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For the purpose of contributing to the optimum design of the Faraday MHD 
generator duct, the authors derive a numerical calculation from the basic quasi one

dimensional MHD equations of the diverging rectangular duct and the integrals which 

express duct size, viz. length, surface area or volume. The calculation is intended 
to minimize the integrals under the condition of extracting a required output power 

from the duct, when the applied magnetic flux density, the mass flow rate and the 

duct inlet or outlet total pressure and temperature of the working gas are held con

stant. 

1. Introduction 
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In designing an MHD generator, it is very important that the duct is con

structed in optimum form, for example, the duct size, namely length, surface area 

or volume, is minimized under the condition of extracting a needed output power, 

when the applied magnetic flux density, the mass flow, the total pressure and 

temperature in the duct inlet or outlet are kept constant. This is accomplished 

by means of optimizing the distributions of the gas pressure, temperature, velo

city, the loading parameter and etc. along the flow. Using such an idea and 

applying calculus of variations to the quasi one-dimensional MHD equations 

and an integral, which expresses. the duct size, Carter'l,•l and others 3l-Ol have 

proposed a new optimization theory for the ideally segmented electrode Faraday 

generator duct of constant velocity, constant or distributed Mach number. 

But Carter and others have treated the case where the electrical conductivity 

of the working gas is governed by a power law of the gas pressure and temperature. 

So in this paper, the authors shall study the minization of duct size in the case 

where the conductivity is represented by a power-exponential formula, by means 

of the quasi one-dimentional MHD equations and the duct size integrals. In this 

connection, they point out that Carter's integral doesn't give the correct expres

sion for the duct surface area, though it does the correct one for the duct length 
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or volume. And they obtain the accurate expression for the area. Then they 

discuss the optimization of the conyentional diverging rectangular duct of constant 

velocity, constant Mach number, constant loading parameter etc. Further they 

investigate the optimization of the prearranged cross-sectional area duct1l of the 

constant velocity, constant Mach and constant loading parameter. 

Finally in this paper, the authors assume that the working gas obeys the per

fect gas law and neglect the thermal and frictional losses. 

2. Basic Equations 

As is well known, the quasi one-dimentional magnetohydrodynamic equa

tions pertaining to the ideally segmented electrode generator duct (Fig. 1) are 

given by 

B 

Segmented Electrodes 

Fig. I. Sketch of segmented electrode Faraday generator duct. 

puA = PoUoAo =mo: continuity equation, 

du dp J B . puTx+Tx== • : momentum equation, 

d puTx(cpT+u'/2) =J,E,: energy equation, 

p=pRT: state equation, 

and the Ohm's law is given by 

J,=a(E,-uB) = -auB (1-K). 

In these equations and Fig. l 
A: cross-sectional area of duct, 

B: magnetic flux density*, 

Cp=aR: specific heat* at constant pressure, 1 

(1) 

(2) 

(3) 

(4) 

(5) 
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c.: specific heat* at constant volume, 

Eu: electric field intensity in y-direction, 

J ¥: current density iny-direction, which is equal to total one, 

m0 : mass flow rate*, 

p : gas pressure, 

R: gas constant*, 

T: gas temperature, 

u: gas velocity, 

a=r/(r-1)*, 

r=cp/c.: specific heat ratio*, 

i.=EufuB: loading parameter, 

11: electrical conductivity, 

suffixes O and l : denote the quantities m duct inlet and 

outlet respectively, 

* : shows the quantities which are assumed constant in analysis. 
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(6) 

Now many pioneers in this field have shown that 11 depends dn p and T with 

respect to the working gases with no elevation of electron temperature. So we 

assume that a is represented by the following expression 

a=cp"'T"exp(-T;/T), (7) 

where 

c, m, n and T,: constants. 

Next the integral which expresses 

as follows: 

(7)' 
the duct size has been given by Carter 

where 

IN=~' ANdx={l for N=O, 
0 V for N = 1, 

l : duct length, 

V: duct volume. } 

(8) 

(8)' 

Though Carter has described that four times of I N(N=I/2) in Eq. (8) give 

the duct surface area, the result doesn't give the correct area, because dA/dx 1s 

not considered in Eq.s (8). The accurate expression of / 11,=S is given by 

(' [{ A - (A')'}''' { (A')'}'''] S=I,1,=2)
0 

k+ 4 + kA+ T dx 

for the diverging rectangular duct, where 

A'=dA/dx, } 
k: ratio of duct width and height. (9) ',. 

In this connection, as k= I for the square duct, we have 

S=l,12 =4r {A+ (A'/4) 2
}

1
'

2dx. 
0 

(9). 
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Moreover the value of S becomes minimum in the case of the square duct. 

3. Optimization Theory of Diverging Rectangular Duct 

3.1 Constant velocity duct 

First let us discuss the optimization in the case of constant velocity duct, viz. 

u = u0 = constant. (IO) 

Then using Eq.s (2) to (5) and the transformation of variable of x=l-x', we ob

tain 

t, =au0B' (l- ,c), 

dT au0B'(l-,c),cT 
dx' = ap 

Here putting 

log (p/p,) =a(g+c), 

log (T/T,) =C, 

Eq .s ( 11) and (12) are transformed as follows: 

dg au0B'(l-,c)' 
dx' = ap 

au0B' (l-,c) ,c 
ap 

From these two equations, it follows that 

dg 1-,c 
df=-/C-

(l l) 

(12) 

(13) 

(14) 

(IS) 

(16) 

(17) 

Transforming IN in Eq. (8) with Eq.s (10), (13), (14) and (16), we arrive at 

where 

(c• dx' 
IN=).ANdfdC=C,,,lN,., (18) 

I _(c• exp{-rC+qg+Tt*exp(-C)} dC 
Nu.- Jo (l-,c),c ' 

C .. = ct! (1- Ot1Uo ')-' uo -(N+li, 

C"= {ap'"/(a'11B')} (m.RT11/P'")N, 

q=-(m+N-l)a, 

r=-N +n-q, 

T,*= T,/T" 

To= TrnO-oeoUo'), 
T,= T .. (l-iJ"uo'), 

T11= T,.-W/(cpmo), 

W: output power, 

o, 0 = 1/ (2cp T 10), iJ" = 1/ (2cp T"), 

Co =log ( T 0/T ,) , 

(18)' 
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Pu'= Pt1 {l +uo'/ (2cp T ,) } a {l +au. 2/ (2cp T,) }-', 

p,: total pressure, 

T,: total temperature. 

Elimination of ,c from Eq. (l 7) and the first equation of (18)' yields 

where 

(19) 

FNu(t:.,~,n= (~'tl)' exp{-r(+q~+T,*exp(-t:.)}, f=d~/d(. (19)' 

From Eq. (17) and the Euler differential equation about ~ and ( for the mini

mization of IN, which can be derived from Eq.s (19) and (19)' with the aid of 

calculus of variations, we can obtain the following one 

where 

d IC K= - (q+r,) {,l(() -,cl (l-,c)/,c, 

,l(() = (q+rd2)/(q+r,), 

r,=r + T,*exp (-(.). } 

(20) 

(20)' 

When m0 , T, 0 and a required output power W are assumed constant in a 

constant velocity duct, T O and T 1 or t:.o become constant. Therefore we see that 

IN in Eq.s (18) is the integral which is intended to minimize the duct size under 

the condition of extracting W from the duct. 

Next if we are able to solve Eq.s (17) and (20) simultaneously by a suitable 

numerical calculation as Runge-Kutta-Gill one, we can determine the optimum 

relations of ,c and ~ vs. (, consequently ,c and p vs. T pertaining to the specific 

values of parameters r's, where r denotes one of u0, M 0 , Ko, Mi, ,r;1 and etc. More

over when we apply the numerical solutions of Eq.s (17) and (20) with the vari

ous values of r's to IN, we can find the values of I''s which minimize still more 

f Nmln• 

Next let us discuss the minimization of the surface area of the square duct 

with Eq. (9),. 

From Eq.s (I), (11) and (12), we can derive 

,_ ( I dT l dp) 
A -A -y dx' +p dx' ' 

A11u0B' (l-,c) (a- ,c) 
ap 

By use of Eq.s (I), (9),, (13), (14), (16) and (21), we obtain 

(''{ ( A' ) '}''
2 

dx' ('• S =ll/,=4)
0 

A+ 4 dfd(=4Cu J. Fu((,~. ,c)dc;, 

where 

(21) 

(22) 
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F .,(r,,~,IC) = exp{-r(, +;~(-~(exp (-r,)} [ 1 + { 1~: cp.,(r,,~) rr• 
cp,.(r,, ~) = (l-1C) (a-1C)explr'(,-q'~ - T,*exp (-C)}, 

q'=-a(m-1-N), (22)' 

r'=n+N-q', 

N=l/2, 

C,., T,*: given in Eq.s (18)'. 

When Eq. (17) namely 

G,.(t;,~',IC) =~'-(l-1C)/1C=0 (23) 

is adopted as one subsidiary condition, the problem which lets us minimize S be

comes the one that we solve the following simultaneous Euler equations 

where 

F - dY(t;) -0 
U(' dt; - ' 

F,..+J.1 (C) G.,,=0. 
} 

F,.=F,.(C,~,IC), G.,=G,.(t;,f,1C), 

F,.µ=OF,./8µ, G,.µ=OG,./8µ, µ=~. IC, 

J.1 ({,) : Lagrange multiplier. 

(24) 

} (24)' 

By eliminating J.1(() from the two equations in Eq.s (24) and combining the re

sult with Eq.s (23), we can obtain the simultaneous differential equations which 

determine the optimum distributions of IC and ~ vs. {, for the specially-fixed values 

of I''s as follows: 

F,."+ :, ( ~:: ) =0, } 

~' - (l-1C) /IC=O. 
(25) 

Moreover by applying the numerical solutions of Eq.s (25) for the various values 

of r's to Eq.s (22), we are able to find. the values of r's, which minimize the mini

mum value of S. 

Next IN gives the duct length l when N=O, as shown in Eq.s (8). Accord

ingly putting {, instead of Co in Eq.s (18) and (18)', we can obtain the relation 

between {, or T and x', i.e. 

, -C (' exp{-rC +q~ + T,*exp (-{,)} dr, 
X - ")o (l-1C)IC . (26) 

Therefore it is seen that the numerical solution of x' has been already acquired 

on the way of numerical computation of I 0 in Eq.s (18). Also Eq.s (22) occur 

m the case where the optimization of the duct surface area is discussed. 

Moreover the duct cross-sectional area A is evaluated by the equation 

A=mo/PUo, (27) 

which is derived from Eq.s (I) and (10). 
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The other quantities, for example, <1 can be digitally computed by substitut

ing the numerical values of p and T, which are obtained by the above mentioned 

procedure, into Eq. (7). 

3.2 Constant velocity and constant loading parameter duct 

Concerning the constant velocity and constant loading parameter duct, we 

have 

U=Uo, } 
Substituting Eq.s (28) in Eq. (17) give 

g'= (1-Ko)/Ko, 

.'.g= (1-Ko)C::/Ko, 

with the aid of g, =(, =0. 

Using Eq.s (28) and (29), IN in Eq. (18) is reduced to 

C ('' 
(1- ") ) exp[{q- (q+r)K0}(/Ko+ T,*exp(-C::)]d(. 

Ko Ko 0 

Next S=l ,1, becomes 

S =lu,=4 cf_: ) Ko Ko 

where 

(28) 

(29) 

(30) 

(31) 

F ... (<:) =exp F- (qK:r) Ko'+ T,*exp (-() }[ 1 + { A, 2N (14~~ (a-Ko) ... <,) rr·' 
(31)' 

With Eq.s (29), (30) and (31), we can numerically obtain the values of l, 

V and S. When we give r's the various values, we can find the values which 

make IN minimum. In addition, as described in the preceding article, letting 

N=O and substituting , in place of ( 0 in Eq. (30), we have 

x'= (1-c") ('exp[{q-(q+r)Ko},/Ko+T,*exp(-C::)]d,. 
Ko Ko ) 0 

(32) 

The values of A, <1 and etc. can be evaluated in the same way as in the preceding 

case. 

3.3 Constant Mach number duct 

Here let us discuss the optimization of the constant Mach number duct. 

We can rewrite the basic flow equations (2) and (3) in terms of the total or 

stagnation quantities with the following relations 

T,/T= (l+X), } (33) 

where 
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as follows: 

Here using 
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X=u'/(2cpT) = (r-l)M'/2, } 

M=u/v'rRT: Mach number, 

p(= PtO+X)«(I +ax)-' 

1 dp.' aX dTt auB' (1-,1:) 
p: 7x.-+ r-:- ,g-= p , 

a(I +X) dT, auB' (1-.t) .t 
T, dx' p 

log (p,'Jp.') =a(C:,+~e), 

log (Tt!T11) =C:,, 

Eq.s (34) and (35) are transformed into 

d~t auB'(I-,1:) 2 

dx' - ap 

d C:t auB' (1- ,1:) ,1: 

dx,-=-a(I+X)p ' 

From these two equations, we get 

d~, (l +X) (1-,1:) 
dC:, = K 

(33)' 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

Now in the constant Mach number duct, in which M=M 0 =constant and 

accordingly 

X =XO= constant, 

Eq. (8) is transformed into 

lN=CxlNx, 

where 

I _ ["'' exp{-r,C:,+q~,+ Ttt*O +X0)exp(-C:,)} d 
Nx- \ ~~--~-(1-,1:),1: '" 

Cx=Ct1'Xo"'(l +X0) l+r', 

C"' 

Tt= -N/2+n+ 1/2-q, 

w= - (N + 1)/2, 

Tu*= TdT,., 

q and a,.': see Eq.s (18)' 

(41) 

(42) 

(42)' 

by the aid of Eq.s (33), (36), (37), (39) and (41). Eliminating ,1: from Eq.s (40), 

where X=Xo, and (42)' yields 

(43) 

where 
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F'Nx(C,, g,, g/) = l\t Jt~:} }' exp{-r,C,+qg,+ Ttt* (1 +X o)exp(-C,) },} (
43

)' 

g, =dg,/dC,. 
The Euler equation pertaining to g, and C, for the optimization of IN, which is 

obtained from Eq.s (40), (43) and (43)', reduces to 

~;, =-{(l+Xo)q+r,,}{A,(C)-K}(l.-K)/K, (44) 

where 

J, (C) = { (1 + Xo) q+r ,./2} /{ (1 +Xo) q+rd, 

r,,=r,+ T"* (1 +X0) exp(-C,). } (44)' 

Next the procedure similar to the one, by which we have obtained Eq.s (22) 

and (22)', gives 

(45) 

where 

exp{-r,C,+qg,+T;i*(l+Xo)exp(-C,)} [t+{-A,'N (,,. I! )}']''' Fx(C,,g,,K) K(l-K) 4cx 'Px ,.,,,..-.,K , 

'Px (C,, g., K) = (1-K) {K (l/2+Xo) -a(l +Xo) }exp{r'C,-q'g,- T"*exp(-C,) }, 

N=l/2. (45)' 

The simultaneous Euler equations for the minimization of S, which can be derived 

from Eq.s (45), reduce to 

F x+ d~, (-~;:) =0, (46) 

where 

(46)' 

through the procedure similar to the one by which the first equation of Eq.s (25) 

has been obtained. 

By using Eq.s (33), (40), (42), (44), (45) and (46) and carrying out the same 

computation as described in Article 3.1, we can minimize the duct size. 

3.4 Constant loading parameter duct 

In the constant loading prameter duct, we have 

K =Ko= constant. 

Substituting Eq.s (47) in Eq.s (40) yields 

g,'= (l-K 0) (l+X)_ 
Ko 

Next transforming Eq. (8) as in the preceding case, we obtain 

I N=C.I N•, 

where 

(47) 

(48) 

(49) 
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C •= C.,' /l (1-Ko) Ko}• }(49)' 

Eliminating X from Eq.s (48) and (49)' yields 

IN•= r·F Nk(, .. ~ .. ~,')d,., (50) 

where 
, {~,'-(1-Ko)/Ko}"'~,"•+• 

FNk((,,~ .. ~,)= {(l-Ko)/Ko}"'+rt+1 exp{-r/~,+q~, 

+ Ttt*Ko~.'exp (-(,) / (1-Ko) }. (50)' 

The Euler equation pertaining to X and C, for the minimization of IN, which is 

derived from Eq.s (48), (50) and (50)', reduces to 

j{. = -[ l ~:0 q+ T"*exp(-C,) + {r,+ ( T.,*exp(-C,) - l :
0
K0 q) (1 +X) }O{X,C,)] 

{ 
w r,+l }-' x ---x,+ (l+X)' 8

2
(X,C,) , (51) 

where 

(51)' 

Here, too, by using Eq .s ( 48) to (51)' and carrying out the same calculation as 

described in Article 3.1, we can accomplish the minimization of the duct size. 

3.5 Constant Mach number and constant loading parameter duct 

In this case, we have 

X=X 0 , } 
Substituting Eq.s (52) in Eq. (40) gives 

~.'= (l+X.) (1-,co)/,co, 

.·.~,= (l +Xo) (1-,co)C.J,co 

with the aid of ~ .. =Cu =0. 

Using Eq.s (52) and (53), IN in Eq. (42) or (49) is transformed into 

C X ,~, .. 
IN= (l ) exp[{-r,+(l+Xo)O-,co)q/,co}C, 

-,co Ko o 

+ T"* (1 + Xo) exp ( -C,) ]de,. 
Also 111, in Eq. (45) is transformed into 

4C x ~-" S=l,12 = (l ) Fu(C,)dC,, /Co -Ko o 

where 

(52) 

(53) 

(54) 

(55) 

][ { A 
2

N }']'" +T1t*O+X0)exp(-(,) l+ 4Cx q1n(C,) , 

qin(C,) = (l-,co) {,c.(1/2+Xo) -a(l +Xo)} 1 (55)' 
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x exp[ {r -q' (I+ X 0) l ~
0
"

0 }c,- T,,*exp ( -C,)], 

N=l/2. 
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j 
As described in Article 3.2, by use of Eq.s (54) or (55) we can numerically deter

min the duct size. When we give I''s the various values in the calculation of / N, 

we can find the optimum values of J"s which minimize / N• 

4. Optimization Theory of Prearranged Cross-Sectional Area Duct 

In this section, we introduce an optimization theory of the duct, whose cross

sectional area is assumed to vary according to a predetermined function of x' from 

outlet to inlet. Now let us represent the cross-sectional area by 

A=A,A*, (56) 

where 

A* ==A* (x') : a predetermined function of x'. (56)' 

4.1 Constant velocity duct 

First let us discuss the optimization of constant velocity duct. From Eq.s 

(1), (10) and (56), we get 

A*=A/A,=p,T/(pT,). (57) 

By use of C and ~, which are defined in Eq.s (13) and (14), Eq.s (57) are trans

formed as follow: 

where 

d~ 1-a A*' dx' 
~ = -a-- aA * ~ ' 

A*'=dA*/dx'. 

From Eq.s (16), (17) and (58), we can derive 

,c2
- (a+l),c+aq,,.(C,~) =0, 

where 

q, .. (c, e) = 1 + a~:N ~: exp{-r'C+q'~+ T,*exp(-C)l, 

q'=a(l-m), 

r' ==n-q', 

C,., A,, T,*: given in Eq. (18), 

(58) 

(58)' 

(59) 

l (59)' 

in which the loading parameter ,c must also satisfy the condition 0<,c<l. And 

Eq.s (15) and (16) are rewritten as follows: 

~_;, = 1J: (l-,c) 2exp{r'C-q'~-T,*exp(-C)}, (60) 

dt:: " d~ 
di'= 1-" dx' ' (61) 
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with the aid of Eq.s (13) and (14), respectively. 

When Eq.s (59), (60) and (61) can be solved by a appropriate digital calcu

lation for the specific values of the parameters F's, we can find the numerical re

lations of(, ~, and " vs. x' or p, T, and " vs. x'. While the digital calculations 

is carried on, we can evaluate x' for T 0, which is determined by m0, W and T,0, 

namely the duct length l for the specified values of J"s. When l is obtained in 

such a way, the surface area Sand volume V are able to be numerically calculated 

by the following equations 

1, { ( A*' ) 2}112 S=l11,=4A/12 J
0 

A*+A1 - 4 - dx', 

V =l1=A1(A*dx', 

(62) 

(63) 

which are obtained by substituting Eq. (56) into Eq.s (9) 2 and (8) respectively. 

When we give F's the various values to solve Eq.s (59), (60) and (61), we 

can find a set of values of J "s, which minimize l and consequently S and V. 

Next as one practical example of the prearranged cross-sectional area duct, 

we discuss the one whose cross-sectional area A is given by 

A=A1 (l-gx') 2, 

where g is the coefficient corresponding to the 

are expressed by 

A*= (l-gx') 2
, 

A*'= -2g(l-gx'), } 

duct gradient. 

and Eq.s (62) and (63) are rewriten as follows: 

S= (2A/1'/g) (l+A1g2/4) 112 {1-(l-gl)'}, 

V = (A 1/3g) {1- (1- gl) '}. 

(64) 

Then A* and A*' 

(65) 

(66) 

(67) 

By numerically solving Eq.s (59), (60), (61), (66) and (67) for the various 

values of F's, where F's contain g, we can find a set of values of J''s, which make 

duct size minimum. 

4.2 Constant Mach number duct 

In this case, Eq.s (1) and (56) give 

A* __ A __ TP1U1 
- A1 - T1PU (68) 

Now, by use of(, and ~, which are defined in Eq.s (36) and (37), Eq.s (68) are 

transformed as follows : 

d~, I A*' dx' 
d(, = 2a - l- aA* df: (69) 

From Eq.s (39), (40), (41) and (69), we obtain the following relation 

(x.+ 2~ ),c•-(2x.+1+ 2~ )K+(l+X.)q,x(~.,,.)=0, (70) 
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where 

<Px(t:.,l,) = l+ a(l +G_;o)A,N ~: exp{-r,'(,+q'~,+ Ttt*O+X.)exp(-t;.,)}, 1 
q'=a(l-m), j (70)' 
r,'=n+ 1/2-q', 

C x, Ttt*: defined in Eq. (42) '. 

Eqs. (38) and (39) are rewritten as follows: 

. ~;: = o+i~A,N (1-,c)'exp{r,'(,-q'~,-Tu*(l+Xo)exp(-C,)}, (71) 

d(, 1 tc d~, 
dx' = (1 + X 0) 1 - ,c dx' ' 

(72) 

with the aid of Eq.s (36) and (37). 

By procedure similar to the one in the preceding article, we can find a set of 

values of I"s, which makes IN minimum. In this connection, the values of S and 

V are calculated by the Eq. (62) and (63) for A=A,A*(x') or (66) and (67) for 

A=A, (1-gx') 2 • 

4.3 Constant loading parameter duct 

In the case of constant loading parameter duct, the following relations 

dd~,. =Ac"N l-tco X'12 (1+X)-'•'exp{r,'(,-q~,-Tu*(l+X)exp(-t;.,)}, (73) 
X Ji: /Co 

dt;., tco 1 d~, 
----;[T= l-tc 0 l+X dx'' 

(74) 

_!]J__,_ = 1- tco (1 + X), 
d t;., Ko 

(75) 

are derived from Eq.s (38), (39), (40) and (48). Using Eq.s (1), (36), (37) and 

(56), we get 

( X )'''( l+X)a-
1
1

2 

A*= ----y l+X, exp{-(a-1/2)(,-a~,}. (76) 

By the same procedure as described in Article 4.1, we can look for a set of 

values of r's, which makes the duct size minimum. 

4. Conclusion 

In Section 3, concerning constant velocity duct, constant Mach number one 

and constant loading parameter one, the· authors could derive the simultaneous 

differential equations for minimization of duct size from the basic ones with the 

aid of calculus of variations. If the differential equations can be numerically 

solved under suitable boundary conditions, we can determine the optimum rela

tions to ,c and p vs. T pertaining to the specific values of I''s. When the differ

ential equations are able to be digitally solved for the various values of r's and 
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the results are put in / N, we can fiIJ.d a set of values of r's which minimizes IN• 
In addition, the expressions have been derived by which l, a, A and the others 

can be evaluated. Moreover, with respect to constant velocity and constant 

loading parameter duct or constant Mach number and constant loading parameter 

one, they have shown that a set of values of r's to minimize IN is obtained hy nu

merically integrating IN for the various values of l"s. 

Next in Section 4, from the basic equations the authors have introduced the 

simultaneous differential equations among tr., ~. C and x', tr.,~,, C, and x' or X, ~" 

C, and x' for the prearranged cross-sectional area duct of constant velocity, con

stant Mach number or constant loading parameter. Also they have indicated 

that we can get a set of optimum values of r's by the same procedure as men

tioned above. 
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