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Abstract 

This paper presents an algorithm for the computation of data-fitting by a cubic spline. 
The normal equation derived from the algorithm is not ill-conditioned. If it is assumed 
that the data are subiected to some independently distributed error about their trend, the 
regression theory provides the desired estimate of variance, like the expression that is known 

when we use the orthogonal polynomials. 

1. Introduction 
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Approximating a function, whose values at a sequence of points are generally 

known only empirically and are subject to inherent errors, is a problem that has been 

studied. The standard polynomials in least squares data-fitting have a difficulty in 

solving the normal equation, because it becomes quite ill-conditioned as the degree 

of polynomial increases. Orthogonal polynomials avoid this difficulty, but there is a 

case in which they are not satisfactory. 

Recently, data-fitting using spline functions has been studied. Sometimes the 

spline functions seem more adequate than orthogonal polynomials. In [3], the spline 

function is represented as 

( 1) 

where xt's are a set of joints. But eq.(1) is ill-conditioned and cumbersome to evaluate 

for the large m and J. 
Here, a new algorithm is given in which the normal equation is not ill-conditioned. 
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2. Representation of a Spline Function 

Let S(x) be a cubic spline function having the equidistant knots x<i)(i=O, 1, ... , 

n) and satisfying the equation 

(i=O, 1, ... , n). 

In the interval [x<i-l)~x~x<i'] 

x(i)_x x-x<i-l) 
+--h~--y(i-l) + h y<ll, ( 2) 

where h=x<il-x<1-1lfl]. From the continuitv of S'(x) at x<il, we get the following 

equation 
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where 

and we set Mo=Mn=O. 

Let Dn be the following determinant 
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From eq. (5) we get 

Writing eq. (3) as 
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the element of A-1 (inverse matrix of A) 1s: 

A _1 _ (-l)i+iDi-1Dn-1-j 

l,J - 21-'Dn-1 

A. __ 1 _ (-l)i+iDj-1Dn-!__~i_ 
i,J - 2t-iDn-1 

and IAl=Dn+ 

From eqs. (7) and (8), we have 

n-1 _ n-1 _ y<f+ll-2y<f>+y<f-1) _ n 
Mi=~At,i 1dj=~At,j 1~--- ~~~--=~a,,1yU>, 

J=l J=l h2/3 j=O 

where 

Substitution of Mt of eq. (9) into eq. (2) gives 

where 

/3i(x) 

(i)_ _ (i-1) 

+~ (i-1) + X X (i) 
h y h y ' 

(x-x<i-1))3 
6h 

x-x<t-1) l 
6 h. 

3. Data-fittin~ by the Spline 
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( 7) 

( 8) 

('9) 

<(10) 

(11) 

(12) 

Let Xk(k=l, 2, ... , N) be given values of an independent real variable x. Suppose 

that corresponding to each value Xk we have observed value /k which generally will 

, Xi X2 X3 , 
' _j__L__ ______________ _ 

x<Ol x<1> 
XN__L_ 

x<nl 

Fig. 1. Representation of data fitting by a spline function. 
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be in error (Fig. 1). We use a spline function (11) for the least squares approximation. 

The length of each interval Xk-Xk-I may be different. We suppose N>n+l, and 

x<0>;£xk;£x(n) (k=l, 2, ... , N). Let minimum and maximum Xk for x<t-I);£xk;£x<i) 

be Xp; and xq; respectively. Then the sum of the squares of the residual becomes 

(13) 

Differentiating F(y(O),y(l), ... ,y<n)) with y(i) (i=O, 1, ... , n) and setting to zero, 

oF(y(O),y(l), ... ,_y(n))__o 
oy<i) - (i=O, 1, ... , n), (14) 

we get the normal equation 

to,o to,1 

/1,0 /1,1 

(15) 

The matrix {tm,r) is symmetric and its element tm,r is expressed as follows. 

lm,m= Vm,m+Wm,m+Cm,m+Um,m+Zm,m+Em+Rm, (16) 

lm+1,m= Vm+1,m+Wm+1,m+Cm+1,m+ Um+1.m+Zm+1,m+Bm+I.m, (17) 

lm-1,m= Vm-1,m+Wm-1.m+Cm-1,m+ Um-1,m+Zm-1,m+Jm-l,m; (18) 

tr,m= Vr,m+Wr,m+Cr,m+ Ur,m+Zr,m (19) 

(r~m+2 or m~r+2), 

where 

Qm+l 

Wr,m= ~ {(x<m+I)_xk)/h) {bm+1(xk)am,r+.Bm+1(xk)am+1,r), (21) 
k=Pm+ t 

Qr+ 1 

Cr,m= ~ {(x(r+l)_xk)/h) {br+1(Xk)ar,m+.Br+1(Xk)ar+1,m), (22) 
k=P,+1 

Qr+ 1 

Er= ~ {(x<r+I)_xk)/h) 2, (25) 
k=P,+ 1 
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qm 

Jr,m= I.: {(x<m)_xk)/h) {(xk-x<'>)/h), 
k=Pm 

W,,n=Cn,m= Ur,o=Zo,m=O, 

Ro=En=O 

(O~r, m~n). 

Moreover if we set 

then we have 
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(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

The matrix {tr,m} has an element that becomes smaller in absolute as it is apart from 

the diagonal, and is not ill-conditioned. 

4. Unbiased Estimator of Variance of Error 

Suppose the fk in eq.(13) is expressed for [x<i-I)~xk~x<i)] (i=l, 2, ... , n) as 

n 
/k=S(xk) +sk= ~ {Mxk)at-1,J+,Bt(Xk) at,J} yU> 

j=O 

x<i)-Xk Xk-x(i-l) 
+~-h~-y(i-1)+ h y<i)+sk, 

Ek is an error that has an expectation and variance 

E[sk]=O, 

V[sk]=a2. } 

(33) 

(34) 

The estimators of the regression coefficients y<0>, y(l>, ... , y<n) are written as y<0>, jU>, 
•(n) ... ,y . With these estimators, the sum of the squares of the residual is 

Determining y<0>,yU>, ... ,y<n> to minimize S, we get 

(35) 



242 Kozo ICHIDA Fujiichi YOSHIMOTO and Takeshi KIYONO 

1 to,o to,1 

I '1.0 11,1 

l,L , .. , .... 
(36) 

The solution _p(il (i=O, 1, .. , n) of eq. (36) gives the estimator of the regression 

coefficients y(O. We define column vectors j, and y of which _p(il and y<1> (i=O, 1, ... , 

n) are respective clements. Then eq. (36) is written as 

where T= {tr,m). From eq. (34) the expectation of fk for [x(i-1>;;;;xk;;;;x(i)J 1s 

We now have the following lemma. 

Lemma 1 

Proof. 

From cqs. (29)~(32), 

n n-1 n n 

(37) 

(38) 

(39) 

= ~ Vo,my<m>+ ~ Wo,my<m>+ ~ Uo,my(m>+ ~ Co,my<m>+Eoy<0> 
m=0 m=O m=l m=0 

n 
+ Jo,1y<1> = ~ to,rny<m). 

n 
= ~ lr,mY(m). 

m=o 

m=o 
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n 
= ~ ln,mY(m). 

m=O 

Writing eq. (39) as 

Ty=E[g], 

we have 

From eq. (37), we get 

y=T-Ig. 

The expectation of eq. ( 42) become 

i.e., 

E[_p(r)] =y(r) (r=O, 1, ... , n). 

Lemma 2 

Proof. 

For l~r, m~n-1 
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(40) 

(41) 

(42) 

(43) 

(44) 

(45) 
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i) r~m, r~m+l, r~m-1 

C ov[gr, gm] =E[ tl j~; (bi(Xk)at-1,r+tJ,(xk)at,r) (bt(Xk)at-1,m 

~J [ qm Xk-x(m-1) 
+f1m+1(Xk)am-1,r)0k2 + E ~ h (bm(Xk)am-1,r 

k-Pm 

+f1m(xk)am,r)0 k2] 

=( Vr,m+ Wr,m+ Ur,m+Zr,m+Cr,m)a2 =tr,ma2 . 

ii) r=m 

Cov[gm, gm]=( Vm,m+Wm,m+ Um,m+Zm,m+Cm,m+Em+Rm)a2 

=tm,ma2. 

iii) r=m+l 

C ov[gm+1, gm]=( V m+l,m + W m+l,m + Um+I,m + Zm+l,m +Cm+1,m 

+ Bm+1,m)a2=tm+1,ma2. 

iv) r=m-1 

C ov[gm-1, gm]=( V m-1,m + W m-1,m + Um-1,m + Zm-1,m +Cm-1,m 

+ .f m-1,m)a2=tm-1,ma2• 

For r=O, l~m~n-l 
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i) m~l 

Co v[go, gm]= ( Vo,m + W o,m + Uo,m + C o,m)a2 =lo,ma2• 

ii) m=l 

C ov[go, g1] =( Vo,1 + Wo,1 + Uo,1 +Co,1 + Jo,1)a2=to,1a2. 

For_r=m=O 

For r=O, m=n 

For m=O, l~r~n-1 and m=O, r=n we have the result in eq. (45) similarly. 

From lemma 1 and 2, we have the following theorem. 
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Theorem: Let Sm be the minimum of the sum of the squares of the residual. Then 

Sm 
N-n-1 

is an unbiased estimator of a2• 

Proof: 

From eqs. (42) (44) and lemma 2, the covariance matrix becomes 

{Cov[JW>,y<m)]} = {[(j(r)_y(r)) (y(m)_y(ml)]} 

=[(y-y) (y-y)'] 

=E[T-1(g-E[g]) (g-E[g])'T-1] 

=T-1E[(g-E[g]) (g-E[g])tJT-1 

=T-l(Ta2)T-1= {dr,m}a2, 

where {dr,m) =D=T-1. 

The minimum of the sum of the squares of the residual becomes 

(46) 
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(47) 

The expectation of the first term of the righthand side in eq. (47) is 

The expectation of the second term is 
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Therefore we have 

E[Sm]=E[,t J~/k2]-E[rty(r>gr] 
=Na2-(n+ l)a2=(N-n- l)a2, 

which complete the proof. 

25 
Number of knots n 

Fig. 2. Graph of Se of example 1. 
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In practice, since we do not yet know the appropriate n, we would solve the normal 

equation (37) for n=l, 2, ... , and compute Se, to continue as long as Se decreases 

significantly with an increasing n. As soon as a value of n is reached after which 

no significant decrease occurs in Se, then we use this n for the desired least squares 

approximation. 

5. Numerical Examples 

Example 1 The data used for this example are values of sin x rounded to 4 decimal 

places, for Xk=0°(1°)40°. In Fig. 2 we plot Se against n(x<0>=0°, x<n>=40°), and for 

n=14 S(x) is drawn in Fig. 3. 

Example 2 This example is due to Powell [2]. The data is given by 

for Xk=0.005(0.01)0.995. The ek is an error which is independent for each Xk. Its 

expectation and variance are O and 4 respectively. The figure of Se is plotted in 

Fig. 4 (x<Ol=0, x<n>=l.0) and S(x) is drawn for n=ll in Fig. 5. 

These numerical examples were done with FACOM 230-60 of Data Processing 

Center of Kyoto University. 

0.5 

0 

o· 

h = sin xk, 0° ( 1°) 40° 

rounded to 4 decimal places 

20· 

Fig. 3. Computed result of example 1. 
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Number of knots n 

Fig. 4. Graph of Se of example 2. 

X X 

I 
f I<= 0.01 + (Xk-Q.3)2 + £k 

E(£1<) = 0 
V(Ekl = 4 
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Fig. 5. Computed result of example 2. 
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