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Abstract 

In the study of a particulate process, one of the most important subjects to con
sider is what mean particle diameter to employ. In this study, an experimental value 
is divided into two terms, one with some interaction between particles and the other 
without such interaction (the linear term). The mean particle diameter is defined 
only in terms of the latter, that is the linear term. 

It is shown that the scattering in previously published data for the particulate 
process, is attributable to the fact that the mean diameter is not determined correctly. 
Further, if such a diameter as determined in this study is used, a satisfactory result 
with little scattering in the data is achieved. 

In connection with the definition, the practical method for determining the mean 
particle diameter and suggestions as to its use are given, and the relation between the 
process variables observed when the distribution is log-normal, is also discussed. 

I. Introduction 

What has been said previously about the mean particle diameter is not defi

nite enough, and this vagueness has caused much trouble. When studying the 

experimental data obtained for the same particulate process, for example, it is 

found that some authors employ the arithmetic mean diameter, others, the geo

metric mean diameter or the mass-surface mean diameter, and so on. Practi

cally, the value of mean diameter varies so much depending on the definition 

employed, that in some extreme cases, even an assumed mean diameter may be 

used to bring the experimental data (measured values) into good agreement with 

the estimated values (theoretical values). If such is the case, one cannot tell 

whether the theoretical value is correct or not. 

Another problem may arise as to what mean diameter to employ in quoting 

some of the results reported by other investigators. One may only apply such 

definitions as have been generally used, namely the arithmetic mean diameter, 

the geometric mean diameter, and so on. 
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Another problem to be solved is how the theoretical and experimental re

sults for mono-disperse particulate processes are to be applied to a poly-disperse 

particulate process. 

A solution to such problems as pointed out above is to develop a definition 

for the mean diameter, which allows the value of the mean particle diameter to 

be estimated with high accuracy. 

In an approach to this, C.E. Att,11.peeB and his collaborators1
) defined the 

mean particle diameter in general form. S. Miwa2
•

3
) has commented on their 

results. 

In this study, the authors, from a consideration of these studies, define the 

mean particle diameter in terms of the linear estimate of the process variable, 

and show that it may be used to determine the mean diameter in any process. 

Alternative methods for determining the mean particle diameter are given in 

detail. 

2. Definition of the Mean Particle Diameter 

2.1. The experimental value of the process variable 

To describe the state of the particles sampled, two parameters, "mean" and 

"variance" of the diameters are necessary, even if other conditions such as tem

perature, moisture or the shape of the particle are considered to be constant. The 

frequency distribution of the particle size is, therefore, a function of diameter 

DP, mean m and variance s'; 

(l) 

Generally, the particles sampled vary in each experiment, the experimental value 

Y being a function of at least two variables, m and s'. With interaction term 

r, Y will be expressed in the form; 

Y (m,s') = [ y (DP) f (DP, m, s') dDP + r (m, s') (2) 

Here y(DP) represents either a mono-disperse particulate process variable or a 

one-particle process variable. The first term of the right hand side, being a linear 

estimate, can be put in the form; 

Y (m, s') = (y (DP) f (DP, m, s') dDP (3) 

Of course, the term l • • dDp can be replaced with J; when a discrete system is con

cerned. 

2.2. Linear estimate y (m, s') 

Generally, the linear estimate y varies with the method of measurement such 

as weighing the particles or counting the particles and so on. Just for a simple 
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Table I. Description of the six particles 

Particle dia. 2 2 

Process variable y, y, y, y, Y• Y• 
Weight ratio I 1 I I 8 8 

(y,=15, y,=30) 

example, take the case of six spherical particles with the same specific gravity. 

Four of the six have a diameter 1, and the remaining two have a diameter 2. Each 

particle fits the equation; 

y= y(D 11) e.g. if the process follows Stokes' law y=KDp' (4) 

and has no interaction with any of the others ( cf. Table 1). Then the experi

mental value on the count basis is; 

Y(O) _ 4 2 _ 2 1 [ b · ] (5) - 4+2Y1 + 4 + 2y,-3y, + gY• mean on count as1s 

Here y, stands for y (D11t). On the other hand, the experimental value on the 

mass basis is; 

(6) 

Ify,=15 andy,=30, it is clear that y<oJ=20 and y<3l=27 from the last two Eqs. 

(5) and (6). So, in spite of the fact that the process is the same, the experimental 

values obtained by the different methods are not the same*). In this example, 

the experimental value can be estimated only by the linear term. So from this 

example if one wants to estimate the experimental values on any basis, it is found 

desirable to express the linear estimate in the form; 
yea)= L.i]<a) Y = L.,j<O) D11a y/L.ij<O) Dl/ a (7) 

If "a" in the above equation is 0, the estimate is on the count basis, if "a" is 1, 
on the length basis, if "a" is 2, on the area basis, if "a" is 3, on the volume (or 

mass) basis. As discussed above, these values are different from each other. The 

method used, therefore, has to be stated definitly, and the experimental values 

have to be compared with the estimated values on the same basis. 

2.3. Definition of the mean particle diameter 

By use of the linear estimate, the mean particle diameter will be defined by 

the equation; 

D11=f'(y) 

2.4. A method of applying the definition term by term 

(8) 

When the process variable y is given in the form of the summation of several 

*) Note that the mean particle diameter of the six particles cannot be determined at this point. 

See also §4.3. 
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terms, it is convenient to apply definition (8) to each term. That is, if the pro

cess variable y is expressed by the equation; 
n 

y=I: Yen (9) 
j~l 

then the mean particle diameters are given by the equations; 

D,,,m= Yen-1 (Jicn), j = 1, 2, 3, ... ' n 

2.5 A graphical method 

(10) 

Now consider the case that the process variable y cannot be expressed in 

a simple equation of D,,,, or cannot be expressed in any equation. In such a case, 

if the process variable can be expressed graphically or in a table, the mean parti

cle diameter may be obtained directly by use of definition (8). See Fig. l to ex

plain this method generally. In the figure, g (D,,,) is a function of D,,,, e.g. Rey

nolds number, Nusselt number, Peclet number, Sherwood number, Inertia 

parameter, and so on, and here it is called the characteristic parameter of the 

particle diameter. 

From Eq. (7), the linear estimate ji is given by the equation; 

Ji= I:J, y (g (Dp,)) (l l) 
i 

Having calculated ji, the characteristic parameter g of the mean particle dia

meter is obtained as shown by the arrows in Fig. I. Then, from this value, the 

mean particle diameter can be determined by the following equation; 

D,,,=g- 1 (g) (12) 

>, 

~ 
.a 
C 
·;:: 
C 
> 
II) 
II) 

8 
~ a. 

monodisperse 
particulate process 

Characteristic parameter g(i) p) 

Fig. 1. Graphical method 
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3. Discussion 

3.1 On the definition of mean particle diameter 

The following discussion shows that definition (8) is adequate in scope and 

is of considerable importance. The discussion is based on the assumption that 

there is no interaction between particles. From Eq. (2), it follows that; 

Y (m, s') = [Y (DP) f (DP, m, s') dDP = y (m, s') (13) 

From this equation it is found that the experimental value Y(m, s') is a function 

ofm ands'. Hence, the experimental value Y(m, s') may be expressed as a plane 

on the (m, s', Y)-space (cf. Fig. 2). This is interpreted as implying that if one 

point (m, s') is given, as a sampling of the particles, one experimental value Y(m, 

s') will be given. If the mean particle diameter is given in accordance with de

finition (8), it is given by the equation; 

DP= f 1 (y (m, s')) = f 1 (Y (m, s')) (14) 

So, Dp=const. gives a curve in a (m, s')-space, and from the definition, the ex

perimental values Y(m, s') on this curve are constant, that 1s; 

Y (m, s') = y (DP) = const. (15) 

From the above discussion, it may be concluded that the experimental values 

Y(m, s') have a constant value y(DP) on this mean particle diameter DP ( cf. Fig. 

3). This will be applicable when the experimental values are studied using the 

mean particle diameter (cf. Fig. 4). On the other hand, any mean particle dia

meter that is defined other than by Eq. (8) has no such characteristic property 

as mentioned above. Such mean diameters will be discussed briefly here. Gen

erally any one of these mean particle diameters may be formulated with a certain 

y 

s2 

monodisperse 
particulate process 

m 
Fig. 2. General idea of experimental data in the (s', m, Y)-space 
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y 

Y= const. 

m 

Di,=const. 

Fig. 3. Relation between the mean particle diameter and the experimental data 

T 
y 

5P ----"7 

Fig. 4. Experimental data represented by use of the mean particle diameter 
based on definition (8) 

function [,(m, s') as follows; 

DP' =Dp/{, (m, s') = f 1 (Y (m, s')) /{, (m, s') 

Therefore, 

349 

(16) 

(17) 

The above equation means that Dp' =const. cannot give a constant experimental 

value. In other words, the experimental values on the curve Dp' =const. vary 
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5~ _,, 
Fig. 5. Experimental data represented by use of other mean particle diameters 

than the correct one based on the proposed definition 

with each (m, s2
). Fig. 3 shows the general idea. Note that if a wrong mean 

particle diameter is used, the values obtained, even from the most careful experi

ments, will turn out to scatter as shown in Fig. 5. Without any data as to (m, 

s2
), scarcely any satisfactory results may be obtained from the experiments. The 

following example will help to make the above discussion clear. A random sam

pling is carried out from log-normal distributed particles (cf. §3.3). Then an 

experiment is made on the process to conform to the equation; 

y=KDp' (18) 

The mean particle diameter to conform to definition (8) is; 

DP= f' (j) = /[,
0 
KDp'j< 0

) (lnDP, m, s')dln Dp/K =exp(m+s2
) (19) 

[for QI shown in Fig.8, Dp=57.4 microns] 

The experimental value Y(m, s') is expressed as; 

Y (m, s2
) =K[

00

D/JC0 )(1nDP, m, s2)dln D,=KDp' (20) 

[for Ql, Y/K=3295 microns'] 

If Dp=const., the experimental values Y(m, s') have a constant value KDp', 

independently of the value (m, s'), and are correctly represented by Eq. (18). 

Such a process as discussed above is shown in Fig. 6. On the other hand, if some 

other mean particle diameter, for example, the length mean diameter; 

Dp'= [
00

n,p0
i (ln DP, m, s')dln DP=exp(m+s2/2) (21) 

[for QI, .Dp=54 microns] 

1s used, the relation between DP' and DP is as follows; 
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s2 

y 
K 

D= e6 

Y/K 

monodisperse 
particulate 

process 

m 
Fig. 6. The mean particle diameter-surface mean diameter-based on the 

definition and the experimental data in the (s', m, Y/K)-space 

D 11'=exp (m+s')exp (-s'/2) =D11/exp (s'/2) 

351 

(22) 

{1(m, s') used in the general discussion is exp(s'/2). From Eq. (17) or Eqs. (20) 

and (22), the following equation is obtained. 

Y (m,s') = y({1(m, s')D11') =K {(1(m, s')D11'}'=K •exp(s')D11'' 

or, 

Y (m, s') / K = 15' / exp (s') 

s2 

y 
K 

Y/K 

monodisperse 
particulate 

process 

m 

Fig. 7. The length mean particle diameter and the experimental data in 
the (s', m, Y/K)-space 

(23) 
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data 

• Vinyl chloride powder 

Op50=ll5µ, Op84=145µ 
0 Glass beads 

GI: Op50=55µ, Op84=70µ 
G2: Op50=28µ, Op84=35,AI 

A Quartz sand 
QI : Op50=51µ, Op84=71.5p 
Q2: Dp50=8µ, Op84=19JJ 

150 

o; (microns) 

Fig. 8. Experimental data represented by use of other mean particle 
diameters than the correct one-e.g. : the length mean diameter 

This is shown in Fig. 7. As shown in Fig. 8, the results represented by Dp' vary 

with the variance s'. Therefore, even if the length-mean particle diameter DP' 

is constant, the experimental values will scatter through the variance of powders. 

In general, this scatter has a bias. In this example, the experimental values are 

always larger than K •D/ when DP' is used. In Fig. 8, corresponding experi

mental values for the kinds of powder often used in experiments are indicated 

by the designated symbols. These powders have fairly small variances. How

ever, the results show about 10% error. When DP•• is used instead of DP', the 

results become worse, and the errors are 20% or more. 

It is most important in determining the mean particle diameters term by 

term (cf. §2.4) that the experimental value is compared with another only at 

the point where all the mean particle diameters coincide with one another. When 

the process variable is expressed in more than two terms, therefore, it is better 

to deal with the data using both the mean and the variance. Note that even in 
such a case, when the graphical method is introduced (cf. §2.5), it is adequate 

to study the data with the mean particle diameter or with its characteristic para

meter g(DP). 
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From the above discussion it is clear that to use a properly-defined mean 

particle diameter is very important, not only to study the various experimental 

values systematically but to attain satisfactory results with little scattering in the 

data. 

3.2 Comments on the use of the mean diameter 

The mean diameter being defined by the linear estimate, the process vari

able estimated, using the mean diameter, is a linear part of the variable. The 

non-linear part of it, therefore, has to be discussed separately from the linear part. 

Especially in the case where the process variable depends both on the feed 

and on the product particles, careful consideration must be taken on the linear 

estimate. When the mean diameters defined term by term are used, the linear 

estimate is given by the equation; 

j = I; f (F)I f (P)J y (DP(F)t, DP(P)J) (24) 
i, j 

where the suffixes F and Prefer to the feed and the product, respectively. There

fore, the effects of the overlapping of the two frequency distributions are left out 

of consideration here. In the case where each particle of the product cannot 

be larger than it was before passing through the process, I: fcF) fcP)y(DPCF), 
Dp(F)<Dp(P) 

DPCP)) must be subtracted from the estimate. Then Y is given by the equation; 

Y = y - I: }cF)" J(P)· y(DpcF), DP(P)) +r (25) 
Dp(F)<D,(p) 

Conversely, when the term "larger than" is replaced with "smaller than", the 

summation should be carried out on DP(F)>DPCP)• 

3.3 Other ~omments; Log-normal particle size distribution 

It is convenient to make use of the log-normal particle size distribution; 

2 __ l ~ {- I (lnDp-µ)'} 
j(ln DP> µ,a)-.; 2n-a• exp 2 a• 

where, 

µ = [
00 

ln DPJ (ln DP,µ, a') d ln DP= ln DPc•off,) 

a•= [
00 

(In DP-µ) 2 f (ln DP,µ, a') d In DP 

<J = ln DPcs,.1%)- ln DPc•o%) 
Then, the relation between yc•J and f"l is as follows; 

J'") (µ, a2
) = [,

0

Y (Dp) Dp" J'0l (In Dp, µ, a2
) d ln Dp/ 

[

00 

D/ J'0
l (ln DP,µ, a') d ln DP 

= C,/<DP)J'"l(ln DP, µ+aa 2,a2)dln DP 

(26) 

(27) 

(28) 

(29) 
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' y 

µ f' +(o-b)C12 

µ --------,> 

Fig. 9. The linear estimate of the process variable in case of the log
normal size distribution 

(30) 

That is, if the estimate is made on the count basis, the estimate on some other 

basis can be calculated with this equation. In more general form, Eq. (30) reads 

y<"l (µ, 112
) = y<bJ (µ+ (a-b) 112,112

) (31) 

Therefore if the estimate is made on any one of the bases, the estimate on another 

basis can be calculated with this equation. Figures, too, may be of use in the 

transformation (cf. Fig. 9). Let us take the process of terminal velocity for ex

ample. If the fact that the particles are of DP (50%) =5 [µ], DP (84. l %) =8 

[µ], and Pp=3 [g/cm3
] is known, one may obtain w=lnDP<•o91»=l.6l, and 

11=lnDP<s,.i%i-lnDpcoo%i=0.47. Now, Stokes' law, v,={g(pp-p,,)/18µ,,}Dp' is ap

plicable.· This equation corresponds to the process variabley. Then on the count 

basis, one may have; 

v,<•i= g(pp-p,,) ~
00 

Dp'J<0 ldlnDp 
18µ,, -oo 

On the other hand, applying Eq. (31) to (32), v,C•l (on the mass basis) will be 

(33) 

From µ,,=0.00018 [g/cm sec] and p,,=0.0012 [g/cm3
], v,C0l and v,C•J will be 0.35 

[cm/sec] and 1.33 [cm/sec] respectively. The difference between these two values 

is due to the fact that they are not on the same basis. For comparison, the 

calculated mean particle diameters are 6.24 [µ] on the count basis, and 12. l [µ] 

on the mass basis. If v,<•J and v,C'l are calculated using these values, it is found 

that they coincide with the above 'mentioned values 0.35 and 1.33 respectively. 
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4. Example 

" 4.1 y=.E K 1D/1 (cf. §2.4) 
j=l 

One may have y(J)=K,D/1 by inspection, therefore 

Yui -• = (y(J)/K ,) i1•1, and Yw = K ,.EJ,D"/' 
i 

Then Eq. (10) reads 

355 

jjp(J) = (K 1,Ef,·D"' "1/ K 1) 
11

"1 = (I.:.JD/1) 
11

"', j = I, 2, 3, ...... n (34) 
i 

4.2 11,=l+D"/d-I/(I+Dp/d) (cf. §2.4) 

As the first term is a constant, it is omitted for now, then Ycn=Dp/d and 

Jc,i= -1/(1 +DP/d), therefore 

y(l)-'==dJcn, j(I)= .Ef,Dp,/d, Y<•>- 1 = -d(l + l/y(2i) and 
i 

Yc,i == - I:. {f ,/ (1 + D"'/d)}. From Eq. (10), we have 

Jjp(I) = d I.:.J,DPl/d = I.:.JDP, 

- { -1 } 1 
DP(2)= -d } + L, f. = _E f d 

l+ DP< d+D" 
d 

(35) 

Here, DP(l)="i:,JDP is the length mean diameter, but JjP<•J has never been taken 

into consideration before. 

4.3 Example of six particles (cf. §2.5) 

In this section the graphical method (cf. §2.5) will be explained in a less 

abstract way. Here the six particles (cf. §2.2) will be dealt with again. Now 

30~-----------------,=--

(27) >-----------,>-------~r 

25 

>- (20) >--------------, 
.!? 
.0 
0 
-~ 15 
> 
Cl) 
Cl) 10 Q) 
0 
0 ... 
0.. 5 

0 
0 5 10 (II) (15) 

Reynolds number Re 
Fig. 10. Process variable in a six particle system 

20 
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using vp/µ=10, and Dp1 =1 and Dp2 =2, and one may have Ru=lO and R.,= 

20. On the assumption that the process variable y is obtained as in Fig. 10, Re<0
l 

= 11 and R,C 3
l = 15 are found from the figure. They were represented as g 

Process 

Absorption 

Adsorption 

Agglomeration 

Drying 

Dust and mist 
collection 

Evaporation 

Fluidized beds 

Heat transfer 

Table 2. Mean particle diameters in the key processes 

Representative Equation 

150(1-e) h(l-e)G' ---~--~-+ 
R, g.e3Dppa 

1.75 h(l~e)G' 
g.e Dppa 

k 
J=-F 

V (
_µ ·)''3 

pDp 

2rD 
HETP=2J.Dp+~+ 

V 

8Hd d/v 
ir2 (l+Hd) 2 D, 

Mean Particle Dia. 

jjP(l) = V I/C'E.J/Dp2
) 

jjP(2)= 1/(I;f/Dp) 

R,=DP(l)vp/µ 

Comment 

Pressure drop in pack
ed beds 
S. Ergun. Chem. Eng. 
Progr., 48, 89 (1952) 

Fluid film coefficient 
C. Chou, et al., Chem. 
Eng. Progr., 49, 141 
(1953) 

Effective height of 
theoretical plate 
van Deemter, et al., 
Chem. Eng. Sci., 5, 
271 (1956) 

_ 9(1-e) kF Adhesive strength of 
dz- 8irDp' (I;f/Dp')'I' packed particles 

_____________________ H. Rumpf, & E. 

d=8(1-e)T/eDp !/(I; f/Dp) Turba., Ber. Dtsch. 
Keram. Ges., 41, 78 

(1964) 

P=2cT/Dp 1/(I;f/Dp) Capillary suction 
pressure 

----------------------
0 mtn=0.23 L /NO· 9SD±9.85 x 1 Minimum residence 

LG/FD/·• time of a rotary dryer 

(
I; f )' S.J. Friedman & W.R. 

+ counter-current V Dp Marshall Jr., Chem. 
co-current Eng. Progr., 45, 482, 

572 (1949) 

U,=n, V/ {3irµDpR-ln(R 2/R1)} 1/I;f/Dp 
Electrical method ; 
moving velocity of a 
particle 

kp=0.148(k.a)o w/Dp 1/(I; •/Dp) Capacity coefficient in 
J · crystallization 

N. o 004(D j )' o ("fDpa12)•1a R. Toei, Kagakukikai 
u= • ,Ppµ · .:.. Gijutsu (Japan), No. 

-----------------~ 15, 22 (1963) 
PMB=0.356 PP (log Dp-1) log-'(I;f log Dp) Maximum bed density 

----------------------
Minimum velocity for 
fluidization 

Effective thermal con
ductivities in packed 
beds 
S. Yagi & D. Kunii, 
A.I. Ch.E. Journal, 3, 
373 (1957) 
Kagaku Kogaku, 18, 
576 (1954) 

Heat transfer between 
packings and fluids 
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in §2.5. It is found that R,=Dp vp/µ, and then g-1 (g) =µR,/vp. It follows 

that .D/0l=ll µ/vp=l.l, and .D/3l=l5 µ/vp=l.5. These results are interpreted 

to mean that the estimates of this process are 20 on the count basis and 27 on 

the mass basis, and the mean diameters of the particles (six particles) are 1.1 on 

the count basis and 1.5 on the mass basis. Experimental values for this process 

may be plotted at the point of mean diameter 1.1 on the count basis and 1.5 on 

the mass basis, and they may be compared with the estimates on their respective 

bases. A comparison such as described above is the most systematic :.nd proper 

way to deal with experimental and estimated values. 

4.4 Application to other physical processes 

The procedure discussed in this paper may be extended to other physical pro

cesses. The conclusions reached, when this is done, are listed in Table 2 and 

should have wide application. They were obtained through the methods de

scribed in §2.3 and §2.4. To use these mean diameters effectively, it must be 

kept in mind that they may be used to express the quantities in the left hand 

side of the equations in column 2, but not to express other quantities such as the 

square of them, a function of them, and so on. 

5. Conclusion 

The mean particle diameter is defined as y- 1 (ji), where y- 1 is an inverse func

tion of the mono-disperse particulate process variable and y a linear estimate of 

the poly-disperse particulate process variable. When the mean particle dia

meters determined using the definition have the same values, the linear parts of 

the process variable also have the same values even if the parameters -e.g. mean 

and variance- are not the same. If the experimental data are studied by use 

of this mean particle diameter, therefore, no scattering in the data due to the 

wrong use of the mean particle diameter is observed. On the other hand, 

use of other mean particle diameters will lead to unsatisfactory results with scat

tering in the data. Thus, the various experimental data may be systematically 

studied only by use of the proposed definition. Furthermore, when the size dis

tribution is log-normal in form, it is found that the linear estimate on the "a" 

basis with the meanµ is the same as that on the "b" basis with the mean µ+(a
b)a', where a' is the variance. As is clear from this fact, the determination of 

the mean particle diameter is much simplified. 
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