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Generalized Hypo-Elasticity with. Thermal Influence
II. Failure Criteria and Failure Slips

By
Tatsuo Tokuoka¥*

(Received June 1, 1972)

The fracture and yield criteria and the associated slips and flows of stretching
and temperature rate are investigated theoretically on the basis of the thermo-hypo-
elastic materials defined in the first paper of this series. A ten-dimensional _F -space
is introduced. The failure criteria and the failure slips are classified naturally into
three types: pure mechanical shear, mechanico-thermal normal and heat conduction
types. The heat conduction failure is analysed in particular. Its failure surface in
the principal stress space has three-fold symmetry and its failure slip is, in general,
parallel to a principal axis of stress.

1. Introduction

In the preceding article” the author proposed the constitutive eciuations
(1.2.16 b, ¢ and d)* of a thermo-hypo-elastic material of free of past history. In this
paper the failure conditions, which were investigated by the author,”*'* are

generalized to include thermal influence.

2. Ten-Dimensional Representation of Constitutive Equations

Consider six-, one- and three-dimensional inner-product spaces %, .%; and

&5 of symmetric tensors, scalars and vectors with the following inner-products:

(S5, 8y) =tr (8,8,), (2.1a)
(515 52) = 5185 . (2.1b)
(81, 8,) =8,-8,, (2.1¢)

where Sr, sr and sr (I'=1,2) are any elements in .%, &, and ¥, respectively.

Now consider a ten-dimensional inner-product space %, defined by

F10=S P DS s, (2.2)
where the element of %, are ordered set:
&=(S, s, 8. 2.3)

The product a®=&ea, where & is a scalar, and the sum &,+&,, where &, =

* Department of Aeronautical Engineering
* (L2.16) denotes Equation (2.16) of the preceding paper.?
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(Sr, sr, 8r) (I'=1,2), are defined, respectively, by

aS= (S, as, as), (2.4)

&, +8,=(8,+8,, 51+, 8,+8,). (2.5)
Then the inner-product over %y, is given by

(&, &,) =tr(8,8,) +5,5,+8,°8,. 2.6)

The ten-dimensional representation of the constitutive equations (1.2.16 b,

¢ and d) reduces to the single form:

T=9(3) (O}, @2.7)
where

=T, 7 @, ‘ (2.82)

T=(T, 0, 0), (2.8b)

D=(D, 6, g) (2.8¢)

and § may be regarded as a linear operator on &,.

3. Failure Criteria and Failure Slips

For given values of ¥ and D relation (2.7) assigns a unique value of . On
the other hand for given values of T and T there may or may not be assigned a

unique value of ®. Now we propose.

Definition. The condition on T that D(X) be singular is called a “failure criterion”,
and non-zero element of the null space of H(T) is called a “failure slip”.

Generalized stress T is confined into a seven-dimensional inner-product space
S =Fs+.F,, then from the above Definition we can say, in general, that a failure
criterion is expressed as a six-dimensional hypersurface, which is called the failure
surface in F5.

4. 7 -Space

Consider the six- and three-dimensional inner-product spaces .9 and 9,
where 97 has the orthonormal basis {e.} (¢=1,...... , 6):

e, = _\/172* (Uk+1®vk+z + Uk+2®vk+l) ) (m0d° = 3) ) (4 Ia)

€. s = U0y, (not summed on k) (4.1b)
where v, (k=1, 2, 3) are unit proper vectors of a given T'; and where .97, has the
orthonormal basis {v.}. Then the inner-products on .5 and .97, can be given,
respectively, by the usual scalar products of image vectors on ¥s and &,. We can
say that by the theorem of linear algebra %, and .%; are, respectively, isometric
with 9, and 97, and so %, is also isometric with

T =T DY DI . 4.2)
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In 9 -space representation the constitutive relations (2.7) are shown by
f=5(1)Dd, (4.3)
where 1, t and b are, respectively, ten-dimensional image vectors on 9, of g,
T and D.
Applying the Definition in section 3 on (4.3) we can easily say that the failure

criterion is shown by

det H(H) =0 4.4)
and the failure slip is a nontrivial solution b of the homogeneous equation:
5(H)b=0. (4.5)

From the representations of isotropic functions (I.4.1)—(1.4.3) and . -space

representation we can easily obtain

I bs ol oy
1yl = 10 Iox 0 RO, (4.6)
o (U I be I 1
where
Sas 0 0
losl=y 0 Su 0o |, (4.7a)
0 0 Sia
Su+Nuy N, N, H,
lwg=) Moo SwtNeo Ne o T (4.7b)
N, N, Su+Ny, H,
M, M, M, M |
P, 0 0
lbl=) 0 P, 0 |, 4.7¢)
0 0 P, |
and where
S em= 0+, (et tm) +0 (87 + 1Y), (4.8a)
Nop=0 4t i+ Ot p - Qiot i+ ot uf p+ gt p* + Ot 1l ;2 + 0 17
+ 0t 't o' (4.8b)
Hi=ot;+ Ayt s+ sty (4.8¢)
M=+ Bt o+ Bt (4.8d)
M=, (4.8¢)
Pro=r+7ide+7sts’ (4.8f)

t: (k=1, 2, 3) are principal values of T, and &, m and p are not summed.
Then the failure conditions (4.4) and (4.5) are separated into three types,
shear, normal and heat conduction failure conditions, which are given, respectively, by
det 5=0, Bsbs =0, (4.92)
det H5=0, bady=0, (4.9b)
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det %o=0, Bede =0. (4.9¢)
The failure slip bs consists in the pure mechanical shear components of stretching
D while by consists in the pure mechanical normal components of D and the tem-
perature rate slip. These two failure conditions were discussed by Tokuoka.®
In the next section we will discuss briefly the heat conduction failure.

5. Heat Conduction Failure

From the definition of 9 ¢-space and (2.8b) t is a vector on the four-dimen-
sional space .7y, which is a direct sum of a three-dimensional space defined by
{e,, s, €} and &, while by is a vector on J s-space. Then from (4.9c) we can

say that

Theorem 1. The heat conduction failure surface is at most a three-dimensional
manifold on T, while the heat conduction slip is a vector on I ;.

From (4.7c) and (4.9c) we have the failure surface:

Pi=r1+73te+ 73t =0 G.D
and the associated failure slip:
g=¢vs, , ' (5.2)

where £ is not summed and ¢ is any scalar.
A permutation in ¢,, {, and ¢, causes the same interchanges of the failure sur-
faces P,=—0, P,=0 and P,=0. Then we can assert that

Theorem 2. The failure surface consists in three branches and has three-fold sym-

metry around the pressure axis in the normal stress space T .

Here 9 =9 yOS, and the pressure axis is a line passing through the origin and
making an equal angle with three coordinate axes of the principal stress.

When a state of T and 6 satisfies simultaneously

P,=P,=0 (k+m) (5.3)
or

P, =P,=P,=0, 5.4
the associated failure slip is given by

G=U;+Un (5.5)
or

g=any vector, (5.6)

respectively, where ¢ and ¢ are any scalar. Then we can say that

Theorem 3. The heat conduction failure slip may be on one-, two- and three-dimen-
sional spaces spaned by one, two and three principal axes of stress according as the state situates
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on a single failure surface, and on cross-sections of two and three failure surfaces, respectively.

Expanding the scalar functions 7, 7, and 7, of (5.1) with respect to three

invariants of stress
Py ITFS 15X 30 xR 5%, TITF=1,% %t %, (6.7
where

¥ =ty+ b, pz———é»tr(T) (5.8)

are, respectively, the deviatoric stress and the pressure, and restricting P, to grade

two in the stress, we have

i=atap+all*, (5.9a)
Te=a,+asp, (5.9b)
T3= A (5.9¢)

where a’s are scalar functions of 6. Substituting (5.9) into P,, we have
Py=a,+ (@y—a)) p+ (—as+ae) p*+ (as—2ae) pt ¥ +ait * +alI* +aes,*. (5.10)

Now let us introduce rectangular coordinates x, y and z on . 5" such that

1
X :ﬁ(tg*“_tz*), (5.11a)
y= %t,*, (5.11b)
z=—-v3p (5.11c)
Substituting (5.11) into (5.10), we have
X6 Y eyt vzt F ez +6=0, (5.12)

where
. o
6= ‘;3 ) 025%—%116, 635\/-%114, €= 32 (as—2as),

|
6‘55%"(05_06)s 6=gg(@m—a), o=-a (5.13)

Failure surface (5.12) represents a quadric on 5 5. When the failure criterion
is pressure-insensitive, we have
&+ 9"y +esy+e=0. (5.14)
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