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This paper treats of the linear discrete-time filtering problem where some elements 
of the measurement signal are free from noise. The main results are as follows: 

(i) A low order optimal filter is obtained by modifying the ordinary Kalman filter. 
(ii) Based upon the result (i), the structure of Tse-Athans' optimal minimal-order 

filter is made clear. 
(iii) Utilizing the result (i), the filtering problem with colored measurement noise 

is solved. This solution contains Bryson-Henrikson's result as a special case. 

I. Introduction 

The state variable approach to the filtering problem of linear discrete-time 

systems is developed by Kalman [.I ,2]. For the case in which the covariance 

matrix of the measurement noise is singular, Kalman [I] points out that the order 

of the filter can be reduced. Brammer [3] obtained a low order filter by solving 

the Wiener-Hopf equation; and recently Tse and Athans [4] investigated the 

problem of constructing the minimal-order filter. On the other hand, for the case 

in which measurement signals contain colored noise, Bryson and Henrikson [5] 

derived the filter equation by their measurement differencing approach, while 

Rishel [6] proved the optimality of this filter. 

In this paper, we consider the linear discrete-time filtering problem in which 

some of the measurement elements are free from noise. First of all, a low order 

optimal filter is obtained by modifying the ordinary Kalman filter [2] slightly. 

Secondly, it is shown that the above result, although quite simple, is useful not 

only for the unification of several previous results [3]-[5] and for an easy under­

standing of them, but also for extending these results further. 

The next section contains the formulation of the problem and the definition 

of the order of the filter. In Section 3, a filter is derived whose order is lower 

than the ordinary Kalman filter by the number of noise-free elements in the meas­

urement signals. This low order filter is essentially the same as that which wa~ 
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derived by Brammer [3]. However, our method of derivation will be simpler 

and clearer than that of Brammer. In Section 4, it is shown that, using the result 

of Section 3, the structure of Tse and Athans' optimal minimal-order filter can be 

expressed analytically. This makes the structure of the filter very clear. In 
Section 5, it is shown that by applying the result of Section 3, the filtering problem 

with colored measurement noise can be solved easily. Furthermore, as a special 

case of this solution, Bryson-Henrikson's result [5] is obtained not by using their 

measurement differencing approach, but by using a state augmentation approach. 

The main idea in this paper has arisen from the author's previous work [7] 

and part of this paper overlaps it. The author believes however, that this overlapp­

ing is necessary to show the effectiveness of our approach, and to make clear the 

relation between the Kalman filter and Tse-Athans' estimator. 

II. Problem Formulation 

Consider a linear discrete-time system described by 

x(k+I) = (l)(k)x(k)+w(k), k = 1, 2,··· 

y(k) = H(k)x(k)+v(k) 

[
v1 (k)] = H(k)x(k)+ .. 0 .. 

( 1 ) 

( 2) 

where x(k) ER"* is the state vector at the k-th sampling instant, y(k) ERm is the 

measurement vector, w(k) ER", v(k) ERm and v1 (k) ERm-t are the random vectors, 

and O is the appropriate dimensional zero matrix or zero vector. Let M,.m denote 

the set of all n X m matrices, then (1) (k) EM"" and H (k) E Mmn· Let us assume that 

n~m~l and that rank H(k)=m. 

w(k), v(k), k=l, 2, •··, and x(l) are mutually uncorrelated and their proba­

bility density functions (p.d.f.'s) are given by 

p(w(k)) = N(O, Q(k)) 

[
R1(k): 0] 

p(v(k)) = N(O, R(k)), R(k) = ···<> .. ~·o· 
p(x(l)) = N(x(l IO), P(l IO)) 

( 3) 

( 4) 

( 5) 

where N(x, P) denotes the normal p.d.f. with a mean vector x and a covariance 

matrix P. P(l IO)EMn,. and Q(k)EM,.,. are positive definite**; and R(k)EMmm, 

* R" denotes n-dimensional Euclidian space. 
** If Q(k) is non-negative, S(k) in ( 15) may become singular. For this case, it is shown by Kalman 

[2] that (14) i$ valid by replacin!J s- 1(k) with a pseudo-i1m;rse Sl(k). Als9 s(:e tjle refc;micc; 
[9J, 



Low Order Optimal Filters for Linear Discrete- Time Systems 95 

R1(k) EMcm-tXm-n, are non-negative definite. 

Now some concepts about filters will be made clear. For the system described 

by (1) and (2), a filter is defined as a system which produces an estimate x(k) ER" 

of x(k) given y(k) = {y(l), y(2) •··, y(k)} in the following manner: 

z(k+l) = A(k+l)(l)(k)x(k) 

x(k) = B(k)z(k) +C(k)y(k) 

( 6) 

( 7) 

where A(k), B(k) and C(k) are arbitrary matrices. If z(k) ER;, then this filter is 

said to be ofj-order. The optimal filter is the one which minimizes 

j(k) = E{(x(k)-x(k))T(x(k)-x(k))} 

for all k, where the superscript " T" denotes transpose and E { •} denotes expecta­

tion operation. It is shown by Kalman [l] that for the optimal filter 

x(k) = E {x(k) lu(k)} . 

This terminology is essentially the same as that of Tse and Athans [4] except that 

they used the term "estimator" instead of "filter". This can be easily seen by 

rewriting (6) and (7) into 

z(k+I) = A(k+I)<Z>(k)B(k)z(k)+A(k+l)(l)(k)C(k)y(k) ( 8) 

x(k) = B(k)z(k) +C(k)y(k) ( 9 ) 

which correspond to ( 11) of Tse and Athans [ 4]. 

The form of (8) and (9) is suitable for the interpretation that z(k) is the in­

ternal state vector of a dynamical system called filter. However, for the physical 

interpretation of coefficient matrices A(k), B(k) and C(k), the form of (6) and (7) 

is better: A(k) determines the way in which the information z(k+l) (that must 

be stored in memory) is constructed from the present estimate x(k). B(k) and 

C(k) determine the way in which the estimate x(k) is constructed from the infor­

mation z(k) and the observed data y(k). 

The problem considered in this paper is to obtain the (n-l)-order optimal 

filter for the system described by ( 1) and (2). 

III. Derivation of the Solution 

Define 

x(klJ) = E{x(k) lu(j)} 

P(klj) = E{(x(klj)-x(k)) (.r(klj)-x(k))r}. 

(10) 

( 11) 
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It is shown by Kalman [2] that x(k I k) satisfies 

x(klk) = Un-K(k)H(k)]x(klk-l)+K(k)y(k) 

x(k+l lk) = <D(k)x(klk) 

( 12) 

( 13) 

where l,.EM,.,. is the identity matrix and the filter gain K(k) EM,.m is obtained 

from the following equations. 

K(k) = P(klk-l)H'f(k)S- 1 (k) 

S(k) = H(k)P(klk-l)HT(k)+R(k) 

P(kik) = [I.,-K(k)H(k)]P(kJk-1) 

P(k+I lk) = <D(k)P(kJk)<DT(k)+Q(k). 

(14) 

(15) 

(16) 

( 17) 

By taking z(k)=x(klk-1), it is clear that the filter which consists of (12) and 

( 13) is the n-order optimal filter. This is called the Kalman filter. 

Now let 

( 18) 

( 19) 

where x 2 (k) ER1, y 2 (k) ER1, H 22(k) EM11 • Since rank H(k) =m, H 22 (k) can be 

assumed to be nonsingular without any loss of generality. 

From (2), (18) and (19) we obtain 

(20) 

It is possible to reduce the order of the filter from n to (n-l) by modiyfing (12) 

and ( 13) through the use of (20). Its procedure is shown as follows. From (20) 

(21) 

On the other hand, let 

(22) 

then (12) is rewritten as 

.i:1(klk) = {U,.-i:O]-K1(k)H(k)}x(kik-l)+K1 (k)y(k) (23) 

x 2 (klk) = {[O:ltJ-K2(k)H(k)}x(klk-I)+K2 (k)y(k). (24) 

From the fact that (24) should be equal to the equation which is obtained by 

~4bstituting (23) into (21) ~ we hayt; 
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Therefore 

Let 

Then we obtain from (12), (13) and (26), 

z(k+I) = A*(k)<l>(k)±(klk) 

z(l) = A*(0)±(l 10) 

±(k I k) = B*(k)z(k) +C*(k)y(k) 
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(25) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

Hence we have now one explicit form, (30)-(32), of the (n-l)-order optimal filters. 

Although K(k), which is necessary for the calculation of A*(k) and C*(k), 

can be calculated from (14)-(17), we can also rewrite (16) and (17) as follows by 

utilizing (20). Divide the matrixes P (k lj) as 

Then from (20) and (21) we obtain 

P(klk) = B*(k)P 11 (klk)B*T(k). 

From (14), (16), (17) and (33) 

K1(k) = [I,,_,;O]P(klk-I)HT(k)S-1(k) 

[
I,,_,] 

P 11 (klk) = A*(k)P(klk-I) ··0·· 
P(k+ I I k) = V(k)P11 (k I k) VT(k) +Q(k) 

V (k) = <1> (k)B* (k) . 

(33) 

(34) 

· (35) 

(36) 

(37) 

Therefore, K(k) can be calculated from (14)-(17) or from (15), (22), (25), (27), 

(28), (34)-(37). Which way is easier will depend on each specified case. 

Brammer [3] has derived a result which is essentially the same as (30)-(32) by 

solving the Wiener-Hopf equation. Our method is, however, simpler and clearer 
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than that of Brammer. 

IV. Structure of the Minimal-order Optimal Filter 

The problem of obtaining the minimal-order optimal filter for the system ( 1) 

and (2) is investigated by Tse and Athans [ 4]. Their result is summarized as 

follows. 

If R1(k), k= 1, 2, • ··, is positive-definite, then the minimal-order optimal filter 

is of (n-l)-order. Among its coefficient matrices, C(k) is given uniquely by (29). 

Other coefficient matrices A(k) and B(k) are given as an arbitrary pair {A(k), B(k)} 

which satisfies 

B(k)A(k) +C*(k)H(k) = In (38) 

Furthermore, Tse and Athans present a method for obtaining an explicit pair 

{A(k), B(k)} which satisfies (38). Their method, however, needs a solution of 

(n-m)n+m1n simultaneous algebraic equations (see (60 a) of the reference [4]). 

Now let us show that, utilizing the result of the preceding section, the solution 

{A(k), B(k)} of (38) can be expressed analytically. The result is as follows. 

If R1(k), k= 1, 2, •··, is positive-definite, the coefficient matrices A(k), B(k) and 

C(k) of the minimal-order optimal filter are given by 

.A(k) = L(k)A*(k) 

B(k) = B*(k)L-1 (k) 

' 

(39) 

(40) 

and C*(k) (see (29)), where L(k) EMc.,-rxn-n, k= 1, 2, ···, arc arbitrary nonsingular 

matrices. 

In order to prove this, it is enough to show that the pair {.A(k), .B(k)} is a 

solution of (38) and that any solution of (38) can be expressed as {A(k), .B(k)} by 

choosing L(k) adequately. 

The former is obvious from (26), and the latter can be shown easily by noting 

that rank [I-C*(k)H(k)]=n-l. 

The result of this sectio:o. is the same as that of [7]. It is included, however, 

in this pap~r again to mak~ clear, that the minimal-order optimal filter can be 

obtained easily by a slight modification of the ordinary Kalman filter and to give 

the following comment: Tse and Athans [8] are quite right in having the feeling 

that P(k I k) may be obtainable through a matrix equation with lower dimension 

than n. Relations (34)-(37) are the very realization of this feeling. 

V. The Case of Colored Measurement Noise 

Consider a linear system 
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X 8 (k+ I) = <l>s(k)xs(k) +ws(k) 

y(k) = H 8 (k)xs(k)+ [·l~~:~··] 
x,.(k+ I) = <1> ,.(k)x,.(k) +w,.(k) 
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(41) 

(42) 

(43) 

where Xs(k) ER"- 1 is the state vector,y(k) ERmis the measurement vector, x,,.(k) ER1 

is the colored noise vector, and W 8 (k), w,.(k), and v1 (k) are random vectors. (42) 

means that a part of the measurement noise is time-correlated ( or colored). 

Let 

and assume that w(k), v1 (k), k=l, 2, ... and x(l) are mutually independent and 

their p.d.f.'s are given by 

p(w(k)) = N (0, Q(k)) 

p(v1(k)) = N(O, R1 (k)) 

p(x1(k)) = N(x(I IO), P(I IO)), 

We consider the problem of obtaining the maximum likelihood estimate of 

X 8 (k), X8 (k I k), from the measurements jj(k). 
For the special case of m=l, that is, the case in which whole measurement 

signals are contaminated by colored noises, this problem has already been solved 

by Bryson and Henrikson [5]. They use their measurement differencing approach. 

They reformulate the original problem by taking as a new measurement a weighted 

first difference of the present and previous measurements, and then apply the filter­

ing theory of Kalman. 

In this section, the above problem is solved by using Kalman's augmented 

state approach and it is shown that the result of Bryson and Henrikson [5] can be 

derived from this solution by taking m=l. 

Following Kalman [2], let 

Then the above problem is reduced to the one in Section 2. This reduced problem 

can be solved in the same way as in Section 3. By eliminating x,.(k I k), we finally 

obtain the following: 
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z(k+I) = [(l)s(k)-K1(k+I)W(k)]xs(klk)-K1(k+I)U(l),.(k)UTy(k) (44) 

xs(klk) = z(k)+K1(k)y(k) (45) 

z(l) = [I,,_ 1-K1(I)Hs(I): -K1(l)U]x(l lO) (46) 

K1(k) = U .. -1:0]P(klk-I)HT(k)S-1(k) 

S(k) = H(k)P(kik-I)HT(k)+R(k) 

[ 
l,.-1] Pu(klk) = [l,,_1-K1(k)Hs(k):-K1(k)U]P(klk-I) .. 0 .. 

P(k+I lk) = V(k)P11 (kjk)VT(k)+Q(lf) 

V(k) = [······ ~!~~! ...... ]: 
-(1) ,.(k)Hs2(k) 

W(k) = Hs(k+I)(l)s(k)-U(l),.(k)Hs2(k) 

U = [·{··] EMm1 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

For the case of m=l, we have only to set 

U= 11 

Hs2(k) = Hs(k) 

R(k) = 0 

(54) 

in the above result. If, moreover, we eliminated z(k) from (44) and (45), we 

have 

x.(k+l lk+l) = (l).(k)x.(klk) 

-K1(k+ 1) [y(k+ 1)-(1),.(k)y(k)- W(k)x.(k jk)] (55) 

It is easy to show that (55) is equivalent to (10) of Bryson and Henrikson [5]. 

The continuous-time version of the problem in this section is solved by Bucy 

[7]. Letting m=l in (44)-(54) and making the sampling interval tend to zero as 

in Kalman [2], we can derive ( 10) of Bucy [7], which expresses the filter involving 

no differentiation of observed data. 

VI. Conclusion 

The filtering problem of a linear discrete-time system is investigated where 

some elements of the measurement are free from noise. A low order optimal 

filter for this problem is obtained by modifying the ordinary Kalman filter. This 

result is useful not only for the unification of several previous results [3]-[5] and 

for an easy understanding of them, but also for obtaining extended results: Firstly, 
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on the basis of the above result, the structure of Tse-Athans' optimal minimal-order 

filter is made clear. Secondly, the filtering problem with colored measurement 

noise is solved' and itis :•shown th~t this solution contains the Bryson-Henrikson's 

result as a special case. 

The author wishes to express his gratitude to Professor Y. Sawaragi, Professor 

H. Hanafusa and Mr. H. Kobayashi for their valuable discussions and suggestions. 
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