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A Note on the Nonlinear Vibrations of the Elastic String 

By 

Takaaki NISHIDA* 

(Received June 30, 1971) 

The nonlinear vibrations of an elastic string which are described by the equation 

pho2w/ot2= (Po+ Eh/2L• s:(ow/ox)2dx)o2wlox2 

were investigated. A proof for the existence and uniqueness of a solution with 
finite harmonics in the large in time and a conditionally periodic behavior is given 
for this equation. 

1. Introduction 

Free lateral 'finite' vibrations of uniform beams with the ends restrained 

so they remain a fixed distance apart may be described by the equation, 

ph :; +EI:: = { Po+ :t ):(: )2dx} ~x~ , (1) 

(-=<t< +=, 0~x~L) 

with the initial and boundary conditions, 

w(0, x) =Wo(X), Bw(0, x)/fJt=W1(X), 

w(t, 0) =fJ2w(t, 0)/f)x2 =w(t, L) =fJ2w(t, L)/f)x2=0, } 
(2) 

where w is the lateral deflection, x is the space coordinate, t is the time, E 
is the Young's modulus, EI is the flexural rigidity, p is the mass density, his 

the thickness of a beam of unit width, L is the length, and Po is the initial 
axial tension. 

An equation governing free lateral 'finite' vibrations of a uniform string 

may be considered as a limit case, such as the no-resistance (El =0) to bend
ing of equation (1), i. e., 

ph :; = {Po+ :t ):(: )2dx} :: • (3) 
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Equations (1) and (3) have only the nonlinearity contained in the term for 

the axial force, which is given by the stretching of the medium line.11 > Con

cerning equations (1) and (3) a review has been given, for example, by Eisley.8
> 

An equation of 'finite' deflections of plates was derived by Berger,3> which 

neglects the second invariant of strain in von Karman's equation. Free vibra

tions of this platE' are described by the equation 

(4) 

where D is the flexural rigidity of the plate, and A is the area of the plate, 

which was considered by Aggarwala. 1
> 

The existence and uniqueness theorem of solutions in the large in time 

for the problem in (1), (2) was obtained by Dickey.71 Concerning vibrations 

of the string (3) a local (in time) existence theorem for general initial data 

was given by Dickey.61 As regards the existence and uniqueness theorem of 

solutions in the large (in time) both equations (1) and ( 4) can be treated in 

the frame-work of the theory of nonlinear perturbations to linear evolution 
equations. 5, 9,m 

Here we consider the solutions in the large (in time) for equation (3) 

under the assumption that the initial data of (2), do not contain infinitely 

higher harmonics, that is, there exists a natural number N such that the 

initial data may be represented as follows 

(5) 

where ak, bk are constants. 

Then the solution of the problem (3), (2) with (5) is proved easily to exist 

uniquely in the large in time. This follows from the fact that the nonlinear 

term is an integration of good form; thus, if certain harmonics are rtot con

tained in the initial data, then these harmonics will not appear in the solution 
in the course of time. 

Under the same assumption, the solution was examined for its behavior 

near the equilibrium state (w=O), using the Kolmogorov-Arnol'd-Moser theorem 

on the conservation of conditionally periodic motions of dynamic systems in 

the case of oscillations (a limiting degenerate case) under small perturbations 

of Hamiltonian functions ; that is, a large part of the free vibrations starting 

from initial data sufficiently near the equilibrium state can be shown to be 

conditionally periodic oscillation.2, 4 , 10, 12
> The definition of the conditionally 

periodic oscillation will be discussed later. We note that the associated linear 
system of equation (3) is 
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a2w a2w 
ph at2 =Po ax2 ' 

and so the linear frequencies of equation (3), that is, 

w=(J :h i • 2J :h r .-·····,NJ :h l, ·····} 
are linearly dependent on integers. Therefore, the linearized motion under 

the assumption (5) is only periodic oscillation (not the conditionally periodic 
oscillation). 

The same result can be obtained for both equations (1) and (4) under the 

assumptions of the initial data (the smallness and the analogue to (5)). 

Last, we consider the following linear wave equation with time dependent 

wave-velocity 

(6) 

y(t, 0) =y(t, tr) =0, t20, 

y(O, x) =Jo(X), ay(O, x)/at=Ji(X), Osxs1r, } 

where the function a(t) is non-negative and bounded. 

It is well known that if a(t) is a Lipschitz continuous function in t, then 

a smooth solution for equation (6) exists in the large in time. In section 4 

it is shown that if a(t) has a bounded total variation in OstsYT, then the 

solution of equation (6) can exist in tE(O, TJ, but if a(t) is only a bounded 

measurable function, then that is, in general, not valid in the following sense. 
We see that the L2-energy estimate does not hold; that is, when YC>O, YT>O, 

and YE>O are given, there exists a bounded measurable function a(t) and an 

initial value Yo(x), Y1(x) such that IIYolHIIY1ll~sE and the corresponding solution 

satisfies the following inequality : 

IIYCt, ·)11:+llay(t, ·)/attl2>C for t=tosT, 

where ll-llm(m=O, 1, 2) are norms in W;> (cf. section 2). 

2. Existence and Uniqueness 

We consider the following initial-boundary value problem which is equi

valent to that mentioned in the introduction. 

a2w/at2=(l+a ! ~:(aw/ax) 2dx)a2w/ax2, Osxs1r, Ost, 

w(O, X) =Wo(X), 8w(0, x)/at=w1(X), 

w(t, 0) =w(t, 1r) =0, Ost 

(7) 

(8) 
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where a is a non-negative constant. 

Let Wi(l=I, 2,··) be the Sobolev space of square summable functionsf(x) 

in xe(O, ,rJ with square summable /-th derivatives. W~=L2(0, ,r). The norm 

is denoted by IH,. If a function f(x) belongs to W21(l=l, 2,···), then f(x) has 

continuous derivatives up to the (l-l)th order. We define 

Wi={J(x)EW21, f(O)=f(,r)=O} (l=l, 2,-··), 

and then it is also a Hilbert space with the same norm as in W21 ; further, 

Sobolev's lemma or a direct calculation gives the following equivalent norm. 

l!fll12 =lld1f/dx1il 2 + lf(O) l2 + lf(,r) l2 

=lld1f/dx'li 2 for feWi(l=I, 2). 

Let Qp be a class of functions w(t, •) such that they are bounded measurable 

(in t) vector-valued functions from !E(O, TJ in lt\2 with bounded measurable 

first derivatives from t in W21 and bounded measurable second derivatives 

from t in L2. 
Now we suppose an essential but restrictive assumption : that the initial 

data, equation (8), does not contain infinitely higher harmonics; that is, that 

there exists a natural number N such that the initial data are represented as 
N N 

Wo(x) = Ll ak sin kx, W1 (x) = Ll bk sin kx, (ak, bk: constants). (9) 
k-1 k-1 

Under the assumption (9) we may easily obtain the following existence and 

uniqueness theorem of the solution for problem (7) and (8). 
If we assume the condition (9) on the initial data (8), then there exists 

a solution of problem (7) (8) in the large in time, which has the form 

N 

w(t, x) = ~ ak(t)sin kx, (10) 
k-1 

and it is unique in the class of functions Qp. 

In fact, substituting the expression (10) into equation (7) we get the fol

lowing system of ordinary differential equations. 

(11) 

The initial data for system (11) are given by the condition (9) as follows. 

ak(O) =ak, dk(O) =bk, (k=I, 2,··, N). (12) 

The total energy of problem (11) (12) is the following. 

E(t)-==-! iI {ak
2(t)+k2ak2(t)}+ ~ {iik2ak2(t)r = 
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(13) 

This a priori estimate, equation (13), allows us to conclude that the solution 

of problem (11) (12) and thus problem (7) (8) with (9) exists in the large in 

time. 

The uniqueness of the solution in the class Q"' is obtained by the energy 

estimate for the difference of the two solutions in the usual way. 

3. Behavior of Solutions near the Equilibrium State 

When we assume the condition (9), the system (11), (12) is equivalent to 
problem (7), (8) from the argument of section 2. Therefore, we may apply 

the Kolmogorov-Arnol'd-Moser theorem on the conservation of conditionally 
periodic motions of dynamic systems in the case of oscillation (a limiting 

degenerate case) under small perturbations of Hamiltonian functions to system 

(11). The Hamiltonian function corresponding to (11) is given by (13), that 

is, 

(13) 

Here we note that the linear frequencies of system (11) (w= (1, 2, ... , N)) are 

linearly df"pendent on integers, that is, system (11) is a resonant one with a 

specialized nonlinear coupling. 

By the use of the variables Pk=advk and Qk=,//iak (k=l,···, N) the 
Hamiltonian function (13) becomes 

(14) 

First, in order to transform (14) into a normal form by Birkhoff's trans-' 

formations we introduce the following variables 

~ 1-i ( . ) 1-i ( . ) (k 1 N . _1-) ..-k=-2- Pk-tQk , 7h=-2 - Pk+tqk , = ,··, , t=v -1 , 

where the canonical transformation from (q, p) to (7J, ~) is generated by the 

function 

N { 1 • } </>(Q, ~)=~I 2~k2+ (1 +i)Qk~k+-i-Qk2 
• 

Then (14) becomes 

Birkhoff's transformation, which normalizes the ·fourth , order term H,, is a 
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canonical transformation from (Y/, ~) to (ij, p), which is defined by 

~k=Pk+8K/81h, ijk=Y/d8K/8pk, (k=l,·····, N), 

where 

K = :E llk1 .. •kNl1···IN" P1k1······PNkN. Y/1 11 ······Y/tlN, 
k1 +··•+kN+l1 + .. ·+IN=4 

k1, l;=O, l,·····, 4, llk1 .. ,kN/i .. ·/N=constant. 

If we solve explicitly for ~. r; in terms of p, ij, we obtain 

~k=Pd8K*/8iik+···, Y/k=Qk-8K*/8pk+···, (k=l,···, N), 

where K* denotes the function obtained by replacing r; with ij in K and the 

power series converges in the neighborhood of the origin. The modified value 

of H, obtained by substitution, is 

H(p, ij)=H2(P1+8K*/8ii1+···, ···, iiN-8K*/8PN+···)+Hb 

where the arguments of H4 are the same as those of H 2• To terms of the 

fourth degree inclusive we find 

+higher degree terms=H2CP, ij)+H,(p, ij)+H(p, ij). 

Thus the forms of H2 are unmodified while Hi. takes the form 

}J in(iin• f}~* -Pn• f}K* )+Hi.(P1,··,ijN) = 
n•I 8qn 8Pn 

= :E [ llk1 .. ·INLtin(/11-kn)} +hk1 .. •kNli"·IN ]fi,kt••·P~Nij,11 ... qNIN, (15) 
k1+ .. ·+IN=4 

where hk1 .. •kNli"·IN is the coefficient in the original Hi. analogous to llk1 .. ·IN• Easy 
calculation gives the foll wing: 

N 

+ :E m2 Cfim4 -4Pm8Qm-4Pmlim8 + Qm4
) + 

m•I 

(16) 

Although the linear frequencies of system (11) (w= (1, 2,···, N)) are linearly 

dE>pendent on integers, we can take convenient values for the coefficients 
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a1,, .. ,,,Nli···IN in (15) such that tlie terms in the latter two summations in (16) 

vanish in H,, when the terms in the former two summations in (16) remain 

unchanged. In fact, for example, the coefficient of the term Pm' in H, turns 
out to be 

ao .. ,4 ... oo.,,o{im(4-0) }- ~ m2, 

therefore we may take ao ... 4 ... 0 .. ,0= -iam/64, and then the term vanishes in fl,. 
For another example, since the coefficient of the term of Pm2ii.n2 (m~n) turns 
out to be 

ao .. ,2 .. ,00 .. ,2 .. ,o{im(-2) +in(2) }- ~ mn, 

we may take ao .. ,2 .. ,oo .. -2 .. ,o=iamn/32(m-n), (m~n), and then the term vanishes 

in H,. The other terms (except Pm2ii.m2, Pmii.mPnii.n) can be treated in the same 

way. The terms of Pm2ii.m2, Pmii.mPnii.n remain unchanged by any a1,, .. ,IN, because 

the multiplier of ak, .. •lN is zero. Thus we obtain the following expression of 
the Hamiltonian function: 

H(p, ii.)= :E inPnii.n- aB ~ (2+/J':.)mnPmii.mPnii.n+H(p, ii.), 
n.•1 m.,n•l 

where ii (p, q) begins with the sixth degree terms with respect to p and ii., 
because the original Hamiltonian function does not contain the third degree 
terms, and so H(p, q) does not contain the fifth degree terms. By the trans

formation P1c= Iii Cfi1c-iQ1c), ii.1c""" 12i (fi1c+iq1c) we get 

•mn(Pm2+Qm2)(fin2+Qn2)+H(fi, q), 

and by the transformation using action-angle variables 

P=v'2-r1c cos Q1c, Q1c=v'2-r1c sin Q1c (k=l,·· .. ·, N), 

we get the following 

(17) 

where by virtue of the above reduction by Birkhoff's transformation to this 

normal form, there exists eo>O such that ii(-r, Q) is analytic in the region 

G= {l-rn-eo!<eo, 1/,,.Ql<l} and ii begins with the sixth degree terms with re

spect to ft, q, that is, 

(18) 
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In order to introduce the definition of conditionally periodic motions of 

the dynamic system, we consider the Hamiltonian system with the Hamiltonian 

Ho(-r:) defined in (17) in the action-angle variables (-r:1,···, ,N, Qi,··, QN). 

Since the canonical equation corresponding to it is 

dQm fJHo d,m fJHo 
~= fJrm' dt=- fJQm 

the integration is at once the following 

(m=l,·····, N), 

1:m(t) =,m(0), Qm(t) =wmt+Qm(0) (m=l,·····, N), 

. a N 
Wm=m+-4 I: (2+o>::)nm,n(0). 

n•l 

We put ,=(,1,··, -r:N), w=(w1,··, WN). 

Each torus ,=,(0) (=constant vector) is invariant. If the frequency w= 

w(,(0)) is linearly independent of integers (that is, from 

w1k1+······+wNkN=0 with integers ki(i=l,···, N) 

it follows that ki=0 (i=l,··, N)), then the motion is called conditionally perio

dic with n-frequencies W1,···, WN, Then the trajectory -r:(t), Q(t) fills the torus 

-r:=-r:(0) everywhere densely. 
Now we remember the theorem of Kolmogorov-Arnol'd-Moser, of which we 

need especially the theorem that treats the motion near the equilibrium state 

in the theory of oscillations. It may be described as follows : The motion is 
supposed to be described by the canonical equation 

where the Hamiltonian function is assumed to be of the form 

where 

N N 
Ho= :I: AkT:k+ :I: Akt1:k1:t, 2-r:k=Pk2+qk2, 

k•I k,t•l 

Ak, Akt=Atk are constants, 

H1 is analytic . with respect to p and q in the domain. 

G= {1-r:k-eo!<eo, k=l,··, N} and it satisfies 

JHd::::;C!-r:1 512 in G. 
If the condition 

det(2lki) =det(fJ2H0/fJrk&i) =FO in G 

(19) 

(20) 
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is valid, then for any ..:>O it is possible to find s>O(s0>s) such that: I. ,The 

domain G,={1-rk-si<s} consis:ts of two sets f. and F., one of which, F., is 

invariant with respect to the motions of equation . (19) and the other, f., is 

small : mes f.<..: mes F., where mes denotes the ordinary Lebesgue measure; 

II. F. consists of invariant n-dimensional analytic tori T., given by· the para-· 

metrically .represented equations 

where 

Pk=v'2(-rk"'+fic"'(Q)) Cos (Qdgk/f}(Q)) 

qk=v'2(-rk"'+ fk"'(Q)) sin (Qd gk"'(Q)), 

fk"'(Q1+211:) =N1 (Q1), gk"'(Q1+21r:) =gk"'(Q1), 

Q= (Qi,•··, QN) is the angular parameter and 

-r"'= (-r1"',···, T"N"') is constant depending on 

the number of the torus w. III. The invariant tori T,,, differ little from the 

tori -r=T""'=constant, i.e., IN"I, I gk"'l<..:s. IV. The motion_ determined by egua

tion (19) on the torus T,,, is conditionally periodic with n-frequencies w: Q= 
w=fJHo/8-r"', i-=0. 

In order to apply the above theorem to our case it remains only to verify 

that the condition (20) holds. It can be easily calculated so that 

det{ (2+<t:)mn} =.C?N +l)mtm2 =t-O. 

Therefore we can conclude that 

A large part of the vibrations of. equation (7) starting from initial data 
sufficiently near the equilibrium state and satisfying the , condition (9) is a con-. 
ditionally periodic motion. 
At last we remark that the same result holds for. the free vibrations of a 

nonlinear beam or plate (which is described by equations (1) or (4) in the 

introductory section) under the two assumptions of the initial data (the smal

lness and the analogue to (9)). 

4. Wave Equation with a Time-Dependent Wave Velocity 

We consider the wave equation with a time-dependent coefficient: 

02y/at2=b(t)fJ2y/fJx2, O:::,;t, O::;;x::;;,r, (21) 

where the function b(t) is bounded and measurable and 

b(t) ~B=constant>O. 

We say a function, y(t), bel~nglng to the class QT, i~ the solution for the 

initial-boundary value problem (21) with 
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y(t, 0) =y(t, tr) =0, Ost 

y(O, x)=Yo(X), 8y(O, x)/8t=J1(X), Osxstr } 
(22) 

if it satisfies equation (21) almost everywhere and also satisfies the initial 

conditions. (Yo(x) eWi, Yi (x) eW21) 

We show that there exists a solution in the large in time in the case that 

b(t) has a locally bounded total variation in t, and then the following estimate 

is valid: 

IIYll~+1 + ll8y /8tll~ s C(IIYoll~+1, IIY1II~) (23) 

for OstsYT, m=O,l, 

where C depends only on the total variation of b(t) in (0, TJ and does not 

depend on each b(t). But in the case that b(t) is only bounded and measura

ble in (0,+=), it is, in general, not valid; that is, the following energy esti-

mate does not hold : 

l'YI l + 118.Y /atli2 s CCIIYo!I~. IIY1IID 
for OstsT, 

(24) 

where C is dependent only on ess. sup. lb(t) I and independent of each b(t). 
o,s;;t,s;;T 

First, in order to prove the latter, we consider the following initial data. 

y~n>(x) =a sin nx, yjn>(x) =P sin nx, 

where a, i9 are constants. 

(25) 

If n2a 2 +i92
, n4a 2 +n2i92 are kept fixed, then IIY~n>il~+i + 11Yln>11~ (m=O,l) are con

stant (independent of n). For initial (25) the solution of (21) is given by the 

ordinary differential equation : 

iin(t) +n2b(t)an(t) =0, Ost 

an(O) =a, dn(O) =P, (26) 

where an(t) and iin(t) must be continuous in t in order that y=an(t) sin nx and 

8y/8t=dn(t) sin ux are continuous in W~ and £2, respectively. 

Now we suppose that 

{
bo, t2t<t<t2t+1 

b(t) = (i=0,1,2, ······) 
bi, t21+1<t<t21+2 

where to=O, bo, b1 are constants, and bo>bi>O and also it are determined below 
appropriately. In the interval Oststi, the equation 

iin(t) +n2boa,.(t) =0 
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gives 

n2d,.2(t) +n'boa,.2(t) =n2d,.2 (0) +n'boa,.2(0)=e1 2• 

We start with d,.(0) =0 and a,.2(0) =ei2/n'b0 • 

339 

If we integrate the above first order differential equation with respect to 
t, we obtain 

Here we define t1 as follows: 

t1 = - ro _da,./v' e12/n2-n2boa,.2= ir2 1 
Je,ln 2 "'bo v'bon 

Then d,.2(ti) =ei2/n2 and a,.2(t1) =0. In the interval t1<t<t2 the equation is 
ii,.(t) +n2b1a,.(t) =0, and so the energy equality is 

d,.2(t) +n2b1a,.2(t) =e1
2/n2• 

Here we define t2 as follows : 

( -et!n2 "'iiid /- I 1r 1 
t2-t1= - Jo a,. y e12/n2-n2b1a,,.2= 2 v'b,n , 

where ti,.2(t2) =0, a,.2(t2) =ei2/n'b1• The time t,(i=3, 4, •·····) is determined in 
the same way 

7r 1 t21+1-t2t=-~, 
2 v'bon 

7r 1 
t21+2-t21+1 = -~, 

2 v'b,n 

and there we obtain the following : 

• 2 (t ) _ e1
2 

( bo )' a,. 21+1 -tz2 ii;- , 

(i=0, 1, 2, ······) 

Therefore we arrive at, for i=l, 2, •····· 

t21= ; (v'~o + v'~J ! 
. e12(bo)' e2(t2t}==-a,.2(t2t) +n1boa,.2(t2,) =-n2 ii;- . 

When C>0, T>0, e1>0 are given arbitrarily, we may chose the least integer 
i~io such that 
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io= (log C+2 log n-2 log e1)/log(bo/b,). 

Then for (ioJ + 12:: i 2:: CioJ ( ( • J is the Gauss notation); 

tz;=_!!___( 1 + 1. )_!_<_!!___( 1. + 1 )(logC+2logn-2loge1 -i- 1)_!_. 
2 vbo yb1 . n - 2 y'b0 .,lb1 log bo/b1 . n 

Therefore, we choose n sufficiently large such that tz;<T. Thus we have 

constructed the function b(t) and the initial values Yo and Yi, for which the 

energy inequality (24) dose not hold. 

Next we consider the case that b(t) is a bounded function of bounded total 

variation in (0, YTJ. It is sufficient that we consider only then-harmonic i.e., 

the ordinary differential equation (26), because superposition is possible. 

Let bk(t) (k=l, 2, •·····) be a step function in (0, TJ such that 

bk(t) =b( r i) for r ist< r (i+ 1) 

(i=0, 1, 2, ······, k-1). 

Then bk(t) converges to b(t) at continuous points of b(t) as k---+oo and tot. var. 
0:S:rS:t 

bk('r) stot. var. b(t). Multiplying by d,.(t) the differential equation 
0:S:rS:t 

ii,. (t) + n2bk (t)a,. (t) = 0 

and integrating the result in tE (0, tJ, we arrive at 

e2 ck> (t)==-dn(t) +n2bk(t)a,.2(t) 

se2 (k)(0) exp{c T~Jbk( r i)-bk(-fi-o)I} 
k . 

=e2ck>(0) exp{Ctot. var. bk(T)} 
0:S:r:S:t 

se2ck>(0) exp{Ctot. var. b(T)}, 
0:S:r:S:t 

where C is dependent only on sup b(t) and inf b(t). Thus we get the follow

ing a priori estimate for the case of b(t) : 

Ctot. var. b(T) 
en2(t)=d,.2(t) +n2b(t)a,.2(t) se,.2(0)e os;rs:t 

at the continuous points of b(t). 
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