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Abstract 

The state equations as a characterization of a linear active network involve two 

factors, the network topology and the properties of the network elements. In this 

paper the way these two factors influence the formulation of the state equations is stu

died. A set of state equations for the networks with certain topological restrictions 

is derived based on an overnormal tree. Furthermore the order of complexity of a 

linear active network is investigated in connection with the network topology, and 

an upper bound on the order of complexity is stated with respect to a particular common 

tree. Several examples are given to illustrate the investigation. 

I. Introduction 

413 

The state equations as the description of a linear active network involve the 

network topology and the properties of the network elements. The process of 

deriving the state equations, however, are usually very complicated, and the re

lation between the state equations obtained and the original network is difficult 

to observe. 1>- 2>, 3 >,•> One of the reasons for this difficulty is the fact that the order 

of complexity of an active network depends not only on the network topology but 

also on the element values such as resistances, capacitances, inductances or pro

portinality constants (mutual resistances or conductances) of the controlled sources. 

Moreover the kind of elements in a general active network is so great that the 

equations appearing in the process look complex, which prevents us from seeing 

the total view of the derivation. In this paper we investigate how the topological 

properties of the network and the properties of the network elements are com

bined to formulate the state equations. We try to make the equations which 

are used to derive the state equations, as simple as possible so that the relation 

between the relevant equations and the network topology can be observed. 

The network we are considering contains only capacitors, inductors, resistors, 

independent sources, current-controlled voltage sources ( current sensor-controlled 
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voltage source pairs) and voltage-controlled current sources (voltage sensor-con

trolled current source pairs). The elements such as transformers, gyrators, nega

tive-impedance converters which~ app.eaf' IJH a.'·'genc£tar J"~ttive' 'tl.f:twoti}Cch:m be re

placed by proper controlled sources. . :Furthermore a current0con~rolled current 

source can be replaced by the cascade connection of a current-controlled voltage 

source and a voltage-controlled current source. A voltage-controlled voltage 

source can be replaced similarly. Thus we do not suffer loss of generality due 

to the above restriction on the element kind in the network we are considering. 

Later we also replace the resistors and inductors. 

2. Overnormal Tree and Network Equations 

We now try to find a tree denoted T of the network having the following 
properties. •l,o) 

I. T constains a maximum of independent voltage sources. 

2. T contains a maximum of current sensors and then controlled voltage 

sources consistent with Property I. 

3. T contains a maximum of capacitors consitent with Properties I and 2. 

4. T contains a m1n1mum of independent current sources. 

5. T contains a m1n1mum of voltage sensors and then controlled current 

sources consistent with Property 4. 

6. T contains a minimum of inductors consistent with Properties 4 and 5. 

Such a tree is called an overnormal tree. 'l The cotree of T is denoted CT. 

For the usual network an overnormal tree contains all the independent volt

age sources and the current sensors. (The voltage across a current sensor is zero). 

Its cotree contains all the independent current sources and voltage sensors. (The 

current through a voltage sensor is zero.) Moreover we assume that there is 

no voltage source in CT or current source in T, and thus there is no voltage source 

only loop or current source only cutset in the network if the current sensors and 

voltage sensors are regarded as short and open circuits, respectively. There is 

no restriction such as a current sensor in series with or a voltage sensor in parallel 

with a passive element. The elements in T, that is, the independent voltage 

sources, current sensors, controlled voltage sources, capacitors, resistors and in

ductors in Tare denoted by E, a, {1, C, G and r, respectively. The. elements in 

CT, that is, the independent current sources, voltage sensors, controlled current 

sources, inductors, resistors and capacitors in CT are denoted by J, r, o, L, R 

and S. 

Now in order to make the form of the network equations simpler we replace 

G and R by equivalent controlled sources as shown in Fig. 1 (a) and (b). 
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r; s 

(a} (c) 

C 

( b} (d) 
Fig. I. Equivalent circuits for resistors and inductors. 

The network equations consist of the equilibrium equations obtained by the 

application of Kirchhoff's voltage and current laws to the network, and of the 

voltage-current relations of the elements. They are 

Brr Bra Brµ BrE j Vr 

BLr Bw BLµ BLE Ve 

0 Bsc Bsµ BsE Vµ 
(1) 

Gas CaL Caa CaJ is 
Gas C cL Cea CcJ (2) 

0 CrL Cra CrJ 

p Ve ca-' 0 le 

Vs Cs-' ls (3) 

lL LL_, VL 

lr 0 Lr- 1 Vr 

and 

[~µ]=[rµ« 0 ][ia] 
la O gar Vr • 

(4) 

where v. and i. are the voltage and current vectors respectively associated with 

the elements as noted by the subscripts. B .. and C .. are the submatrices of the 

characteristic parts of the fundamental loop and cutset matrices respectively as

sociated with the elements as noted by the subscripts. Ca, Cs, LL, Lr, r µ«, and 
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gar are diagonal matrices of the element values ( the capacitances, inductances 
and proportionality constants) as are respectively indicated by the subscripts. 

Since we are mainly concerned with the state equations, we are satisfied with

out immediately knowing the currents through the voltage sources or the voltages 

across the current sources. Therefore the equations for these variables are not 

shown. 

3. State Equations and the Order of Complexity 

We first eliminate ia and Vr from the equations in (4) and the first equations 

m (1) and (2). Then we have 

where 

and 

Pvp= -C asis-C aLiL-C aJiJ+C a0gar(BrrVr+BraVa+B rEVE) 

Qj0 = -BrrVr-B rcVa-B rEVE+BrpTpa (Casis +CaLiL +CaJiJ) 

(5) 
(6) 

(7) 

Q=g0,-'-BrpTpaCa0, (8) 

We observe that P or Q becomes singular if and only if the proportionality 

constants satisfy a certain relation specified by the network topology. The cases 

where this occurs are rather special! and we distinguish them from the cases where 

the rank of a matrix decreases due to the network topology only. If the element 

values can be chosen arbitrarily, P and Q can be made nonsingular and we can 

solve (5) and (6) for Vp and -.i0 • Then from the third equations in (1) and (2) 

we obtain the relations between vs, ir and is, vr, which can be written in the form 

In the above equation$, 

H sr = [Esp O ][ p-' 0 ][ U -CUaogor ][ C
0
as O J (10) 

0 Cr0 0 Q-1 -B,prpa Brr ' 

and if this matrix is nonsingular, then (10) can be solved for is and vr. Eliminat

ing these variables together with i0 and vL using equations in (3), we obtain the 

state equations. The order of complexity for this case is the sum of the numbers 

of capacitors and inductors. If matrix H sr is singular and the nullity of the ma

trix is µ, there must be µ relations between Vs, ir, Ve and iL (Possibly some of these 

variables become constant.). Thus an upper bound on the order of complexity 

is given by the sum of the rank of H sr and the numbers of C and L. There are 

four matrices on the right-hand side of (10). The second and third matrices 

are square and become singular only if there are certain relations among the pro

portinality constants. The rank of the other two matrices can be determined 
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only by considering the network topology. Now let us define two graphs. The 

voltage graph, denoted G., is the graph obtained from the graph G representing 

the original network by short circuiting E and a, and open circuiting J and o. 
The current graph denoted G, is defined as the graph obtained from G by open 

circuiting J and r, and short circuiting E and (1. The replacement of the re

sistors in the original network induces the corresponding replacement in G. and 

G,, also. Furthermore we define G.s as the graph obtained from G., by short 

circuiting C and I', and open circuiting (1, r and L, leaving S only. The rank 

of Bsp is equal to the rank of G.s. (See Apendix I. The rank of Bsp can be 

stated with respect to some other graph.) Similarly the rank of C as is equal to 

the rank of G,s, the graph obtained from G, by short circuiting C and r, and open 

circuiting a, o and L. We can also get G.r from G. by open circuiting L and 

S, and short circuiting (1, r and S, and graph G,r from G, by open circuiting L 

and S, and short circuiting a, o and C. Then we have the ranks of B,r and Cr, 

are equal to the nullities of G.r and G,r respectively. Thus 

rank of H sr:::;;.min (rank of G .s + nullity of G ,r, 

rank of G,s+nullity of G.r). (11) 

Now in order to make the following discussions simpler we replace all the 

inductors in the network by use of the equivalent circuits as shown in Fig. 1. (c) 

and (d). Then the terms with subscripts Land r in (1), (2), (3) and (4) disap

pear. From the second equation in (2) and also (5), (6) and (9) without the 

terms concerning inductors, we obtain the following equation. 

[ 
BspP-1Cas 

Cos +Co,Q-1BrpT paCas 
0 ][~s] =[U Bso+Bsp=,-

1

Ca0g.,B,0 ][Vs] 
U lo O Co,Q Bro Vo 

+[BsE+BspP-
1
Ca1g.rBrE BspP-

1
CaJ ][VE] (1 2) 

Co,Q- 1BrE CoJ+Co,Q- 1BrpTpaCaJ iJ 

We are now going to derive a set of state equations from (12). The rank of the 

matrix in the left-hand side of (12) is the sum of the rank, denoted r, of BspP- 1C.8 

and of the number of C. If there exists (r X r) nonsingular principal minor ma

trix in BspP-1Cas, we procede as follows. First dividing S into two sets s, and 

s, such that the capacitors in s, correspond to the principal minor matrix, we can 

write (12) as (13), where A,, is nonsingular. 

Au A12 Ol[i,.l=[UOB13] v .. + C 11 C 12 [~JE] 
A,1 A., 0 i,, 0 U B,, v,, C,, C,. , (13) 

A31 A., U io O O B,, Vo C •• C 33 

As the result of the elimination of i,., i,, and i0 by use of (3), and then of v,., we 

have 
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[
A,.C ., + A21C .,A.,A22-

1 

A.,C ., + Aa, C .,A12A22 _, 

A21Cu (-Bl3+AuA.,-'B,a) 

A31C,.(-B,a+A,.A,,-'B, 3) +Ca 

=[U B••][v••J+[C" Cu][~E] 
0 Baa Va C31 Ca, ZJ 

-[A"C,. (Cu -A12A22=:C21) A21C,. (C 12-A12A,.=:c ,.) ][ p~E]· (1 4) 
Aa,C .. (Cu-A12A22 C21) A.,C,.(C12-A 12A22 C,.) pzJ 

The matrix on the left-hand side of (14) is nonsingular unless there exists a 

special relation among the element values. No further decrease in the order of 

complexity is caused by reason of the network topology only. (See Appendix 

II.) A set of state equations can be obtained by multiplying the inverse of the 

matrix to both side of the equation. Note that only the first derivative terms of 

the independent sources may appear in the state equations. If the matrix in the 

left-hand side of ( 14) is singular, the process used to derive ( 14) from ( 13) is re

peated, and each repetition of the process may yield higher order derivatives of 

the independent sources. 

Even if the rank of BsfiP-'C«s is r, there does not always exist (rxr) non

singular principal minor matrix. For example, if C, in the network shown in 

Fig. 2. (a) is included in an overnormal tree, BsfiP-'C«s becomes 

0, r, r 2 +r, r 2 +ra+r, 

0 0 0 0 

The rank of this matrix is easily seen to be 3, but there is no (3 X 3) nonsingular 

principal minor matrix. The largest nonsingular principal minor matrix is a 

(1 X 1) matrix. There is a capacitor in the tree, and the order of complexity of 

this network is 2. There is no (r X r) nonsingular principal minor matrix for 

any overnormal tree of the network. For this kind of network the derivation 

(b) 
Fig. 2. (a) Example I, (b) Example 2. 
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of state equations needs more complex process. For some networks the existence 

of a (r X r) nonsingular principal minor matrix depends on the choice of the over

normal tree. If C, in the network shown in Fig. 2. (b) (Example 2) is included 

in T, the rank of BsµP-'C «s is 2, but there is no (2 X 2) nonsingular principal 

minor matrix. Some other overnormal tree, however, say a tree with C 1 as a 

tree-element, leads to the matrix with a (2 X 2) nonsingular principal minor ma

trix. The order of complexity of this network is 3. It may be interesting to 

note that for the network obtained from the network in Fig. 2. (a) by exchanging 

a. and /33 , we can get a (r X r) nonsingular principal minor matrix for any pos

sible overnormal tree. The network is identified as Example 3 for later com

ments. 

Let us now mention the cases where matrix P or Q becomes singular. In 

these cases we go back to the original network equations. It may or may not 

be possible. to get a set of state equa,tions depending on the network topology and 

the element values, as are. illustrated by the following examples. 

Example 4. (Fig. 3. (a)) We replace the resistor in the network by the circuit 

shown in, Fig. L (b). If r 1 =R, Pis singular, but a set of state equations can be 

obtained, 

Example 5. (Fig. 3. (b)) If r ,g, = 1 for the network, P is singular and vµ, is in

determinate. No set of state equations exists. 

(a) 

( C) 
Fig. 3. (a) Example 4, (b) Example 5, (c) Example 6. 
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Fig. 4. (a) Example 7, (b) Example 8. 

Example 6. (Fig. 3. (c)) If r,=R for the network, no solution of the network 

equations is possible except for vE=O. 

The order of complexity may or may not decrease compared with the network 

with the same topology and element kind but with nonsingular P or Q. Note 

that Example 4 serves as a counter example to Theorem 3 of DeClaris5
' if the series 

connection of a, and (32 is replaced by a resistor. 

Now we consider the networks with voltage sources in CT or current sources 

in T. Such networks contain voltage source only loops or current source only 

cutsets if the current sensors and voltage sensors in the network are regarded as 

short and open circuits respectively. There are several cases: 

Case 1. The state equations can be obtained without special relations among the 

element values. (Fig. 4. Example 7 and Example 8) 

Case 2. Some of the voltages across the elements other than current sources, or 

some of the currents through the elements other than voltage sources become in

determinate, if there exist special relations among the element values. (Fig. 5. 

Example 9 with r,g,=l, r,=r,) 

Case 3. No solution of the network equations is possible for special relations among 

the element values. (Fig. 4. (c). Example 6 with the resistor replaced by a series 

connection of a and fJ) 

Case 4. A set of state equations can be obtained with special relations among 

the element values. If the special relations are not satisfied, no solution is pos

sible. (Fig. 6. Example IO with r,=r,) 

Case 5. No solution of the network equations 1s possible except for special m

dependent sources. (Fig. 7. Example 11) 

Cases where some of the voltages other than those across the current sources or 

some of the currents other than those through the voltage sources become inde

terminate without special relations among the element values are also found. 

(Note that we assume there is no current sensor only loop or voltage sensor only 
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Fig. 5. Example 9. 

Fig. 6. Example 10. 

s 

Fig. 7. Example 11. 

cutset in the network.) In cases I and 4 the order of complexity may decrease 

or increase if certain special relations among the element values exist. For Ex

ample 8 the order of complexity is 2 if r1g1= 1, otherwise it is 1. 

4. Normal Common Tree and the Order of Complexity 

A normal common tree is defined to be a common tree of G ~ and G • such 

that the sum of the numbers of capacitors in the common tree and inductors in 

its cotree is maximum. It can be shown that an upper bound on the order of 

complexity is this maximaum sum, denoted 11,..,,, for a network without voltage 

source only loops or current source only cutsets. (A current sensor and a voltage 

sensor are regarded as a short circuit and an open circuit repectively.) This upper 

bound is related only to the network topology. The voltages across the capa-
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citors m the normal common tree and the currents through the inductors in its 

cotree are the possible candidates for the state variables. Now am= is the pos

sible highest degree of the characteristic polynominal of the network given by 

•~• I; (sign of T;) (C,g,LcR,r,) p• 
fl=O Tefl 

(15) 

where T; denotes a common tree such that the sum of the numbers of capacitors 

in the common tree and inductors in its cotree is a, C,, g,, L,, R, and r, are the 

products of the capacitances in T;, of the proportionality constants of the voltage

controlled current sources in T;, of the inductances in CT: (CT; is the co tree 

of r:.), of the resistances in CT;, and of the proportionality constants of the 

voltage-controlled current sources in CT;, respectively. Thus the order of com

plexity becomes less than 11ma:i: if there are more than one normal common tree 

and if the products of the element values in the summation in (15) correspond

ing to these normal common trees cancel out. Similar observations can be made 

for the coefficients of p• for a<am=• In many cases the common trees contribut

ing to the coefficient of some degree of p have a part in common with the common 

trees contributing to the coefficients of the other degrees of p, and thus the co

efficients become zero at the same time. 

Although an overnormal tree always induces a common tree, no simple al

gorithm to get a normal common tree from an overnormal tree by the tree trans

formation has been found. Thus the relation between these two trees is not clear, 

but we can comment on the examples we have given. Capacitor C, in the net

work shown as Example 2 cannot be in any normal common tree, but every other 

capacitor in the network can be in a normal common tree. As for Example 3 

the capacitors in any over-normal tree are all included in a normal common tree. 

As far as the networks we have examined with the above-mentioned topological 

restrictions, the capacitors in a normal common tree consist of the capacitors in 

a properly-chosen overnormal tree and those corresponding to a largest nonsin

gular principal minor matrix of BsfiP-'C as with arbitrary element values. Now 

for Example 4 the maximum degree of the characteristic polynominal decreases 

from am= by I, and for Example 5 and 6 the characteristic polynomial becomes 

zero if r,g,=1 and r,=R respectively. 

The situation is. more complicated for the networks with voltage source only 

loops or current source only cutsets. Extending the definitions of G. and G, for 

these networks, we see that there exists a common tree for Example 7, but no com

mon tree for Examples 8-11. In the network shown as Example 7 there is a cur

rent sensor in the loop of the voltage sources. However this is not the necessary 

condition nor sufficient condition for a set of state, equations to exist without special 
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relations among the element values. Note that a, and 01 in Example 7 are con

nected in such a way that they actually constitute a resistor, and thus effectively 

there is no voltage source only loop in the network. In general the network topo

logy must be examined in detail to find such a connection. This is apparently 

related to finding a normal common tree. It seems that in cases where a normal 

common tree exists the controlled current sources in the common tree and the 

controlled voltage sources in its cotree are regarded as resistors and otherwise 

as independent sources concerning the problems of the order of complexity and 

the solvability. 

A normal common tree is a simplified form of Tow's maximal common tree.•> 

No efficient algorithm to obtain such a tree has been found, although an over

normal tree can be easily found. Algorithms using Minty's method'> or some 

other methods to list all trees modified for the two-graphs have been tried. They 

are simple but time-consuming. 
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Appendix I 

Submatrix Bsfi of the fundamental loop matrix corresponds to the graph, 

denoted G.sfi, obtained from G. by short circuiting all the tree-elements except 

(1 and open circuiting all the link-elements except S. A loop of G,s is the linear 

combination of the fundamental loops of G.sfi and contains no (1. Thus the 

linear combination of the rows of Bsfi corresponding to the fundamental loops 

is zero, that is these rows are linearly dependent. This means the linearly in-
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dependent rows of Bsp should correspond to a tree or a part of a tree in G,8 • 

Therefore, rank of Bsp:',:;:rank of G,s. Now a tree of G,s can be a tree or a part 

of a tree of G,sp• Note that fJ form a tree of G,sp, and thus there must be a non

singular (rank of G,s X rank of G,s) submatrix in Bsp corresponding to the tree 

transformation. Thus rank of Bsp>rank of G,s, and with the previous result 

we have that rank of Bsp=rank of G.s. 

Let us consider the graph, G,p, obtained from G,sp by short circuiting S. 

Since 

rank of G.p+rank of G.s=rank of Gvsp=number of fJ 
and 

rank of G,p+nullity of G,p=number of fJ, 
we have that rank of G.s=nullity of G,p- Thus we can state the rank of Bsp 

with respect to G.p instead of G,s. Similar considerations can be made for the 

ranks of the other submatrices utilizing duality between v and i, S and I', and 

a and fl. 

Appendix II 

We write the matrix m the left-hand side of (14) as 

[
Du D,,] 
D,, D22 

(A-1) 

where 
Du =A.,C,, +A,,C,.A,,A,, _, (A-2) 

D 12 =A21C,. (-B,a +A12A,,- 1B,a) (A-3) 

D2,=B.,C,,+Aa,CuA12A,,-1 (A-4) 

Daa=A.,C .. (-B,.+A12A,,- 1B,3) +Ca. (A-5) 

The first term in the right-hand side of (A-2) is nonsingular and the second term 

is not dependent on C,. which is in the first term. Therefore matrix Du is non

singular unless there exists a special relation among the element values in C., and 

C,,. Multiplying (A-2) by the following nonsingular matrix 

[ 
U O ] (A-6) 

-D 21Du- 1 U ' 

we obtain 

(A-7) 

D.,-D21Du-'D12 consists of Ca and the terms not dependent on Ca but on some 

other element values. Thus it is nonsingular unless there exists a special rela

tion among the element values. The nonsingularity of the matrix given by (A-

7) follows immediately. 


