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The fracture and yield criteria and the associated slips and flows of stretching 
and temperature rate are investigated theoretically on the basis of the thermo-hypo­
elastic materials defined in the first paper of this series. A ten-dimensional Y-space 
is introduced. The failure criteria and the failure slips are classified naturally into 
three types: pure mechanical shear, mechanico-thermal normal and heat conduction 
types. The heat conduction failure is analysed in particular. Its failure surface in 
the principal stress space has three-fold symmetry and its failure slip is, in general, 
parallel to a principal axis of stress. 

1. Introduction 

339 

In the preceding article1
l the author proposed the constitutive equations 

(1.2 .16 b, c and d) + of a thermo-hypo-elastic material of free of past history. In this 

paper the failure conditions, which were investigated by the author,'l• •i. •J are 

generalized to include thermal influence. 

2. Ten--Dimensional Representation of Constitutive Equations 

Consider six-, one- and three-dimensional inner-product spaces .76 , .71 and 

Sf', of symmetric tensors, scalars and vectors with the following inner-products: 

(Su S,) == tr (S1S,), (2.l a) 

(su s,) ==s1s., (2.l b) 

(2.lc) 

where Sr, sr and Br (I'=l,2) are any elements in .76 , Sf', and Sf',, respectively. 

Now consider a ten-dimensional inner-product space .710 defined by 

Sf' 1 o == Sf' .EBY, EBY., (2.2) 

where the element of Sf' 1o are ordered set: 

®==(S, s, s). (2.3) 
The product a®=®a, where a is a scalar, and the sum®,+®,, where ®r== 

* Department of Aeronautical Engineering 
+ (1.2.16) denotes Equation (2.16) of the preceding paper.'l 
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(Sr, sr, sr) (I'=l,2), are defined, respectively, by 

a®= (aS, as, as), 

®1+®,= (S1+S., si+s., s1+s,). 

Then the inner-product over .9' 10 is given by 

(2.4) 

(2.5) 

(®,, ®,) =tr(S1S2) +s,s,+s,•s,. (2.6) 

The ten-dimensional representation of the constitutive equations (I.2.16 b, 

c and d) reduces to the single form: 

i: d)(st) {0}, (2.7) 

where 

i= ct, iJ, <i), 
st= (T, 6, 0), 

':SJ= (D, iJ, g) 

and S., may be regarded as a linear operator on .9',o. 

3. Failure Criteria and Failure Slips 

(2.8a) 

(2.8b) 

(2.8c) 

For given values of st and ':SJ relation (2. 7) assigns a unique value of i:. On 

the other hand for given values of st and i there may or may not be assigned a 

unique value of ':SJ. Now we propose. 

Definition. The condition on st that O(st) be singular is called a ".failure criterion", 

and non-zero element of the null space ef O(st) is called a "failure slip". 

Generalized stress st is confined into a seven-dimensional inner-product space 

.9'7 =.9'6 +.9'1 , then from the above Definition we can say, in general, that a failure 

criterion is expressed as a six-dimensional hypersurface, which is called the failure 

surface in .9'1. 

4. Jr -Space 

Consider the six- and three-dimensional inner-product spaces Jr. and Jr,, 

where Jr0 has the orthonormal basis {e.} (a=l, ...... , 6): 

(not summed on k) 

( 4.la) 

(4.1 b) 

where vk (k= 1, 2, 3) are unit proper vectors of a given T; and where Jr, has the 

orthonormal basis {vk}. Then the inner-products on Jr0 and Jr3 can be given, 

respectively, by the usual scalar products of image vectors on .9'6 and .9',. We can 

say that by the theorem of linear algebra .9'. and .9'3 are, respectively, isometric 

with ..r. and Jr, and so .9'10 is also isometric with 

Jr,o=Y.EBY,EBJr,. (4.2) 
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In Jr-space representation the constitutive relations (2.7) are shown by 

t=g(t)b, (4.3) 

where i, t and b are, respectively, ten-dimensional image vectors on Y10 of '.r, 
51: and 'Ii. 

Applying the Definition in section 3 on (4.3) we can easily say that the failure 

criterion is shown by 

det g(t) =0 (4.4) 

and the failure slip is a nontrivial solution b of the homogeneous equation: 

g(t)b=O. (4.5) 

From the representations of isotropic functions (1.4. l )-(1.4.3) and Jr-space 

representation we can easily obtain 

J II ts II 11 o II 11 o 11 
II t II 11 o II II QN II II o II -, 

I 
11 o II II II II ta II I 0 

(4.6) 

where 

s,3 0 0 

II ts II= 0 S31 0 (4.7a) 

0 0 S12 

S11+N11 N12 Nrn H1 

HNII= N21 S 22 +N 22 N,. H, 

N31 N3, S33+N33 H3 
(4.7b) 

M1 M, M3 M 

P1 0 0 

II ta II= 0 P, 0 (4.7c) 

0 0 p3 

and where 

s km=a1 +a, (f,+fm) +a3 (f / +fm2
), (4.8a) 

N kp=a. +a,t. +a.t p+a1of .. +a.t.t p+aat p' +a,t ,t p' +aut.'t p 

+a12 t.'tp', (4.8b) 

H,=a13+aut.+a1ot.', (4.8c) 

M,=fJ1 +fJ,t.+fJ3t,', (4.8d) 

M=fJ., (4.8e) 

P,=r1+r,t.+r3t.', (4.8f) 

t • (k= 1, 2, 3) are principal values of T, and k, m and p are not summed. 

Then the failure conditions (4.4) and (4.5) are separated into three types, 

shear, normal and heat conduction failure conditions, which are given, 

det Qs = 0, Qshs = 0, 

det QN=0, 

respectively, by 

(4.9a) 

(4.9b} 
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det ~c=O, (4.9c) 

The failure slip bs consists in the pure mechanical shear components of stretching 

D while hN consists in the pure mechanical normal components of D and the tem­

perature rate slip. These two failure conditions were discussed by Tokuoka.'l 

In the next section we will discuss briefly the heat conduction failure. 

5. Heat Conduction Failure 

From the definition of Y 6-space and (2.8b) t is a vector on the four-dimen­

sional space Y N, which is a direct sum of a three-dimensional space defined by 

{e4, e., e.} and .9'1 , while bN is a vector on Ya-space. Then from (4.9c) we can 

say that 

Theorem I. The heat conduction failure suiface is at most a three-dimensional 

manifold on Y N, while the heat conduction slip is a vector on Ya, 

From (4.7c) and (4.9c) we have the failure surface: 

Pk=r1 +r,h+rat/=0 

and the associated failure slip: 

g=¢v.,: 

where k is not summed and ¢ 1s any scalar. 

(5.1) 

(5.2) 

A permutation in t 1 , t, and ta causes the same interchanges of the failure sur­

faces P 1=0, P,=0 and Pa=O. Then we can assert that 

Theorem 2. The failure suiface consists in three branches and has three-fold rym­

metry around the pressure axis in the normal stress space Y /. 

Here YN'=YN8S 1 and the pressure axis is a line passing through the origin and 

making an equal angle with three coordinate axes of the principal stress. 

When a state of T and (} satisfies simultaneously 

(k~m) 

or 

P1 =P,=Pa=O, 

the associated failure slip 1s given by 

g=cpv.+r/)Vm 

or 

(5.3) 

(5.4) 

(5.5) 

g=any vector, (5.6) 

respectively, where ¢ and rp are any scalar. Then we can say that 

Theorem 3. The heat conduction failure slip may be on one-, two- and three-dimen­

sional spaces spaned by one, two and three principal axes of stress according as the state situates 
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on a single failure surface, and on cross-sections of two and three failure surfaces, respectively. 

Expanding the scalar functions r,, r 2 and r. of (5.1) with respect to three 

invariants of stress 

p, Il*=t 2*t.*+t.*t,*+t 1*t,*, Ill*=t,*t 2*t 3*, (5.7) 

where 

t.*=t.+ p, (5.8) 

are, respectively, the deviatoric stress and the pressure, and restricting Pk to grade 

two in the stress, we have 

r, =a, +a2p+a3Il*, (5.9a) 

(5.9b) r.=a,+a5p, 

r. = a., 
where a's are scalar functions of fJ. 

(5.9c) 

Substituting (5.9) into P ,, we have 

P,=a,+ (a2 -a,)p+ (-a.+a.)p2 + (a 5 -2a0 )pt 1*+a,t 1*+a.II*+a0s 1*2
• (5.10) 

Now let us introduce rectangular coordinates x, y and z on Y N, such that 

1 
x = v 

2 
(t.*-t,*), (5.lla) 

y= ✓ ~ t,*, 

z=-v3p. 

Substituting (5.11) into (5.10), we have 

c1x2 +c2 y' +c.y+c,yz+c,z2 +caz+c1=0, 

where 

(5.11 b) 

(5.1 lc) 

(5.12) 

1 1 
Co=g(a.-a.), Co= v3-(a,-a,), C1= -a,. (5.13) 

Failure surface (5.12) represents a quadric on Y N'• When the failure criterion 

1s pressure-insensitive, we have 

c, (x2 + y 2
) +c.y+c1=0. (5.14) 
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