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This paper describes a method of determining the inverse Laplace transform nu
merically by applying the Fourier series technique to the matric operational functions. 
The basis of the method is that by choosing the contour of integration, the inverse Laplace 
transform is converted into the Fourier transform and it is approximated by a certain 
Fourier series. In this way numerical Laplace inversion is given and the error introduced 
can be made as small as desired. Furthermore, Fast Fourier Transform method is applied 
to the method to reduce the computational time. 

The method has the advantage of needing little programming effort in digital com
putations and is useful in numerical analysis of systems. 

Computational algorithms and some numerical examples are given to show usefulness 
of the method. 

I. Introduction 
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In the previous papersll,Z> we have reported matric operational calculus based 

on the Mikusinsky's method to analyse the linear time-invariant physical systems. 

Then in the engineering applications it is important to get the numerical solutions 

when the operational solutions are known. In using the above method, we can get 

the operational solutions easily, but it is pretty difficult to get time solutions because 

of the restriction of non-commutativity of matrices in multiplications. 

In this paper we shall show the numerical inversion method based on the 

Laplace transform. The Laplace transform is one of the integral transforms, there

fore, which restricts the range of applicability to the functions in which the integral 

transform is convergent. But when it is convergent, relation between the Laplace 

transform method and the Mikusinsky's method is mathematically isomorphism 

and in formal calculations they are treated in the same way3>. 

The main purpose of this paper is to get the numerical solutions directly when 

the matric operational functions are known. For this purpose we shall choose the 

contour over which the inverse Laplace transform may be evaluated suitably and 
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convert it into the Fourier transform which may be approximated by a certain 

Fourier series4>, 5>. And then applying the method to matric operational functions 

we can get the numerical solutions directly with desired accuracy. This method is 

suitable for the numerial calculation using digital computers because the main 

operations are simple repetitive calculations and need little programming effort. 

Furthermore, to reduce the computational time, Fast Fourier Transform 

method6>,7>,B> is applied to the numerical inversion. Computational algorithms and 

some numerical examples will be given to show the usefulness of the method. 

2. Numerical Inversion Method 

2.1 Principle of analysis4 >, 5>. 

When a matrix function x(t) is given, the Laplace transform and its inversion 

formula are defined as follows: 

X(s) = J~e•t x (t)dt 

1 Ja+ioo 
x(t) = ~~. est X(s)ds 

2n z a-ioo 

(2.1) 

(2.2) 

where s=sl(l: unit matrix) and a>O is arbitrary but must be chosen so that it is 

greater than the real parts of all the singularities of X(s). 

In engineering applications, it is important to get the numerical values of 

x(t) when its Laplace transform X(s) is known. 

For this purpose, as we shall show below, we will convert the Laplace transform 

into the Fourier transform which may be approximated arbitrarily close by a 

certain finite Fourier series and error introduced can be made small enough to get 

the required accuracy. Therefore, this method will permit good numerical values 

of x(t) over a finite interval· of interest from a knowlege of its Laplace transform 

X(s). 

Then we shall present the method. Putting s=a+iw the Laplace transform 

(2.1) and (2.2) are converted into the Fourier transform as follows: 

X(a + iw) = J~ x(t)e-01 e-iwt dt (2.3) 

eat Joo 
x(t) = - X(a + iw) eiwt dw. 

2n . -oo (2.4) 

Next we shall introduce the following periodic matrix functions: 
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Xn(t) = h(t + 2n T), Xn(t) = Xn(t + 2m T) 

n, m = 0, 1, 2, ...... , 0:5:,t:s;;,2T 

where h(t)=x(t)e-at. 
The Fourier series representation of each xn(t) is given by 

00 

Xn(t) = 2j Cn, k etk(rr/T)t 
k=-oo 

and coefficients Cn,k'S are given by 

} 

Furthermore, we shall consider the following infinite matrix series 

00 

Xp(t) = eat 2j Xn(t) • 
n=O 

By using (2.5), (2.6) and (2.7) we have 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 

The integral in the bracket is reduced to X(a+ik n/ T) by using (2.3), then we have 

eat 00 

Xp(t) = -- 2J X(a + ik n/T) e1kCrr/TJt. 
2T k=-oo 

The integral (2.4) can be approximated by 

eat 00 

x(t) ::::::: - 2J X(a + ikdw) e'kdwt ,:Jw 
2rr k=-oo 

and putting dw=n/T, we have 

eat 00 

x(t)::::::: -- 2J X(a + ik n/T) e1kcrr/TJt = Xp(t). 
2T k=-= 

More precisely we have 

00 00 

Xp(t) = eat 2j Xn(t) = eat 2j e-a(t+2nT) x(t + 2n T) 
n=O n=O 

= 
= x(t) + 2J e-2anT x(t + 2nT) 

n=I 

O:s;;,t<2T 

Considering the relation 

(2.9) 

(2.10) 

(2.11) 
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X(a + ik rc/T) e1k<1r/T>t + X(a - ik rc/T) e- 1k<1r/T>t 

= 2R, [X(a + ik rc/T) e1
k<1r/T>

1
] 

and truncating the infinite series by K terms we have the following numerical inver

sion formula 

eat [ l K ] x(t) = - - X(a) +Re~ X(a + ik rc/T) e1
k<1r/T>t 

T 2 k=l 
(2.12) 

and from this equation we can get numerical value of x(t) at any point t in the 

interval Ost< 2 T. 
The parameter a is chosen such that the error introduced by (2.11) (specially 

e-ZaT x(t+2nT)) is consistent with the desired accuracy. But it is important that 

a be made no greater than nessesary since as indicated (2.12) rounoff error and 

truncation error will be magnified by the factor eat and usually a is chosen constant 

in the interval Ost< 2 T those increase rapidly as a and t increase and too large a 

value of K is needed to get good numerical solutions, that too long computational 

time is needed. Therefore we must choose the optimal value of a and the upper 

limit oft considering the above conditions. 

Especially at t= T we have 

and using this relation we can get the numerical solution at the point T. 

2.2 Computational algorithm. 

(2.13) 

Here we shall present the computational algorithm by digital computer using 

(2,13) when Laplace transform X(s) is given. We can select a time step without 

regarding the time constants of the system and this useful to treat stiff systems9>. 

In Fig I a flow chart is shown in order to illustrate the simplicity of the algo

rithm which is based on the following assumptions. 

I) Numerical values are given at the points T=mLlT (m: integer) in the interval 

L1 Ts Ts T max where L1 T is a time step. 

2) In this interval a Tis constant and it is selected equal to 4 or 5 because the error 

introduced by (2.11) is as small as e-8~e- 10 (3.4 X 10-4 ~4.5 X 10-5) and in ap

plication it can be recognized as sufficiently small. 

3) Summation of the series is stopped when condition 

(2.14) 
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is satisfied where e>0 is sufficiently small. 

START 

A=AT/T 
D=EXP(AT) IT 

DELTA= EPS/D 

XI(Il=O.5*XS(l) 

I= 1,M 

X(I);XI(I) 

STOP 

XI(I)=X(I) 
+REAL(XS0)H-1 )K 

I =1,M 

SUBROUTINE 
XS(I) 

I=1,M S=A+iK1l'/T 

Fig. I. Flow chart for numerical inversion 

2.3 Numerical examples. 

< 
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Here we shall some numerical examples using the inversion method developed 

above. 

Example 1: X(s) = (s + At1 x(0) 

where 1 0 3 

A= 1 2 x(0) = 1 

-3 0 1 

Example 2: X(s) = (s2 +As+ B)- 1 [x(0) + (s + A) x(0)] 

where 0.1 0 0 J [ 2 -1 2! 
A = 0 0.2 0 , B = - l 3 -1 , x(O) = 

0 0 0.3 2 -1 4 

0 , x(0) = 
0.4 
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Example 1 is the Laplace transform of a first order homogeneous differential system 

and Example 2 is a second order homogeneous differential system. 

Table I. Approximate solution of example 1, a T=5, o=0.05. 

T 
Approximate X(T} Exact X(T) 

Xi X2 X3 K Xi X2 X3 

0.1 0.5995 0.6516 1.1341 128 0.597027 0.649153 1.131822 

.2 .2110 .3894 1.1361 133 .213438 .391864 1.138018 

.3 - .1223 .2158 1.1039 137 - .119803 .218292 1.040803 

.4 - .3844 .1133 .8661 141 - .381869 .115757 .867670 

.5 - .5597 .0723 .6493 146 - .562107 .069868 .647916 

.6 - .6567 .0682 .4110 150 - .659150 .065696 .409768 

.7 - .6769 .0913 .1791 154 - .679356 .088862 .177958 

.8 - .6324 .1289 - .0268 158 - .634838 .126439 - .027827 

.9 - .5438 .1651 - .1947 161 - .541328 .167617 - .193809 
1.0 - .4186" .2016 - .3131 165 - .416113 .204093 - .312283 

.1 - .2787 .2278 - .3820 169 - .276195 .230210 - .381212 

.2 - .1343 .2453 - .4027 172 - .136814 .242852 - .403383 

.3 - .0079 .2436 - .3847 176 - .010402 .241159 - .385278 

.4 .0916 .2236 - .3363 179 .094031 .226108 - .335825 

.5 .1736 .2025 - .2647 182 .171082 .200021 - .265151 

.6 .2213 .1685 - .1831 186 .218788 .166055 - .183457 

.7 .2357 .1253 - .1004 189 .238181 .127717 - .100081 

.8 .2351 .0909 - .0225 192 .232651 .088448 - .022823 

.9 .2047 .0488 .0422 195 .207212 .051295 .042482 
2.0 .1702 .0212 .0923 198 .167760 .018679 .092130 

.1 .1179 - .0102 .1244 201 .120380 - .007728 .124498 

.2 .0732 - .0246 .1400 204 .070769 - .027037 .139809 

.3 .0213 - .0416 .1397 207 .023790 - .039091 .139777 

.4 - .0143 - .0419 .1272 210 - .016812 - .044362 .127188 

.5 - .0510 - .0463 .1055 213 - .048542 - .043803 .105449 

.6 - .0677 - .0362 .0781 216 - .070158 - .038681 .078173 

.7 - .0791 - .0279 .0488 218 - .081549 - .030416 .048814 

.8 - .0860 - .0229 .0205 221 - .083546 - .020428 .020390 

.9 - .0752 - .0075 - .0048 224 - .077672 -'- .010016 - .004714 

In Table 1 the approximate solutions of Example 1 are given compared with the 

exact solutions. In Fig 2 the number of harmonics K is given for various values of 

e and T. 
In these examples the main operation in the algorithm is to get the inverse 

matrix of complex elements and is not affected by eigenvalues of matrices A and 

B, therefore, we can get numerical solutions at any point T. Then, rnost of the corn-
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K 

>-1000 / I: Example I £= 0.05 (234sec) 

2: £=0.01 (301sec) 

3: £=0.001(301sec) 
4: Example 2 £= 0.0 I (301 sec) 

500 
2 -------- 4 

0 0.5 1.0 I. 5 2.0 2.5 3.0 T 

Fig. 2. Number of harmonics K for various T and e. 

putational time is consumed by the time used for matrix inversion which is pro

portional to M 3 •K (M: order of matrix), therefore, it is affected not by the order of 

differential equation but by the numbers of unknown variables, as shown in Fig 2. 

Especially when X(s)=(s+At 1 we can get numerical values of the state 

transition matrix e-Ar at any time t without regard to the eigenvalues of matrix A 
different from the case of series expansion method 10>. 

The main advantages of this method in using the analysis oflinear time-invariant 

systems are, 1) system's equations need not be given by normal form (state equations), 

Table 2. Approximate solution of Example 3, a T=5, K= 150 (27 seconds) 

ApproxirnateX(T) Exactx(T) 
T 

Xi Xt X3 Xi X2 X3 

1.0 0.0000 0.0000 -0.0000 0 0 0 
2.0* .0830 .1660 - .2489 1/6 1/3 -1/2 
3.0 .1652 .3300 - .4951 1/6 1/3 -1/2 
4.0* .3344 .1721 - .5066 1/2 0 -1/2 
5.0 .4951 - .0010 - .4903 1/2 0 -1/2 
6.0* .7422 .4942 .2539 1 1 1 
7.0 1.0030 1.0201 .9899 1 1 1 
8.0 .9987 .9844 1.0281 1 1 1 
9.0 .9966 .9712 1.0029 l 1 1 

10.0 .9861 .9879 .9935 1 1 1 

• Discontinuous point: Since this method is based on Fourier series expansion, x(T) is given as 
I 

x(T) =z [x(T-0) +x(T+O)] 

at discontinuous point T. 
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2) non-homogeneous equations can be treated as well as homogeneous equations 

and 3) time step of integration can be chosen arbitarily without regard to time 

constants of the systems. 

Example 3 is the Laplace transform of a wave equation when the initial and the 

boundary conditions are given. In Table 2 the approximate solutions are given 

compared with the exact solutions where K is fixed to 150. 

3. Application of the Fast Fourier Transform 

3.1 Application to numerical inversion5>. 

The main operation of the numerical inversion given in 2. 3 is to get inverse 

matrices or exponential functions of complex matrices, and it consumes most of the 

computational time. Therefore, we must reduce it as much as possible. In the 

previous method based on (2. 13) we must do so at every required time and as 

the points increase, too much computational time is needed. But we can avoid doing 

so by using (2. 12) and the Fast Fourier Transform (F. F. T.) (See Appendix). 

Here we shall rewrite (2. 12) 

eat [ K-1 l ] 
x(t) = - R, Li X(a + ikrr/T) e1

k<1r/T>t - -X(a) 
T k~ 2 
0~t<2T 

} (3.1) 

and putting 

n•2T 
tn =---

K 
n = 0, 1, ...... , K - l 

we have 

(3.2) 

and putting 

K-1 
Xn = ~ X(a + ik rr/T) e12"nk/K (3.3) 

k=O 
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we can adapt F. F. T for Xn and using it we can get numerical value of x(tn). by (3.2). 

In Fig 3 flow chart of the algorithm based on this method is shown. 

SUBROUTINE 
XS(J, I) 

J =1 ,M 

X(J, I) 

= EXP(A•(H )•2*T/K )/T 

(REAL(Z (N+1,I))-0.5•XS(I,1)) 

I= 1, K 

Fig. 3. Flow chart for numerical inversion by F.F.T 

Next we may determine the number of terms K at t= T by (2.14). Then error 

introduced is smaller thane at every point tin the interval Osts T, but larger than 

e in T<t<2T because in the later interval it is magnified by e•<•-n>l, therefore, 

we shall take numerical values only in the interval Ost s T. 

Furthermore, we shall not need exact value of K determined by (2.14) but 

minimum value of powers of2 satisfiing (2.14) in this case. 

3.2 Nwnerical examples. 

Here we shall show some numerical examples by the method developed above. 

Example 4: X(s) = (s + A)-1 x(O) 

where 1 0 3 

A= I 2 x(O) = 

-3 0 

This example is same as in example and when aT=5, T=3 and K=256 com

putational time used for CPU is reduced from 234 seconds to 14 seconds by using 

F. F. T, although time step has gone from 0.1 to 6/256. 
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Example 5: X(s) = s- 1 exp (-Av8 ) xo 

where 4 0 2/3: I 
A = 0 4 4/3 , Xo = I 

2 2 4 I 

This example is the operational solution of a heat equation when the initial and the 

boundary conditions are given and it is pretty difficult to get the time solution of 

analytical form, but using the above method we can get numerical values directly. 

In Fig 4 approximate solution when aT=5, T= IO and K= 128 is given . 

. X(t) 

0.5 

0.4 

0.3 

0.2 

0.1 

-0.1 

-0.2 

20 

Fig. 4. Approximate solution of Example 5, a T=5, T=IO, K=l28 (36 seconds) 

3.3 Application to linear system with arbitrary input. 

Here we shall consider the system whose property is given by 

L ( ~ ) x(t) = B u(t) 

where Lis a linear differential operator and u(t) an input function. 

Laplace transform of (3.4) is given by 

L(s) X(s) = Lo(s) + B U(s) 

and we have 

X(s) = [L(s)]- 1 [Lo(s) + B U(s)] 

(3.4) 

(3.5) 

(3.6) 

where Lo (s) is the term caused by an initial value of x(t), and from (3.6) we can 

get numerical values of x(t) by the method stated above. 

Then we shall consider the case where u(t) and U(s) cannot explicitly be given 
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by analytical form. 

For simplicity we shall assume that input functions are scalar and denote them 

by u(t) and U (s). 

In numerical inversion we do not need a function U ( s) but complex frequency 

spectra of U(s) which can be known from sampled values ofu(t), therefore, we can 

get numerical values of x(t) in this case. 

Now we shall present the method. From (2.3) we have 

U(a + iw) = J~ ur(t) e-iwt dt 

and in this equation the function to be transformed is u1 (t) =u(t)e-01 and generally 

decreases rapidly as t increases, therefore, we can approximate it by 

Next we shall approximate it by 

2T N-1 
U(a + iw) = -- ~ ur(n•2T/N) e-iw <n•2TIN> 

N n=O 

For numerical inversion we shall need frequency spectra of integer multiples k of 

rr/T, that is 

. 2T N-1 . 
U(a + zkrr/T) = -- ~ u1(n•2T/N) e-•<2rrlN>nk 

N n=O 
(3.7) 

therefore, if we may choose k=0,l, ...... , N-1 and N?>:.K, we can get necessary 

frequency spectra of U(s) from sampled values ofu(t) by (3.7) using F. F. T, and 

using them we can get numerical values of x(t) by (3.6) when sampled values of 

input function are given. 

4. Conclusion 

As mentioned above, the method of numerically inverting Laplace transform 

by Fourier series expansion and some numerical examples are given. Furthermore, 

it is shown that we can reduce computational time remarkably by ppalying the 

Fast Fourier Transform to the method. 

This method can be applied to the analysis of the systems with many variables 

without regard to time constants of the systems and must be a very powerful tool for 

system's analysis. 

In this paper digital computations were carried out by FACOM 230--60 in 
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Data Processing Center of Kyoto University. 
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Appendix8 > 

When a functiony(t) is given, the Fourier transform and its inversion formula 

is defined as follows : 

l J"° y(t) = ~
2 

Y(w) e;"'' dw. 
7( -00 

Then we shall consider the sampled functiony*(t) defined as 

K-1 

y*(t) = ~ y(t) &(t - kT). 
k=O 

The Fourier transform Y*(w) is 

K-1 
Y*(w) = ~ y(kT) e-iw kT 

k=O 

and frequencies are chosen for integer multiples n of2rr/KTit becomes 

( n•27r) K-1 Y* = ~y(kT) e-i2rrnk/K 

KT k=O 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

and by this equation we can get the frequency spectraofy(t) from its sampled values. 

If K Fourier coefficients (n=O to K-l) are computed, matrix representation of 

(A.5) becomes 

Y* = Wy (A.6) 
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Applications of Fourier Series Technique to Inverse Laplace Transform 

Y*(O) 

Y* = Y*(2rr/KT) 

Y*(K-1 2rr/KT) 

y (0) 

y = y (T) 

y (K-1 T) 
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Because this equation is the product of matrices, the number of multiplications 

increases rapidly as K increases. However, when K is chosen suitably and the Fast 

Fourier Transform (F. F. T) based on the periodicity of powers of w is used, matrix 

W may be solved into the products of sparse matrices, which significantly reduces 

the number of multiplications required. 

Here we shall present the method. If r is any factor of K, that is K = r K ', then, 

for (i,j) element of matrix Wwe have 

Wij = w u-1) <J-1) • 

Denote by Wj j-th coloum vector of W, that is 

then, from the relations 

Wi + r, j = w u+r-1) u-1) w ru-1> Wij. 

Wi + 2r,j = w 2ru-1> Wij 

TAT' + (k' _ }) • _ (k'-l>rU-1> TAT"· 
YVl r,J - W ••ZJ 

i = 1, 2, ...... , r 

and from the periodicity of w r =e-12"'1k' that is 

Wr(/-1) = Wr(/-l)MODK' 

we have 

where 

r; = (I wl-1 w2(/-1) •..•.. w<r-l)(j-1)) 

(A. 7) 
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and W can be represented as the product of two matrices as follows 

where 

Or ...... Or 

r2 ...... Or 

W= Or 

Or= (0 0 ...... 0), 
~ 

r 

Ur Ur ............... Ur 

Ur= 1 

~ 

r 

(A.8) 

The second matrix of the right side of (A. 8) is of the same form as W, therefore, if 

K' has any factor, it can be solved into the product of more simple matrices in the 

same way as stated above. Specially if K=2N, Wis solved into the products of N 

START 

READ 
K,N 

READ 
Z (1,1) 
1=1,K 

W1=CEXP(i271/K) 
W(G)=Wl*•(G-1) 

G = 1, K 

Z (J+l,Il=Z (J+1,I) 
+Z (J,V)*W(G) 

V= N1+0 
G=M0D((Ll-1)•0,K)+l 

Z ( J+l, I)=Z(J,Nl) 

I= L +(Ll-1)•0 
NI= M0D(L+(L 1-1)•0 

"2, K ) 

Fig. A-1 Flow chart for Fast Fourier Transform 
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sparse matrices and for each one numbers of non-zero elements are 2K (every row 

has l, any power of w and K-2 Os), therefore, in using this method numbers of 

multiplications are reduced from K 2 to NK and numbers of additions from K(K-1) 

to NK in comparsion with direct method by (A. 6), and computational time can 

be reduced greatly. The processes of factoring the matrices are regular MOD 

operations and we can perform them by digital computers, therefore, this method 

is very attractive for numerical calculations. 

In Fig A-1 flow chart of above processes is given where W is solved into 

and 


