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Abstract 

In the connection of frequently used structural members of long-spanned bridges, 
tbe aeroelastic characteristics of a square prism are investigated, based on the quasi-steady 
theory. The experimental results of the wind tunnel tests are compared with the theo· 
retical characteristics, using the theory given by G. V. Parkinson. In this paper, some 
considerations on the critical wind velocity for galloping phenomenon of square prism are 
presented. Also, tbe qualitataive method to determine the induced amplitude is discussed. 

Introduction 

19 

Recent trends of high-rise and long spanned structures in civil engineering fields 

now more than ever require accurate knowledge about natural external loads such as 

seismic and wind forces, because of the large size and the long natural period of struc

tures. There are noted numerous investigations on aerodynamic stability problems 

on suspension bridges since the accident of the Tacoma Narrows Bridge in 1940. 

However one should note that the difficulties in an analysis of this kind are due to 

the facts that most of the structures are of an unstream-like crosssectional form, and 

the air stream considered is eventually anisotropically turbulent. In this report, one 

of the fundamental characteristics associated with a square prism in uniform flow 

is treated in order to clarify the so-called galloping type instability. 

As already investigated, two types of aerodynamic characteristics are mentioned 

for a square prism as dynamic responses in a plane normal to the mean flow, namely 

aeolian and galloping oscillations, respectively. The aeolian oscillation is generally 

a kind of forced oscillation, caused by the periodical vortex in the back flow of the 

body. On the other hand, the galloping oscillation is considered a kind of self-con-
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Fig. 1. Aerodynamic characteristics of square prism (by C. Scruton). 

trolled oscillation. These unstable phenomena are known to occur when the velocity 

of the wind reaches a certain level, which stability diagram is exemplified by Fig. 11> 

as reported by C. Scruton. This figure shows the relation of the aeolian and galloping 

critical wind velocities with the mass and damping effects of the structures. The non

dimensional aeolian critical velocity is independent of the mass and damping of struc

tures, while the galloping velocity increases almost linearly with the mass and damping. 

However, Scruton's result show only qualitative characteristics. The quantative studies 

of these phenomena were reported by G. V. Parkinson2> and M. Novak,3) based on the 

quasi-steady theory to explain the galloping phenomenon particularly. 

In addition to the characteristics mentioned above, in the low wind velocity, 
the characteristics of increasing the damping of structures together with the wind 
velocity are pointed out very recently by several researchers, K. Washizu,4) M. Ito5) 
and N. Shiraishi.6> Furthermore, in the frequency characteristics, the rock-in state 
as a kind of aeolian oscillation is discussed by N. Shiraishi, M. Matsumoto, Y. Mori
mitsu,7> et al. 

In this paper, the galloping phenomena of the square prism in a two dimensional 
uniform flow are discussed by using the quasi-steady theory mentioned above, and 
then they are compared with the results reported by G. V. Parkinson. 

Aerostatical Forces 

Generally, the aerostatical forces acting on variable sections are related with 
the angle of attack of the wind. We call the forces in the wind direction the drag 
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Fig. 3. Characteristics of lift and drag coefficients v.s. angle of attack 
(experimental results). 

force or the lift force respectively. Besides, we define the angle of attack as positive 

when the leading side of the section rises up as shown in Fig. 2. 

Defining the aerostatical forces and the angle of attack as mentioned above, we 

can show the experimental results of the lift force and the drag force acting on a square 

prism (vs the angle of attack) in Fig. 3. In our experiments, a sectional model with 

the dimensions of the cross section 20 cm X 20 cm and span length 93 cm is used, 

and the wind tunnel used here is located at the Department of Civil Engineering m 

Kyoto University. These results give us much information as follows; 

(i) When the angle of attack is positive, the lift forces of the lift coefficient are 

negative. 

(ii) The particular changes of both the lift and drag coefficient are recognized 

at the angle of attack 13°. These characteristics are thought to be caused by the 

reattachment of the separated flow at the leading corner of the square section. 

(iii) The drag coefficient is about 1.5 at the angle of attack 0°, which is rather 

small in comparison with the one reported before, 2.0. The reasons for this difference 
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are thought to be based on the condition of the surface of the model, the scale of the 

section and the Reynolds number in the experiments etc. 

Formulation of Aerodynamical Forces 

In the quasi-steady theory, the aerodynamical forces acting on an oscillating 

square prism in a flow are related with the aerostatical forces by the relative angle 

of attack as follows; 

a= arctan (x/U) 

' L 

F 

D 

T 
X 

Fig. 4. Direction of aerostatic forces and Induced angle of attack. 

(1) 

Then, the aerodynamical forces inducing the oscillation in the direction normal to 

the flow (Fin Fig. 4), are thought to be the sum of the vector components of the lift 

and the drag force reduced by the relative velocity, U*. On the other hand, this aero

dynamical force F is represented as follows; 

(2) 

in which the symbols, p, U, A and CF represent the air density, the mean velocity 

of flow, the revealed area of the section and the coefficient of the aerodynamical force, 

respectively. Hence, we can get the following equation by considering the relative 

angle of attack given by eq. (1) and using the lift and the drag coefficients, CL and C n. 

Hereupon, use is made of the following; 

and 

(i) the relative angle of attack is expanded in a senes of (x/U), 

(ii) the higher order terms are neglected 

(3) 

(iii) the characteristics of the lift and the drag coefficient (vs the angle of attck) 

are considered. 

We can express the aerodynamical force coefficient CF in eq. (3) as an odd function 

up to seventh order of (x/ U) such as; 
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( 4) 

On the other hand, we show our experimental results of the aerostatical coefficient CF 

(vs the angle of attack) in Fig. 5, and the curves simulated by the following equations; 

CF= 0.5( b )+52.67(;;) 
3 
+1760.18( b) 5 -44171.9(;;) 7 

( 5) 

CF= 2.69( b )-168( b )3 +6270( b )5-59900( b r (6) 

in Fig. 6. In this figure, the solid line shows the curve calculated by eq. (5) obtained 

by our experimental results shown in Fig. 5. The dotted line shows the curv~ calculated 

by eq. (6) as reported by G. V. Parkinson. When we compare CF gained by our 

experiments with the CF reported by G. V. Parkinson, a rather large difference is 

recognized. This difference is thought to be caused by the several differences of the 

experimental conditions like as follows: 

relative angle of attock 

0.4 I rod ion) 

0.5 

Fig. 6. Simulated curves of CF coefficient (Solid line is obtained by 
authors and dotted line is reported by G. V. Parkinson.). 
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(i) as regards Reynolds' number, about 200,000 in our experiment, on the other 

hand, about 66,000 in G. V. Parkinson's, 

(ii) as regards the dimension of the square section used in the experiments, 

20cmx20cm in ours, on the other hand 2inchx2inch in G. V. Parkinson's, 

and 

(iii) as for other factors, the differences of the dimension of the wind tunnel 

used, the effects of the section effects due to the model in the wind tunnel etc. 

Response Based on Quasi-steady Theory 

When the aerodynamical forces acting on the oscillating square prism are given 

by following equation; 

the system of the motion is nonlinear. The analysis of is nonlinear system has been 

already performed by G. V. Parkinson or M. Novak. The detailed process of the 

analysis is refered to references (2) or (3). In this paper we show only the brief process 

in the following. 

The equation of the motion of the square prism in the normal to the wind direction 

is expressed by using eq. (7) ; 

(8) 

in which the symbols, m, c, k and Fdyn represent the mass of the square prism per 

unit length, the damping constant, the stiffness of the spring and the aerodynamical 

force per unit length, respectively. By transforming eq. (8), we gain the following 

equation; 

pb { ( x ) ( x ) a ( x ) s ( x ) 7} =---,;;U2 k1 U -ka U +ks U -k7 U (9) 

in which, and 

Hereupon, we introduce two nondimensional parameters like as follows: 

V= U/2bwo ; reduced velocity 

and 

m 
mass parameter .---- ; - 21rpb2 

into eq. (9). Thus, we can obtain the following the nonlinear equation. 
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_ 2bw 02 v2 { ( x ) 3 ( x ) 5 ( x ) 7} - ---- -ka - +k5 - -k7 -
TTo V V V (10) 

In eq. (10), the coefficient of the first derivative of the deflectional response with respect 

to time(t) expresses the damping of the oscillating system at the reduced velocity, 

V. When this coefficient is zero, it is the boundary between the stable and the unstable 

conditions. Therefore, from this boundary condition, we can obtain the following 

critical reduced velocity. 

in which, 6 
_ m~o 
- 21rpb 2 

(11) 

; mass and damping parameter 

The critical equation shown in eq. (11) coincides with den Hartog's condition. In 

the next, by using the Krylov-Bogoliubov method in the analysis of the nonlinear 

equation shown in eq. (10), we can obtain the following high order algebraic function 

(equation) in regard to the nondimensional amplitude symbolized by (xo/2b). 

36 k7 -( xo ) 
6 

_ 5 k5 ( xo ) 
4+ 3 ka ( xo ) 

2+ 21rs -k = 0 
64 V6 2b 8 V4 2b 4 v2 2b V 1 (12) 

Hereupon, we introduce the following new variables defined as follows; 

Then, the characteristics of the solution, (x/2b)2, obtained from eq. (12) can be classified 

by the sign of (r3+s2) as following; 

r3+s2>0; one real solution and two complex solutions 

r3+s2=0; three real solutions (two of them are equal at least.) 

r3+s2>0; three real solutions. 

Furthermore, we can obtain the following two types of the critical reduced velocities 

which give the boundary of the hysterisis of the nonlinear response, respectively. 

21rs 
V1= M+N (13), and V _ 21rs 

2 - M-N (14) 

in which, the symbols M and N represent the coefficient; defined by the coefficients 

kt only, and they are given by the following equations, respectively. 
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lOks ( 40ks 2 k ) 
M= ki+ 35k7 189k7 - 3 

= {-4-( 2Qk5 2 _ )}312 
N 35k1 63k7 k3 

Therefore, the responses are shown as follows; 

(i) the nondimensional amplitude (xo/b) out of the hysterisis, 

( Xbo ) 0 = 2 ✓2 v[ ( ~) 1/ 3 { ( M- 2: 
+✓ (M- 2;E) 2 _N2) 113 +(M-~1[; 
✓ ( 21rE ) 2 ) 113} 4k 5 ] 112 

- M-----p- -N2 + 2lk7 (15) 

(ii) the nondime nsional amplitude (xo/b) in the hysterisis, 

(16) 

(17) 

As short discussions we can know the matters described as follows; 

(i) the critical reduced velocities obtained from eqs. (11), (13) and (14), namely 

Vo, Vi and Vi have the relation of the linearity with the nondimensional mass and 

damping parameter symbolized by E, 

(ii) the amplitudes of the response shown in eqs. (15), (16) and (17) are given 

as the functions of the reduced velocity, the mass and the damping of the structures. 

Numerical Caluculation 

Concerning the characteristics of the response of the square prism reduced by 

the quasi-steady theory, the critical reduced velocity and the nondimensional am

plitude depend upon the aerodynamic coefficients kt in the right hand side of eq. (4) 

and the mass and the damping parameter E of the structures. As described before, 

in these coefficients kt rather large differences containing the change of the sign are 

recognized between the results as reported by G. V. Parkinson and by us. Therefore, 
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the critical reduced velocity and the nondirnensional amplitude reduced by using 

two kinds of the results ki are thought to show different values of the same parameter 

e. In this section, for convenience we will call the computed results reduced by G. V. 

Parkinson's kt and ours, case 1 and case. 2 respectively. Then, the numerical calcu

lations were accomplished by using the electrical computor (FACOM 230-60) at Kyoto 

University. 

The aerodynamical coefficients used in the calculations are rewritten as follows; 

case 1. k1 =2.69, ka=168, ks=6270, k7=59900 

case 2. k1=0.50, ka=-52.67, ks=1760.18, k7=44171.9 

In the calculation, we change the parameter e from 0.1 up to 0.7 

(i) Critical Reduced Velocity 

Two types of the critical reduced velocity, namely those which give the starting 

of the oscillation and the boundary of the hysterisis of the response, are symbolized 

by the signs Vo, Vi respectively, and are computed from eqs. (11), (13) and (14). We 

show the results of the critical reduced velocities corresponding to the values of the 

parameter e in the following table. 

Table 1 critical reduced velocity of galloping 

mass and case 1 case 2 
damping 
parameter critical reduced velocity critical reduced velocity 

I 

I I I I I 
E I Vo V1 V2 Vo V1 V2 I 

0.1 0.234 0.289 0.429 1.257 0.272 2.790 

0.2 0.467 0.578 0.857 2.513 0.544 5.579 

0.3 0.701 0.867 1. 286 3.770 0.815 8.369 

0.4 0.934 1.156 1. 715 5.027 1.087 11.158 

0.5 1.168 1.445 2.143 6.283 1. 359 13.948 

0.6 1.411 1. 734 2.572 7.540 1.631 16.738 

0.7 1.635 2.023 3.001 8.796 1. 902 19.527 

As shown the upper table, the following relation in the three critical reduced velocities, 

Vo, Vi and Vi reduced from coefficients kt obtained by G. V. Parkinson is substantiated. 

Moreover, as regards the relation between the amplitude of the response and 

the reduced velocity, when the reduced velocity drops to Vo reaches Vo, the response 
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starts and then the amplitude grows with the increase of the reduced velocity up to 

Vi continuously. However, when the reduced velocity is Vi, the amplitude of the 

response grows up suddenly and discretely, and then grows up with the increase of 

the reduced velocity. On the contrary, the amplitude of the response becomes con

tinuously smaller with the decrease of the reduced velocity down to Vi. At the 

critical reduced velocity Vi, after the sudden change of the amplitude, the response 

becomes smaller and vanishes completely at the critical reduced velocity V0• 

On the other hand, when we use the coefficients, kt gained by our experiments, 

the relation is substantiated as follows; 

In this case, the response shows the following characteristics. Namely, at the critical 

reduced velocity Vo, the amplitude of the response starts suddenly and its magnitude 

is rather large. It then grows continuously with the increase of the reduced velocity. 

On the contrary, the response becomes smaller with the decrease of the reduced velocity 

down to the critical one, Vi- At this one Vi, the response suddenly vanishes to zero. 

As described above, as regards the characteristics of the response, rather large 

differences are recognized. Yet, as regards the critical reduced velocity which pre

dominantes the stability of the structures, we can list up Vo for case 1 and Vi for case 

2. Therefore, by the comparison of the critical reduced velocity Vo for case 1 with 

Vi for case 2, the latter is slightly larger than the former at the same values of the 

mass and damping parameter of the structures. 

However, as for the structures with a small mass and damping parameter, the 

predominant critical reduced velocities Vo for case 1 or Vi for case 2 are smaller than 

the aeolian critical reduced velocity V (nearly 1.5) or equal to the one. In such 

a case, as reported by C. Scruton, actually the response does not show the characteristics 

as described above, when the reduced velocity reaches to the aeolian one, the first 

response starts by the vortex excitation and then the response veers to the galloping 

oscillation with the increase of the reduced velocity. 

(ii) Characteristics of Response 

The nondimensional amplitudes of the structures with a square section to each 

reduced velocity at case 1 or case 2 are calculated from eqs. (15), (16) and (17). These 

results of case 1 or case 2 are shown in Fig. 7 or Fig. 8 respectively by using the pa

rameter symbolized by e (mass and damping parameter of the structures). From 

these results, the following characteristics of the response are pointed out in common 

with case 1 and case 2. Namely, the amplitudes in the region over the critical reduced 

velocity Vi grow up linearly with the increase of the reduced velocity. Furthermore, 

in the large amplitude the difference owing to the mass and damping parameter i; 
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is very small. However, in the small amplitude the characteristics of the amplitude 

containing a zero starting critical velocity are influenced conspicuously by the mass 

and damping parameter E. 

In comparison with the characteristics of the response reduced by the aerostatical 

coefficients kt reported by G. V. Parkinson (case 1) and the ones obtained by our ex

pariments (case 2), at the region over the critical reduced velocity Vi, the amplitude 

in case 1 is a little larger than in case 2 to the same reduced velocity and the mass and 

damping parameter E. Besides, as regards the amplitude at the lowest reduced velocity 

in the hysterisis - namely, the amplitude at the critical reduced velocity V1 - to each 

the mass and damping parameter E, the one in case 1 shows about 1.2 times value in 

case 2. 

From the above several results, in spite of the rather large difference of the aerosta

tical coefficients kt obtained by G. V. Parkinson's reports and the reports of our ex

periments as shown in eqs. (5) and (6), in the critical reduced velocity governing the 

stability of the aerodynamics of the structures with a square section the critical reduced 

velocity symbolized by Vo in case 1 is nearly equal to the one symbolized by Vi in 

case 2. Moreover, in the region over the critical reduced velocity Vi the great dif

ference of the amplitude between case 1 and case 2 is not recognized. 

Conclusion 

As mentioned before, using the quasi-steady theory to explain the characteristics 

of the aerodynamics of the square prism-galloping oscillation, the coefficients of the 

aerostatical force are considered essential factors. However, as regards the experi

mental results of the aerostatical force acting on a square section are concerned, there 

were some differences between the findings of G. V. Parkinson and our own. So in this 

paper, treating differences in the dynamical response according to the differences of 

the aerostatic coefficients, we consequently obtained the following results; 

(i) The equations of the oscillating system are nonlinear because of the nonlineari

ty of the aerostatical forces. Then, at a low wind velocity, note the difference in the 

forms of the hysterisis between G. V. Parkinson's and our reports. 

(ii) In the small amplitude of the response, the differences of the response due 

to the coefficients of the aerostatical force are remarkable. 

(iii) In the region over a certain level of the amplitude, one hardly recognizes 

the above discrepancy. 

(iv) As for the critical wind velocity, the differences between the results obtained 

by G. V. Parkinson and ours are small. 

In future works, we should like to study these aerostatical forces of the square prisms 
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with some kinds of the scales to consider the aerodynamical characteristics of the 

square section by combining the aerolian oscillation to the galloping oscillation in 

detail. 

Finally, the authors would like to acknowledge the valuable assistance and the 

sustaining efforts of Messers Tom Saito, Shigeo Takei and Shigeru Komae for the 

wind tunnel experiments. 
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