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Abstract 

This paper describes some basic properties of the Fourier series, the finite Fourier 
approximation and the method of applying them to the numerical analysis of the Laplace 
transform. Some considerations of error analysis in numerical treaties and some numerical 
examples are given. 

1. Introduction 

393 

In the previous paper1
), we reported the method of determining the time domain 

solutions numerically from the operational functions (Laplace transform) by using 

the Fourier series technique. The method is very useful to engineering applica

tions because of the following reasons. 

1) In the analysis, we can get numerical solutions easily when their analytical 

forms are unknown or very complicated. 

2) The method can be applied to matrix functions easily. 

3) By applying the Fast Fourier Transform method, we can get numerical 

solutions with desired accuracy in a little computational time. 

In the previous paper, the principle of the method and some numerical ex

amples were shown. Some considerations of the error analysis were also shown, but 

sufficient discussions were not given. 

Therefore, the main purpose of this paper is to further develop the discussions 

which were not sufficient in the previous paper. For this purpose, we shall show 

some basic properties of the Fourier series and the finite Fourier approximation. 

Also, we shall give some numerical examples and some considerations of error analy

sis. For simplicity, we shall treat of scaler functions here. The same discussions 

are also applied to matrix functions. 
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2. Fourier series and finite Fourier appro:ximation2>•3> 

Here we shall show some basic properties of Fourier series and finite Fourier 

approximation. First we shall show following theorems. 

Theorem 1: Consider a periodic function x(t) of period 2T which is sum

mable in the sense of Lebesgue, and has a bounded variation in the neighborhood 

of t = t. Then, for the partial sum of Fourier series, 

where 

we have 

We can write 

Sn(t) = iJ X,.eiJ,(,t/T>t 
·$'!&-ff 

X,, = _l_f 2
T x(t)e-;l,(,tJT>tdt 

2T Jo 

S,.(t) = x(t-0) +x(t+O) 
2 

x(t) = ~ X,,e;•c,.JT>t 
k--oo 

Then, by the above thorem: 

n-+oo. 

. {x(t) t: continuous point of x(t) 

x(t) = x(t-0) ;x(t +0) 
t: discontinuous point of x(t). 

Theorem 2: For (2.4) we have 

//xllL2 = IIX/112 
where 

(2.3) 

(2.1) 

(2.2) 

* * * 

(2.4) 

(2.5) 

* * * 
By the above theorem, the Fourier series expansion of x (t) defines an isometric 

operator from L2-space to l2-space and conserves all the properties of the topological 

space related to the algebraic operations and the norm. 

For the finite Fourier approximation of 2N frequency spectra X,.'s (k=O~ 

2N-1 ), from (2.4), we have 

(2.6) 

and if X,.'s are real numbers, from the periodicity of complex exponential function, 

x(2T -t) = x(t) (2.7) 
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Therefore, we can get the time function x(t) only in the interval O~t< T. In (2.2), 

if integral is approximated by finite series of sample points 2N 

X2N-I, = x: 
and we can get only N frequency spectra. 

(2.8) 

This effect is called aliase and for band limited signals this phenomenon is famous 

as the sampling theory. 

3. Inverse Laplace transform 

When a Laplace transform X(s) is given, its time function x(t) is given numerically 

[()4 

a=0.25 T=20 K=512 
( s I I 

I X s) = s2 +I' s' vsz+l 

2 X(s)·= _I_ 

3 .X(s) = 

4 X(s) = 

2 

1O50~~~5-~~-~--L<L---'----'-L----'---4~0-t 
10 , 15 20 25 30 35 

Fig. 1. Error for various functions 
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as follows1
'. 

x(n 2;) = e2

a;/K R.[,Jx( a+ik; )e'2
~nk/K _½X(a)J} (S.l) 

n = 0, I, 2, ···, K - I. 

This is of the same form as (2.6), but here X(a+ihr:/T) is a complex number and 

an aliase effect does not appear. Therefore, we can get a numerical solution in the 

interval 0~t<2T. 

When the parameters a and T are given, the error caused by (3. l) depends 

heavily on the value of Kand function X(s). Fig. l shows the error for various 

a=0.25 T=20 

s 
X (s) = s2+ I 

-4 
10 o~-~5---,~o---1~5--~2~0--2~5---3~0--

Fig. 2. Error for various K 
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functions X(s) at constant Kand Fig. 2 for same function at various value of K, 

computed by ( 3. l) using a Fast Fourier transform. 

Truncation error at t = t,. caused by (3. l) is given as 

(3.2) 

and when t,.= T we have 

(3.3) 

In lamped constants systems, operational function of desired variables are 

given by 

X(s) = N(s)/M(s) l 
M(s) polynomial of s with degree m 

N (s) polynomial of s with degree n 

m~n+l 

Therefore, if K is large we have 

and 

R.X (s) oc _!___ 
K2 

s = a+iKrc/T 

(3.4) 

(3.5) 

At any t,., imaginary part of X(s) affects e(t,.). The evaluation of e(t,.) is 

very complicated and especially in the interval T < t < 2 T e ( t,.) increases more 

rapidly than in O::;;t::;; T by the factor eat. 

For distributed constants systems, operational functions of desired variables 

are given by 

X(s) = e-Qcs'N(s)/M(s) (3.7) 

and X(s) decreases more rapidly by the factor e-Qcs) than in the case of lamped 

constants systems. 

From Fig. l, we know that for a various function, graph of e(t) to t is of a 

like shape, from Fig. 2, the truncation error did not improve very much in the 

interval T < t < 2 T by increasing the value of K. Therefore, in applications we 
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do not need a detailed discussion to determine the value of e(t); and if the para

meters are selected as a T =5 and K =256, we can get a sufficient numerical value 

of x(t) in the interval 0:St:S T. 

4. Laplace transform 

When a function x(t) is given, its Laplace transform is given as 

X(a+ih/T) -1: x,(ti,-••,-;"•ir>Jt } 

xp(t) = x(t) + ~ e- 20"Tx(t+2nT). 
•-1 

(4.1) 

For the inverse Laplace transform, we need a complex frequency spectra X 

(a+iktr:/T) (k=O, 1, ···, K -1) and we can get them numerically by the same 

method as in the case of the inverse Laplace transform. However, here, the 

effects of aliase and discontinuity of x(t) must be considered. In 3.3 of the 

previous paper1>, these effects have not been stated and discussions stated there 

must be corrected as follows. 

Theoretically, X(a+iktr:/T) is given by integral transform, and therefore the 

discontinuous points of x(t) do not cause any influence. However, numerically, the 

relation between x(t) and X(a+iktr:/T) is given by Theorem 1. In the Laplace 

transform, function x(t) to be considered is equal to O in t<O, 

Therefore, approximately, we have 

and if we need K frequency spectra, N must be determined as N > 2K by the aliase 

effect. In (4.2) if x(t) is discontinous at t = t,., then we must correct x(t,.) by 

l 1 l x(t,.) = x(t,.-0)+-a,. = x(t,.+0)--a,. 
2 2 

a,.= x(t,.+O)-x(t,.-0). 

In using ( 4.2) two kind of errors are caused, which are 

e1 in approximating xp(t) by x(t) 

e2 in approximating integral by the finite series. 

For e1 we have 

(4.3) 

el= I [Tx(t)e-"'e-iWtdt/ :S [Tlx(t) 1e-"'dts~e-2•Ti 
(4.4) 

M = sup lx(t) I 
tE<H',•1 
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Generally, Fourier coefficients are proportional to IJKP(p~ 1) as K increases 

and they are very small. Therefore, the effects of e1 and e2 cannot be ignored. 

As with the case of analysing linear systems with arbitrary input functions, we must 

get a numerical solution by (3.1) using a frequency spectra given by (4.2). In that 

case, e1 and e2 must as little as possible, for by inversion formula they are magnified 

at t=tn 

(4.5) 

To reduce e1 we must use x(t)+ ~ e- 20"Tx(t+2nT) instead of x(t), but it is 
•=l 

6 
102 ,;I 

-5 
10 

a= 0.25 T = 20 

cost - operational solution 
N= 1024 

- time solution 
K=5l2 

-3 
10 

Fig. 3. Error in using (4.2) and (3.2) 
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pretty difficult in a general case because we cannot know the value of x(t) at 

large t. To reduce e2 we must increase the number of sample points N and pay 

attention to the discontinuous points of x(t) if they exist. 

In Fig. 3, a numerical example of error analysis is shown. First, for x(t) = 

cost(a=0.25, T=20andN=1024) by (4.2) 512 spectra have been computed and 

then, using them by (3. l) numerical solutions have been computed. This provided 

a fairly good approximation in O~t< T. 

5. Conclusion 

As mentioned above, some basic properties of the Fourier series and the finite 

Fourier approximation are given; and are applied to the numerical analysis of 

Laplace transform. Some considerations of error analysis and numerical examples 

are also shown. The method, along with that in the previous paper should be a very 

helpful tool in engineering applications. 

Here digital computations were carried out by F ACOM 230-60 in the Data 

Processing Center of Kyoto University. 
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