dら

,. r 

u。=Uo（名，む…・● •，ら） =~ ~KijぐふーVo2
i=l;=l 
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1..:. 
Vo=Vo（も，む，•…•·,~r)=--~~Kit名

1/ Ktt;;-1 
C。=detC。，〔にj〕=C。→,Kit=fCtt=K;,r+l =Kr+t, i, 和＝氏＋19r+1 

1 P12 ・ ・ ・ ・ ・ ・ Pi, Pit 

C。=
釦 1・・・・・・ pが P2t

釦伍・・・・・・ 1 Prt 

如加・・・•.. Ptr 1 

For specific cases of r=O, 1, the expressions for Q,(Y, t) and Q2(Y, t) are 

somewhat simplified9,14>. 

The expected value E〔杓 ofthe maximum response can be represented in 

the following form analogous to Eq. (3): 

c 

ECY〕吋｛1-い(Y)}dY

゜
・・・・・・・・・・・・(24)

(3) Numerical Results and Discussion 

By use of the variances and the correlation coe:fficients of the response 

obtained in 3, numerical values have been computed for the probability distri-

bution (J)(Y) of the maximum deformation Y in response to a nonstationary 

Gaussian random excitation of the earthquake type, with the aid of the ap-

proximate formula (23) derived from the pure-birth-process method for the 

various values of the parameters hn, T n/T。,and-r/T。.Thesecond approxima-
tion, r=l, has been adopted and the time ti to introduce the correlation effects 

of the response was taken as 

Tn tl=t---
2 

from the results of the approximation error survey.9> 

Along with the analytical procedure, numerical simulation of the maximum 

response Y has been carried out. For each set of parameters, 40~50 sample 

accelerograms have been generated, from which the experimental probability 

distribution has been obtained as the cumulative probability of the maximum 

structural response to them. 

Some numerical examples of the analytical and the simulated results are 

shown in Figs. 6~8. From these figures, it is obvious that the discrepancy 

between the analytical and simulated results grows greater with increasing 

Tn/T。andwith decreasingて／T。andhn. For -r /T。=3and Tn/T。=1,4, Fig. 6, 

fairly good agreement between the analytical and simulated results seems to 

attained only for hn =0.2 and an extremely high level of Y for lower damping 
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factors. This result is considered to be a consequence of the approximation 

procedure which was adopted in the pure-birth-process method, and it would 

demonstrate that a careful choice of parameters must be made irt applying 

this method to the problem of the statistics of the maximum earthquake r~­

sponse. These error characteristics could be explained in the following manner. 

i) The pure-birth-process method so far discussed takes account of the 

correlation effects between the responses only at a limited number of discrete 

times, though it has been improved if compared with the former studies with 

the history-independence assumption. As a matter of fact, however, it is ex-

cessively time consuming to carry out numerical computations with a high 

order of approximation, say r=3, 4 or more. Hence, if the damping factor妬

is very small and there occurs as a consequence a. high correlation between 

the responses at times separated by several times the natural period, then 

pure-birth-process method fails practically to be applicable with a sufficient 

accuracy. 

ii) A great part of the error due to a small如 isconsidered to be caused 

by the subsiding tail of the r.m.s. response ay for a large t. It was pointed 

out in 3. (2) that when av attains its maximum value and begins clearly to 

decrease, the excitation level f(t;て） hasalready decreased to a considerable 

extent if比 issmall. Hence in such a case, the subsiding tail of ay(t) is 

considered to represent primarily the effect of damped free vibration, and the 

maximum response is expected to occur exclusively iitl a relatively short time 

interval containing the maximum of a~(t). However, due to the procedure 

which, starting from the exact solution Eq. (17), led to the approximate for-

mula (20), this subsiding tail has in effect been treated as though it possessed 

a more random nature which might affect the maximum response. In this 

sense, if kn is so small that this kind of error grows large, the pure-birth-

process method will. overestimate the maximum response, and Eq. (14) will 

give a lower bound of the probability distribution f/J(Y). Indeed the results 

for hn=0.02 in Figs. 6~8, for example, seem to support these arguments. 

iii) If Tn/T。isvery large or ?" /T。isvery small, which implies that the 
input is impulsive rather than a continuous excitation of slowly varying in-

tensity, then the maximum value of ay(t) appears much later than that of the 

excitation, as we observed in Fig. 3, the case of Tn/T。=6,for example. Then, 
analogous to the disc;ussion in ii), the・ r.m.s. response following this maximum 

value is also considered to represent the subsiding tail due to free vibration, 

not the effect of forced vibration. Thus, iarge T n!T。andsmallて／T。alsohave 
the same effects as small kn and tend to increase the approximation error in 
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<P(Y). 

From, the foregoing discussions• on the・ accuracy of the approximate pro-

cedure, it would be obvious that the pure-birth0process method so far developed 

furnishes a good approximation to the probability distribution of the'maximum 

response for a limited range of parameters; i.e:, for larger hn andて／T。， and

smaller T n/T。.Ifwe admit the judgment that the analytical and simulated 
values for hn=0.05 and Tn/T。=1in Fig. 7 are in appreciable agreement and 
let them give a limiting degree of tolerable error for practical use, we can 

separate the successful portion of the whole analytical restilts.14> The range 

of parameters in which the pure-birth-process method is. applicable in the 

sense of the above staterrtent is shown in Fig~ 9. The domain on the "A" 

side of each curve corresponding to the probability levelsの(Y)is the area 

゜
1
.
A
)
1
8
1
 

0.5 

//'-

A / 
/ /-.  

//'. 

忍／．／
p• メ。・、/.. ------I /／ ／ 

姦
／ 

I / I B 

゜0.2 0.5 (a) T/T。=3 2 5 
Tn/To 

1.0 

A
)
咄

0.5 

/ / 
A / / 

忍 ／ ／ 

刃／ ／ 

／でグ 。ジ。ヽ／／ ／ 

／ ／／。戸
oV,,／11  9,II 
0.2 0.5 I 2 5 

{bl T/T,。=10 Tn/T。

1.0 

5
 
Q
 

こ印

/

B

 

／

ょ

01.

／

／

 

／
、
ゥ
／

I

I

 
／
 

／
ざ
ツ
‘

／
 
し
。
。
グ
ー
・
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where the pure-birth-process method is valid and that on the "B" side is where 

it fails to be. In the case of Fig. 9(b), for example, the pure-birth-process 

method is applicable to structures with hn=O.l and Tn/T。=2in the range qJ(Y) 
>0.4. It should be noted, however, that these curves are only representative 

of error criteria, and we should understand that the error caused by the ap-

proximation changes rapidly but continuously somewhere about them. 

A more reasonable method of analysis for the range of parameters in the 

"B" domain is discussed in the next chapter in connection with the peak en-

velope distribution. 

5. Probability Distribution of the Maximum Earthquake Response 

in Terms of the Peak Envelope Distribution 

(1) Analytical Procedure 

It has been shown in the previous chapter that when the pure-birth-

process method for analyzing the maximum structural response is applied to 

the problem of earthquake-type excitation, its approximation error tends to be 

large in some ranges of ruling parameters. Hence for such ranges of para-

meters, there is required an alternative method of analysis. 

It was pointed out in 4. (3) that the approximate formula Eq. (20) fails 

to be accurate when the subsiding tail of the r.m.s. response <Ty(t) for a large 

t primarily represents the effect of the damped free vibration and does not 

contribute to the maximum response. Thus, in discussing the maximum res-

ponse for such cases, it is desirable to adopt a method which evaluates ex-

elusively a relatively short interval of time in which the maximum value 

<Tymax of <Tv(t) takes place. In this chapter, we shall employ the peak envelope 

distribution developed by S. 0. Rice16> as such a method and apply it to our 

present problem. 

It is obvious both from the foregoing discussion and from evidence shown 

by many authors that the random response y(t) of a slightly damped linear 

structure, the object of analysis throughout this study, can be treated as a 

sinusoidal time function with a slowly varying random amplitude A(t) and a 

random phase angle </J(t); i.e., 

y(t) =A(t) sin ((J)nt+</J(t)) 

as illustrated in Fig. 10. The envelope W(t) is given by 

W(t)＝｛ザ(t)＋図｝i12~A(t) 

The slowly varying envelope W(t) is also a random process and takes on 
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Fig. 10. Illustration of Amplitude y(t), Envelope W(t). 
and Peak Envelope (Maxima of W(t)). 

maxima and minima from time to time. Such maxima, or peak envelopes*, 

are considered to be the maximum values of ly(t) I in the time interval in 
which only a single peak envelope is contained. Since, as discussed above, 

the subject of this chapter is the maximum response determined exclusively 

in a relatively short time interval in which(1y(t) attains its maximum value, 

it would be appropriate to let a peak envelope taking place in or in the vicinity 

of such an interval represent the maximum response Y. 

The probability distribution of the peak envelope of a narrow-band sta-

tionary Gaussian process has been discussed by S. 0. Rice15> from which the 

solution was derived in an explicit form for a process with a power spectrum 

symmetrical about its mid-band frequency. Although the structural response 

discussed herein is nonstationary, we shall employ Rice's result as an ap-

proximate expression for the probability distribution of the maximum response 

Y. For, in the time interval in which(1y(t) assumes its maximum value(1ymax, 

(1リ（t)and other statistical parameters of the response assume nearly constant 

values and, among them, Puil(t) almost vanishes, thus proving that y(t) is 

almost stationary in this interval which is of interest to us in this chapter. 

Thus on applying Rice's result on the peak envelope distribution161 to the 

we obtain the probability density of th present problem, we obtain the probability density of the maximum response 

in the following form : 

蛉(Y) ＝ら｛詈『 (~)3}112exp{-a屹2は）］

c 

x:E 
叫 y¥n /~ r（子＋｝）ふ
n=Or(”+ 7) ) ／エす丁 (0m,9=0r(子+f)か

・・・・・・・・・・・・(25)

where 

* This terminology shall be used hereafter. 
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1; n=O 

An-［ n+1＋且仕員）•；；••(m--•い(n-m+1)炉； nこ1
b=+(3-aり； a=~(Jum

Z= 
b2 

y'2((J2ymb4-b社）

bk=「e(J)ー(J)]Sy((J)）d(J)；k=2,4
゜and I'(x) is the gamma function. 

The probability distribution of the maximum response is then given by 

y 

<l>(Y)二伽(Y)=)伽 (Y)dY

゜
・・・・・・・・・・・・(26)

In Eq. (25), <lym is to assume some representative value of(Jv in the time in-

terval of highest response level. SvC(I.)）should in principle coincide with the 

power spectrum Sv ((I.)）of the response in this time interval. However, since 

Eq; (25) is valid only for a power spectrum symmetrical about its mid-band 

frequency, we need to represent SvC(I.)）by some suitable function and let it 

simulate the response power spectrum. Determination of Sv ((I.)）is discussed 

below, and(Jvm is determined in the next section. 

The power spectrum Sv ((I.)）of the response y (t) ・ in the time interval in 

discussion is closely approximated by 

Sv(a>)= 
4hn(J2ym 
冗伽 H(w) 

・・・・・・・・・・・・(27)

where 

H((J)）＝｛1-（こ）2r+4h註（こ）2
The coefficient. on the right-hand side of Eq. (27) has been d.etermined so 

that 

「Sv((J)）d(J)＝a2ym
゜SvC(J)）has its peak at(J)＝V1-2h註(J)nニ伽 forwhich we have 

Sv(v'l-2h註叫）＝
a2ym - a2ym 

冗ん(1-h註）伽冗h⑩ n
~~·=Sy((J)n) 

・・・・・・・・・・・・(28)

・・・・・・・・・・・・(29)

For such S心）， thesimulating spectral function Sy(m) shall be represented 

in the form 

$（m) ＝~-exp{-f(~円ー 1)4} ・・・・・・・・・・・・(30)
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for whichッandr are to be determined later. This form was chosen to make 

it vary in the same manner as Sv((J)）near the spectral peak ; i.e., as a poly-

nomial function of degree four in(J)．sc(J)）in Eq. (30) is syrrirpetric~l about 

its:midband frequency(J)n• The parameters v and r are determined_ by reference 
to Eqs. (28) and (29) ; i.e.,* 

「ふ((J))d(J)＝62um
-CO 

:and 

Sy((J)n)＝一砧 m
社 n(J)n

From these conditions we obtain 

0' 2ym 
r= 
2冗加

).I= ―-一•- --• 

叫'r(-¼-)
・・・・・・・・・・・・(31)

By use of Eqs. (30) and (31), the parameters necessary for evaluation of Eqs. 

(25) and (26) are obtained as 

b2=ッr戸r(f), b4=_l!!_戸 r(¾)

z=l/ 〔rげ）｛2け（｝）r（1)-F(-¾-)）}112]=0.43195 

a2 = r(+) r(¾) / r《}）＝2.1884
1 5 

1 
r - r -

b=+{3-
(4) （4) 
rド） ｝＝0.40578 
4 

(2) Numerical Results and Discussion 

With the aid of the results in the previous section, the probability density 

and the probability distribution of the maximum response in terms of the peak 

envelope have been computed. from Eqs. (25) and (26) the result of which is 

shown in Fig. 11 whose. abscissas are normalized with respect to Clym• Then 

the mean value E〔杓 isobtained by a numerical integration as 

E〔杓吋~y伽(Y)dY=2.5038avm 

゜
・・・・・・・・・・・・(32)

To obtain the probability distribution of the maximum response from these 

results, we must determine(1ym, It is not always reasonable to let(1ym be equal 

to the maximum r.m.s. response(1ymax shown in Fig. 5, since(1ymax is only 

* The interval of integration is extended to negative infinity. However, its effect on the 
result of integration is neglible as long as Eq. (29) is used. 
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the peak value and the average r.m.s. response in the time interval contain-

ing(Jymax is somewhat lower. Fig. 12 shows the reduction factor represented 

by the ratio of(Jm to (Jymax which has been so determined as to give best 

agreement between analytical and simulated values of <f)(Y) for higher levels of 

of Y. Hence, by reference to Figs. 5 and 12, the average r.m.s. response(Jm 

is determined, and on substituting it into Eqs. (25) and (26) or applying it 

to Fig. 11 we obtain the probability distribution of the maximum response in 

terms of the peak envelope distribution. 

The peak envelope method adopted in this subsection is an approximate 

method, as was the pure-birth-process method, in obtaining the probability dis-

tribution of the maximum response. Hence, its accuracy has been examined 

in relation to the experimental values obtained from numerical simulation. 

Figs. 13~ 15 show some examples of the analytical and the simulated results 

for the same values of parameters as in Figs. 6~8. It is observed in these 

figures that the analytical and the simulated values are in better agreement 

for larger T n/T。andsmaller -r /T。incontrast to Figs. 6~8 showing the result 
of the pure-birth~process method. Since Eq. (25) derived from the peak en-
velope method has been obtained by neglecting the effect of the subsiding tail 

of(Jy(t), the error caused by it becomes greater, as this subsiding tail has 
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enough of a random nature to contribute to the evaluation of the maximum 

response, which is the case where the pure-birth-process method is accurate. 

Fig. 16 shows the ranges of parameters denoted by the domain "A" in which 

the peak envelope method is applicable, and that, domain "B", in which it 

cause great approximation error. The domains "A" and "B" in this figure 

have been determined in the same sense as in Fig. 9. It is noted in Fig. 16 

that the zoning of "A" and "B" domains has been made by a single hatched 

belt, accounting for.the damping factor in the range hn=0.02~0.2, since the 

numerical results show that the approximation error due to the peak envelope 

method does not depend greatly upon hn, whereas the effect of hn is great in 

the pure-birth-process method as. we have seen in Fig. 9. 

By comparing Fig. 9 and Fig. 16, or Figs. 6~8 and Figs. 13~15, it is noted 
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that the two methods of analysis of the probability distribution of the maxi-

mum earthquake response can be combined with each other to cover a wide 

range of the structural and the excitation parameters. 

6. Probabilistic Parameters of the Maximum Earthquake Response 

Related to Structural Design Criteria 

The foregoing discussions in this study have been devoted to the develop-

ment of methods of analysis with which to obtain the probability distribution 

of the maximum earthquake response of simple structures, of which the pure-

birth-process method and the peak envelope method have proved to give good 

approximations for certain ranges of parameters. If we use these methods 

alternatively, we can obtain the statistics of the maximum earthquake response 

for a wide range of parameter values, on the basis of which there can be 

deduced several probabilistic parameters relevant to structural design practice. 

As pointed out in 1, the probability distribution (f)(Y) of the maximum re-

sponse is in itself an important parameter directly connected with the relia-

bility function of the structure. In design practice, however, it is desirable 

that these statistical data be represented in more compact forms to facilitate 

reference by engineers. For this purpose, this chapter presents the numerical 

values for the mean value and the relative dispersion of the maximum re-

sponse represented in the form of response spectra, by which the over-all 

statistical characteristics of the maximum response can be discussed. 

(1) Mean Response Spectra 

By setting 

Sn=E〔杓， Sv=(J)nふ， SA=(J)註SD ・・・・・・・・・・・・(33)

and plotting them against the natural period of the structure, we obtain the 

mean response spectra of displacement, pseudo velocity, and acceleration, 

respectively. In this manner the concept of the average response spectra 

developed by G. W. Housner11> was generalized to response statistics with a 

broader probabilistic background, or, conversely, the analyses developed in 

this chapter can be discussed in direct relation to the results of the response 

analysis for real earthquake records. 

Thus Figs. 17 and 18 show the mean response spectra obtained by use of 

the pure-birth-process method and the peak envelope method, respectively, both 

plotted along with the experimental values due to the numerical simulation. 

The analytical values have been. calculated from Eqs. (24) and (32). It is 

noted from these figures that the approximation error caused by the two 
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methods behaves in the same manner as discussed for ({J(Y) in the foregoing 

chapters; i.e., the pure-birth-process method is valid for relatively small Tn/T。
and largeて／T。andhn, and the peak envelope method, for large T n/T。and
smallて／T。.

It is noted also that when the damping factor hn is small the response 

becomes higher with increasing't'/T。,whichimplies that for impulsive earth-
quakes of short duration the response does not grow large. This argument 

coincides with the result of the observation of real earthquakes. 5i Hence, in 

discussing the maximum response, the estimation of the duration of excitation 

plays an important role. 

It is readily understood that the shape of these mean response spectra is 

affected by the parameter h。inEq. (5) to determine the sharpness of the 
spectral density of excitation. The value h。=0.9used herein has been chosen 
so that the acceleration spectra might take on peak values somewhat close to 

those in the average response spectra for real earthquakes.n,12i However, it 

should be kept in mind that those average response spectra for real earth-

quakes are based on various types of accelerograms which cannot be said to 

have been picked up from a single population. In this sense, the value h。=0.9
is by no means to be fixed for all earthquakes, but it is to vary with various 

ruling parameters related to the site conditions and the intensity of the earth-

quakes. Including this problem, the analysis of earthquake motion supported 

by strong motion accelerograph networks is an important future task by which 

to establish reasonable models of earthquake motion. 

(2) Relative Dispersion Spectra 

Let Cv denote the relative dispersion of Y. Then Cv represents the stan-

dard deviation(JY of Y normalized with respect to its mean value; i.e., 

Cv= 
(J-y 但〔Y2Jー（E〔Y〕）か/2
-Si ＝一•-―- E〔Y〕 ・・・・・・・・・・・・(34)

Hence, for the evaluation of C", the mean square. E〔灼 mustbe obtained in 

advance. The mean square of Y according to the peak envelope method is 

obtained by numerical integration as 

c 

E〔四吋 Y如 (Y)dY=7.3269(J2ym 

゜
・・・・・・・・・・・・(35)

Since the pure-birth-process method provides only the distribution function 

<P(Y), we shall use Eq. (A.4) of the Appendix valid for an arbitrary random 

variable. Since Y assumes only non-negative values, we have 

00 00 E〔四＝2¥叫｛1-<b(Y')}dY'
0 JY 

・・・・・・・・・・・・(36)
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The numerical results for C. are shown・ in Fig. 19. ・ ・ It is remarkable that 

the numerical values for the pure-birth-process method (p.b.p.m.) are greatly 

smaller than those for the peak envelope method (p.e.m.). The p.e.m. value 

is equal to 0.41083 by virtue of Eqs; (32) and (34). The p.b.p.m. value varies 

slightly but takes on almost constant values regardless of parameter values 

considered herein. On the other hand, the simulated values, on the whole, 

vary between these two analytical values, in which it is natural, from the 

foregoin discussion of the approximation error, that the simulated results are 

close to the p.b.p.m. values for small Tn/T。andlargeて／T。andto the p.e.m. 
values for large Tn/T。andsmall r /T。・
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Table 2. Maximum Response Relative to Its 
Mean Value for Various Non-Excess 
Probability Levels. 

| 
(/)(Y) ［ YIE(Y) I 
pure-birth- | peak en声五
process method*I method 

0.98 I 1.287 I 1.927 

0. 95 I 1. 216 I 1. 725 

o.9 I 1.157 I 1.548 I 
0.8 I 1.092 I 1.350 

O. 7 I 1. 051 I 1. 198 

0.6 I 1.017 I 1.078 

o. 5 I o. 9878 I o. 9705 

* hn=0.05, Tn!To=l, -r-!To=lO. 
Similar results have been obtained for 
other cases. 
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From the viewpoint of structural design, it should be noted that due to 

the large value of Cv for large T n/T。,themaximum response of a structure 
with a relatively long natural period disperses in a wider range about its mean 

value than the case of a relatively short natural period. In other words, even 

if a structure is so designed as to have the strength of a constant value times 

the response level read off from a mean response spectrum, the non-excess 

probability of the response, or the probability of structural safety, varies with 

the natural period. Thus, under the requirement of an equal probability of 

structural safety, a higher level of the maximum response relative to its mean 

should be chosen as a design criterion for large Tn/T。thanfor small T n/T。.
For cases where either the pure-birth-process method or the peak envelope 

method is valid, the value of the maximum response corresponding to a given 

non-excess probability can be read off from Figs. 6~8 or Figs. 13~16, or when 

the discussion is made in terms of the ratio Y / E〔杓， fromTable 2 and Fig. 

20. The results of the pure-birth-process method in Table 2 and Fig. 20 are 

given only for hn=0.05, Tn/T。=1,andて／T。＝10. However, as long as the ratio 
of the maximum response to its mean value is under discussion, similar results 

have been obtained for other values of parameters. Thus, it could be stated, 

for example, that to ensure a 95 percent probability of structural safety, it 

suffices to adopt as design criteria 1.2 times the ordinate of the mean response 

spectra for structures with relatively short natural periods and 1.7 times for 

structures with longer natural periods. 

7 . Conclusions 

This study has dealt with the probability distribution of the maximum 

response of linear structures subjected to random earthquake excitation, from 

which the following conclusions have been derived. 

(1) In discussing the random earthquake motion, various types of non-

stationarity in amplitude can be discussed in terms of the equivalent duration 

proposed in this study. 

(2) There have been developed two methods of analysis of the maximum 

structural response to random earthquake excitaticn, which have been ten-

tatively called the pure-birth-process method and the peak envelope method, 

respectively. 

(3) From the error survey made with the aid of a numerical simulation, 

it can be said that the pure-birth-process method is applicable to a structure 

with a relatively short natural period subjected to an earthquake motion of a 

relatively long duration and the peak envelope method, to the case of a rel-
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latively long natural period and an impulsive earthquake motion. 

(4) The pure-birth-process method and the peak envelope method combine 

with each other to cover a wide range of structural and excitation parameters. 

To know which of the two methods should be adopted for a given set cf 

parameters, Figs. 9 and 16 for precision zoning are available. 

(5) For design purpose, it would be convenient to make use of data, re-

presented in a compact form of the mean response spectra and the relative 

dispersion spectra, Figs. 17~19, and of the relation between the maximum 

response relative to its mean value and the specified non-excess probability, 

Table 2 and Fig. 20, by which the maximum response is discussed in terms 

of the mean value and dispersion about it. 

(6) The relative dispersion of the maximum earthquake response varies 

with the natural period and the duration of the earthquake. For a specified 

probability of structural safety, a higher level of the maximum response rel-

ative to its mean value should be adopted as the design strength for struc-

tures with long natural periods than for those with short natural periods. 

As pointed out in this chapter, it is in general difficult to obtain an exact 

solution for the probability of a structural event in a finite duration of random 

vibration. Hence, in most cases a theoretical treatment can only provide us 

with approximate results, for which the approximation error can be inspected 

with the aid of a numerical simulation, which has been the general procedure 

adopted in this study. It is noted that the numerical simulation itself can be 

a powerful tool of basic analysis, since it will offer results as close to the 

exact solution as we wish if a sufficiently large sample size is taken. However, 

analytical methods, even if approximate, are. far superior to the numerical 

simulation in investigating the details of the phenomena and their physical 

significance, by which insight into the problem is greatly deepend. Hence, 

in the study of structural safety in earthquakes by means of the random 

vibration theory, it is desirable to make effective use of these two methods 

together. 
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Appendix. Representation of the Mean Value and Higher Moments 

of a Random Variable in Terms of the Probability 

Distribution Function 

The moment E〔か〕 ofdegree n of a random variable z is defined as 
c 

E〔が〕＝＼喜(z)dz
-00 

・・・・・・・・・・・・(A・1)

where ¢(z) is the probability density function of z which is related to the 

probability distribution function ([J(z) in the form 

『¢(z)dz=<P(z)
-OO 

・・・・・・・・・・・・(A・2)

It is often the case that only the distribution function <P(z) is known to 

us either in an analytical or numerical expression. In such a case, Eq. (A・1)

to give the moment E〔が〕 failsto be available, and it may in general cause 

a great error to obtain rp(z) by numerical differentiation of Eq. (A・2).Hence, 

in what follows we shall derive a formula which gives E〔か〕 interms of in-

tegrals involving only the distribution function <P(z). 

First, we shall consider the mean value E① .Let G be an arbitrary 

positive number. Then we have 

亡祁(z)dz=〔zの(z)〕ニーいこ<P(z)dz
G 

＝＼位(G)-<P(z)}dz-[,,{<P(z)-<P(-G)}dz=D1(G) し
Since <PC oo) = 1 and <P(-oっ）＝0,we obtain 

c c 

応〕＝［屯D,(G)＝＼。{1-(/)(z)}dz-)(/)(z)dz

゜
・・・・・・・・・・・・(A・3)

The mean square E田〕 isobtained in a similar manner ; i.e., we have 

¥G G z G G zI 
-G  
蒻 (z)dz＝直（z)〕＿G-2［パ。@(z三〕＋2¥ 叫知）dz2-G J-G JO 

叫□9(G) —鯰）｝dz2十亡叫〗｛蜘） -@(-G)}d吋＝D2(G)

Hence, E〔匂 isobtained as 

E団〕＝limD2(G)
G→OO 

=2[＼。OOd叩｛1-知）｝dz2 十＼゜— ~dzl?OO知）心〕
Zl 

・・・・・・・・・・・・ (A•4)

For the general case of the n-th moment E〔か〕， thediscussion can be made 

in the same manner by means of successive integration by parts and of the 

relation 
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G G G 

Gk=叫叫 d召••• ••\ dzk 
0 Jz1 JZk-1 

Thus we obtain the following general formula : 

00 

E〔か〕＝ n！［＼ :dz1\:ld互…•\ ｛I-</J(Zn)}dzn 
Zか 1

O zI 

+(-1)＼叫 d互…•• Zn-l 
-OO -OO に鯰）dzn] .......・・・・・ (A•5)




