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For the purpose of contributing to the optimum design of the nonequilibrium diagonal 
MHD generator duct, the authors derive a new digital calculation from the basic quasi 

one-dimensional MHD equations of the diverging rectangular duct and the integrals which 
express the duct size or isentropic efficiency. The calculation is intended to minimize 
the duct size or maximize the efficiency for a given thermal input, when the applied mag
netic flux density, the mass flow rate and the duct inlet or outlet stagnation temperature 
and pressure of the working gas are held constant. 

1. Introduction 

In designing an MHD generator, it is necessary that the generator duct be con

structed in the optimum form. For example, when the thermal input, applied magnetic 

flux density, mass flow rate and inlet or outlet stagnation pressure and temperature are 

held constant, we should minimize the duct length, surface-area or volume, or maximize 

the isentropic efficiency of the duct for a given thermal input. According to such an 

idea, the authors and the others have already derived optimization theories of the 

equilibrium Faraday, Hall and diagonal MHD generator duct.1~ 5> 

For the optimization of the nonequilibrium Faraday generator duct, in which 

rare gas is used as the working fluid, some papers have been already published. How

ever, as regards the optimization of the diagonal duct, no paper is presented. In 

the rare gas plasma, electrothermal instabilities occur when a high magnetic flux 

density is applied; and they prevent the effective Hall parameter from becoming high. 

On the other hand, respecting the diagonal duct we can expect a good performance 

in the low Hall parameter, and moreover we can use it for a single load. So in this 
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paper, the authors investigate the optimization of the nonequilibrium diagonal MHD 

generator duct. 

In the analysis of the performance of the MHD generator, we use the quasi one

dimensional MHD equations, in which the friction and heat transfer at the duct walls, 

the segmented electrode effect, leakage current effect and electrode drop are included. 

Though the conventional calculations of output and efficiency for a large MHD gene

rator have been mainly based on averaged electron energy balance and electron density 

equations, where the fluctuations in the elastic collisions loss and in the electron tem

perature were neglected, in this paper more accurate calculation is made according 

to the Zampaglione theory.6> 

Moreover we derive the optimization theories of the duct of constant velocity, 

constant Mach or constant length. 

2. Basic Equations 

As is well known, the MHD flow in the diagonal generator duct (Fig. 1) is des

cribed by the following set of the quasi one-dimensional basic equations: 

puA = pouoA o = mo 

du dp 

continuity equation, 

pu dx + dx = fyB-dF momentum equation, 

energy equation, 

Load 

~~ Insulators 

Electrodes 

Fig. 1. Sketch of segmented electrode diagonal generator duct. 

( 1) 

(2) 

( 3) 
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p = pRT state equation, 

(.fx+a.f11)A = I current continuity equation, 

<left ) ./x = I+tlef/2 [Ex+tletf {uB(l-Ll)-Ey}] 

<left 
./11 = I+tlet/2 [ {Ey-uB(l-Ll)} +tle11Ex] 

Ohm's low, 

In these equations and Fig. 1 

A: duct cross-sectional area, 

a = tan 8: electrode inclination parameter*, 

B: magnetic flux density*, 

Cp = aR: specific heat* at constant pressure, 

Cv: specific heat* at constant volume, 

dF: friction loss on the duct wall, 

dQ: heat transfer loss on the duct wall, 

Ex, E 11 : x- and y- components of internal electric field 

intensity respectively, 

I: total current*, 

.fx,./11 : x- and J'- components of current density 

respectively, 

Mo: mass flow rate*, 

p: gas pressure, 

R: gas constant*, 

T: gas temperature, 

u: gas velocity, 

a= y/(y-1)*, 

tlett= effective Hall parameter, 

aett= effective electrical conductivity, 

Ll: dimensionless voltage drop*, 

8: electrode angle*, 

suffix O and 1: show the quantities m duct inlet and 

outlet respectively, 

shows the quantities which are assumed constant in 

analysis. 

(4) 

(5) 

(6) 

(7) 

(8) 

Next, as the estimation functions we adopt the integrals which represent the 

duct size and the isentropic efficiency, namely 



where 
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for 

for 

N=O, 

N=l, 

S = I1 1 2 = 4 j:{A+( ! !~) 2} 

112 

dx, 

J:IExJx+EyJylAdx 

l: duct length, 

V: duct volume, 

S: duct surface area, 

'T/t: isentropic efficiency, 

P 8 o and P 8 1: stagnation pressure at duct inlet and outlet, 

T 8 o: stagnation temperature at inlet. 

3. Electrical Conductivity, Hall Parameter and Losses 

3.1 Electrical conductivity and Hall parameter 
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( 9) 

(10) 

(11) 

(12) 

In this paper we assume that electrons lose their energy only by collisions and 

we neglect the radiation loss. Up to now, the power output and efficiency calculations 

for a large MHD generator have been mainly based on averaged electron energy 

balance and electron density equations, where fluctuations in the elastic collisions 

loss and in the electron temperature were neglected. However Zampaglione more 

accurately estimated the electron temperature for the Faraday generator; and his 

calculation results agreed more with experimental ones than the calculation by the 

old theory.6) 

And so we apply his theory to the diagonal generator. Then, the electron tem

perature Te in the duct becomes 

(13) 

where the effective electrical conductivity ae of the plasma, effective Hall parameter 

fJe and loading parameter K are defined by the following relations: 

(14) 
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<Jy> = 1;t2 {<E11>-uB+Pe<Ex>}, 

l+a 2 

K = - (Pe-a)uB (Ex>, 

(15) 

(16) 

where < > denotes the mean value in time and in the main stream within the cross 

section, and m and 8 are defined in Relations (19). 

In this connection, u in Eq. (13) is the laminar conductivity of a plasma bearing 

an electron current density <J>=(<.fx>2+<J11>2)112, which is the actual current density 

flowing through the generator, and P is the Hall parameter corresponding to u. 

When it is assumed that the electron density ne is given by Saha's equation and 

the mean electron collision frequency is given only by the collisions between the elec

trons and the seed atoms and between the former and the parent atoms, then 

u and p are given as follows: 

where 

e : electrical charge of electron, 

h: Plank's constant, 

k: Boltzman's constant, 

m: equivalent mass, 

me: electron mass, 

Q0 : collision cross-section between electron and parent 

gas atom, 

Q8 : collision cross-section between electron and seed atom, 

Te: electron temperature, 

Vi: ionized voltage of seed atom, 

Es: seed fraction, 

8: collision loss factor. 

(17) 

(18) 

(19) 

On the other hand <re and Pe are investigated through the experiment and the 

theory by Velikhof,7) Dykhne,8) Zampaglione,6> Evans9) and others. According to 

their discussions, we assume the following <re and Pe, 

(1) When P & Pcrtt, 

<re= u, 

Pe= p. } (20) 
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(2) When fJcrit ;;;;, fJ ;;;;, 10, 

'!.e_ - A Ps_ 
a- efJ' 

fJe = fJcrit, f 

37 

(21) 

where A e is a constant given by the experiment or the theory and fJcrit is the critical 
Hall parameter. 

(3) When fJ ~ 10, 

AefJcru l 
m vfJ, 

fJe = fJcrit• f 
(22) 

As the losses due to the leakage current in the generator duct and the finite segmented 
electrodes make the effective electrical conductivity low, we put the effective electrical 
conductivity aeff as follows: 

And we assume the effective Hall parameter {Jeff as follows: 

fJeff = fJe 

Here for the Faraday duct, the expression of A is derived as followslO,ll) 

A= ___ l __ ~ 
1 +__! ( fJe-0.4) 

s 

(23) 

(24) 

(25) 

where h, sand ~w are defined in Relations (27). However, for the diagonal duct the 
expression has not yet been obtained, and so for that expression, we assume A constant, 
considering Eq. (25). 

3.2 Friction and heat losses 

It is assumed that the friction loss dF and heat loss dQ are given as follows: 

2 
dF= if pu 2 Cf, 

4 Cf/2 
dQ = DpuCp l+VCf/2{JN (T8 -Tw), 

C _ {2.87 +0.65 log(x/R8)}-
2· 5 

f - l+r(y-l)Mo2/2 ' 

(26) 

r=f/A, 
fJN = 0.52( puv7:12-ks ) 0.45pro.s' 
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Cf: friction factor, 

D: hydraulic diameter, 

h : electrode height, 

ks: equivalent sand roughness (representing the roughness 

level of the plate), 

Mo: Mach number in the main stream, 

Pr: Prandtl number, 

r: recovery factor, 

s: electrode pitch, 

Ts: local stagnation temperature in the mam stream, 

T w: wall temperature, 

X: distance from the duct inlet, 

µ: viscosity of the gas, 

~w: electrical conductivity of duct wall. 

(27) 

Eq.s (26) are the ones which Schlichting has derived for the compressible turbulent 

boundary layer on the rough plate.12) 

4. Optimization Theory of Diverging Rectangular Duct 

4.1 Constant velocity duct 

In this article, let us discuss the optimization in the case of constant velocity, 

VlZ. u =uo. 

Now putting 

g = log(po/P), 

?; = log(To/ T), 

smce du/ dx = 0 in this case, Eq .s (2) and (3) are transformed as follows: 

dg aeffUoB 2{(l+a 2)+(,8eff2-a2),c}(l-L1) dF 
dx = ---- -(i+,Bef/2)(l+a2)p -----+y-, 

dS I(,8eff-a)B,c(l-L1) dQ 
dx- - (l+a 2)Aap + apu 0 ' 

where 

(28) 

(29) 

(30) 
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p = Po exp(-!), 

T= Toexp(-i), 

A= moRPTo exp(f-i), 
uo O 

uopoiexp(f-i) l+f3etf2 
K-1--~-~--~-~~~~ 

- moRTouoB(l-'1) ae11(fJetf-a) · 
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(31) 

From Eq. (13) the differential equations for the electron temperature Te are obtained 

as follows: 

(1) When fJ ~ f3crit, 

(2) When fJcrit ~ /3 ~ 10, 

(3) When f3 ~ 10, 

In these equations 

Cl<= {l-(/n.fi2e+.fi2/11e))-l(/n.fi2p+.fi2/11p), 

Ci,= {l-(/11/i2e+./i2/11e)}-1(-T+Ji1/i2T+./i2/llT), 

C2, = { l-/22e i,e ( ! + ~:) }-
1
/22e, 

C2, = -{ l-/22e i,c ( ! + ~:) }-\T +/22e), 

Ca,= {l-(/a1/a2e+/a2/a1e)}-1(/ai/a2p+/a2/a1p), 

Ca,= {l-(/a1/a2e+fa2/a1e)}-1(-T+fai/a2T+/a2/au), 

2uo2 132 
Ju = 3Sli'(l+a2) 1+/32 ' 

/12 = (l+a2)+K(f32-a 2)-(fJ-a)2(1-K)K, 

2uo 2 Ae 2 /3e 2 
/21 = ~~~-----c-'~~~ 

3SR(l+a2)(1+f3e2) ' 

uo2Ae2f3e2f3 
/ai = 15SR(l+a2)(1+f3e2) ' 

/a2 = (l+a 2)+K(/3e 2-a2)-(/3e-a)(l-K)K, 

2/u 
/llp = 1+/32 ' 

(32) 

(33) 

(34) 

(35) 
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2/11 
/ilT = - 1+(32' 

fu 1 
Jue= - 1+,s2 Te ' 

/i2p = 2 {a+K(/3-a)) { ~ +(1-K)(/3-a) 

+/3 2K{3( 8-a) +~2=~afl::::-12} 
1+132 ' 

/12r = 2{a+K({3-a)) {- ~ +(1-K)(/3-a) 

-/3 ~!1J(8-a)+(B2-2a§_=-ll} 
1+132 ' 

f _ 2{ + (/3- )} {-_§__ 2K/3(8-a)+(f32-2af3-1) 
12e - a K a 2 1+132 

+(}-+-1i)}~l' 
4 Te Te 

/22e = /21(/3e-a)(l-K) {a+K(/3e-a)), 

/31p =/31, 

/31T = -/31, 
/31 

/31e = - 2Te' 

/32p = 2(/3e-a)(l-K) {a+K(/3e-a)), 

/32r = -2(/3e-a)(l-K) {a+K(/3e-a)), 

h2e = 2(/3e-a)(l-K) {a+K(/3e-a)) (-1-+2't__)_L. 
2 Te Te 

And Eq .s (5), (6) and (7) are transformed as follows: 

ae11uoB(l-Ll) {/3 (1-af3ett)(f3eff-a)K} 
.fx = l+f3etf2 eff- 1+a2 , 

ae11uoB(l-Ll) { (/3ett 2-a 2)K} 
.fy = l+f3eff2 l+ 1+a2 ' 

E _ (/3eff-a)uoB(l-Ll)K 
X - 1+a2 

(36) 

(37) 

(38) 

Now when the values of T 8o, T 81, P 8o, uo, KO etc. are given, the values of the duct 

inlet and outlet temperature To and T1, the duct inlet pressure Po and 6 can be evaluated 

by the following relations: 

To= Tso-uo 2 / 2Cp, 

T1 = Ts1 -uo 2 / 2Cp, 

( 
u 0 2 )-a 

Po= Pso 1+ 2CpTo ' 

(39) 

(40) 

(41) 
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(42) 

If the numerical values of To, T1, Po and 6 are obtained with these equations, we can 

find the inlet value Teo of the electron temperature by solving numerically Eq. (13). 

When the numerical values of T 0, T1, Teo and etc. are decided, we can digitally solve 

Eq.s (29) to (38), for example, by the Runge-Kutta-Gill method, where in analysis we 

use ~ as the independent variable. Then, applying the obtained numerical solution 

to Eq.s (9) to (11), we can get the values of IN and T/i• When we give the various values 

to uo and KO as the parameters, we can find numerically the values of the optimum 

velocity uo=u0pt and the optimum inlet loading factor Ko=Kopt, which make the duct 

size minimum or the isentropic efficiency maximum. 

The values of the other quantities, for example, a, /3 and K can be digitally calcu

lated by using the values of ~' g, Te etc. 

Next, the power output Pw, the total heat loss PQ and the total friction loss Pi 

are evaluated by the following equations: 

(43) 

(44) 

(45) 

where 

(46) 

4.2 Constant Mach number duct 

Here we shall derive an optimization theory for a constant Mach number duct, 

i.e in the case of Mach number M =Mo. We can rewrite the basic flow equations 

(2) and (3) in terms of the stagnation values and by use of the adiabatic law 

log(Ps/P) = a log(Ts/ T) = a log(l+Xo). 

Namely putting 

ts= log(Pso/Ps), 

~s = log(Tso/ Ts), } 
Eq.s (3) and (2) are transformed as follows: 

(47) 

(48) 
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d(s I(f3etf-a)BK(l-LJ) dQ 
7hc- = a(l+Xo)pA(l+a 2) + a(l+Xo)up' (50) 

where 

Xo = (y-l)Mo2/2, 

P = Pso(l + X)-a exp ( -ls), 

u = {2CpTsoXo/ (l+Xo)} 112 exp (-(s/ 2), (51) 

A = moR (-Ls()_) 
112 

(1 +Xo)«-112Xo-112 exp (!s-(s / 2). 
Pso 2Cp 

Also the differential equations for the electron temperature are given by equations similar 

to Eq.s (32) to (34), where 

Cie = {l-T(/11/i2e+/12/11)}-1T(/11/i2p+/idup), 

Cu= {l-T(/u/i2e+/id11))-l 

X T(-Te/ T + /11/i2r+ /12/11r), 

{ 
2h2e ( 3 Ti )}-1 

C2e = 1-~ 4 + Te- h2e, 

{ 
2h2e ( 3 Ti )}-1 

C2, = - 1------.r;- 4 +-Te (Te+h2e), 

Cae = {l-T(/aifa2e+fada1e)J-1T(fada2p+fada1p), 

Ca,= {l-T(/a1fa2e+fada1e)J-l 

XT(/32f32r+fada2r-Te/ T), 
2yMo2 (32 

fu = 3S(l+a2) 1+{32 ' 

2yM o2 Ae 2f3e 2 

hl = 3S(l+a2)(1+f3e 2)' 

yM 02 Ae2 f3e2f3 
/al= 15S(l+a2)(1+f3e 2)' 

fa2 = (l+a 2)+f3e2-a2)K-(f3e-a) 2(1-K)K, 

h2e = T/21(1-K)(fJe-a) {a+K(f3e-a)). 

(52) 

and /12, /up, Jue, fur, f12p, /12r, /12e, fa1p, /alT, /a1e, fa2p, /a2r and /a2e are 
given by Eq.s (35). 

Jx, Ju and Ex are rewritten as follows: 

Ueff uB(l-LJ) { R 
Jx = l +f3eff2 ,-,eff 

(l-af3etf) (f3eJJ-a)K} 
1+a2 ' 

(53) 
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Next, the values of To, T1, Po and , 8 1 are determined by the following 

relations: 

To= Tso(l+Xo)-1, 

l T1 = Ts1 (l+Xo)-1, 
(54) 

Po= Pso(l+Xo)~a, 

,sl = log(Tso/ Ts1). 

When they are calculated by these equations, the value of Teo can be evaluated by 

solving Eq. (13). Then, when we give Mo and KO the various values, solve numerically 

Eq.s (13), (49) and (50) for those values and apply the results to Eq.s (9) to (11), we 

can obtain the values of Mopt and Kopt, which make the duct size minimum or the 

isentropic efficiency maximum. 

4.3 Constant length duct 

In this article we discuss the optimization in the case of the constant length. 

Now using Eq.s (48), Eq.s (2) and (3) are transformed to the following equations: 

UeffUB 2(1-Ll) { (f3ett 2-a2)K} d's dF 
(l+f3ett2)P l+ l+a2 -aX dx +p, (55) 

I(f3et1-a)BK(l-Ll) dQ 
a(l+X)pA(l+a2) + a(l+X)up ' 

(56) 

where 

X = (y-l)M2 / 2, 

P = Pso(l+X)-« exp(-ts), 

u= {2CpTsoX/(l+X)} 112 exp(-,8 /2), 

A= ;~: ( il7; )1'\1+x)"-112x-112 exp(ts-,s/2). l (57) 

Now let us investigate the case where Eq. (11) is used, which expresses the isentropic 

efficiency 711, as the estimation function. Eq. (11) becomes as follows: 

_ I B J: (f3eft-a) UKdx 

'T)t - moC--;rso(i+a2) 1-(Psi/Pso)11" . (58) 

Here, if we define x(x) as follows: 

(59) 

Eq. (58) is expressed by 

I B x(l) 
Y/i = moCpTso(l+a 2) 1-(Psi/Pso) 11" · (60) 
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Then our problem becomes the so-called terminal control one, and so we can solve this 

problem by means of Pontryagin's principle. 

When we put xs(x) and fs 

x(x) 
xs(x)= 1-CPs(x)/Pso} 11"' (61) 

dxs 
fs = fs(gs, ~s, X) = dx (62) 

respectively and express the right sides of Eq.s (55) and (56) with f.=f,(g8, ~s, X) and 

f ,=f ,(gs, ~s, X) respectively, we can obtain a set of simultaneous differential equations 

to be solved under the independent variable of x, the state variables of g8 and ~s and 

the control variable of X as follows: 

dxs 
dx = fs(gs, ~s, X), (63) 

dgs 
dx = J,(gs, ~s, X), (64) 

d~s 
dx =f,(gs, ~s, X), (65) 

dif,e 'cJfs .i, af. .i, 'iJf, 
dx = ags -'t'• ags -'f', ags ' (66) 

_dif,c = 'cJfs -if,. 'cJf. -if,, 'cJfc_ 
dx d~s d~s d~s ' 

(67) 

by Pontryagin's principle, where if,. and if,, are the adjoint variables pertaining to 

gs and ~8 respectively. 

The boundary conditions are given by 

gso =~so= 0, 

~sl = log(Tso/ Ts1), 

if,elx=t = 0. l 
On the other hand, Hamiltonian H is given by 

(68) 

(69) 

We can obtain the value of the optimum efficiency 'T/i =7Jt max and the optimum dis

tributions of gs, ~s, Te, X etc. by numerically solving Eq.s (13) and (63) to (68) under 

the boundary condition (68) and the following condition 

min H = constant 

for the specific values of Mo and Ko. 
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Moreover, by using the calculation results of ts, ts, Te and X for the various values 

of Mo and KO, the various values of 7/imax can be calculated. Therefore, we can find 

the values of Mopt and Kopt which make 7/lmax maximum. 

Also, the values of Mopt and Kopt, which make the duct size minimum, can be 

obtained by a treatment similar to the above-mentioned. 

5. Conclusion 

In Articles 4.1 and 4.2, with respect to the constant velocity and constant Mach 

number duct, the numerically solvable differential equations for the pressure, temper

ature and electron temperature have been derived from the basic MHD equations. 

In these equations, we have considered the electrode voltage drop, leakage current, 

segmented electrode effect, friction and heat transfer at the channel walls, electrothermal 

instabilities of plasma and non-elastic collision effect, 

When the differential equations can be solved in regard to the various values of 

uo or Mo and KO, and the results are applied to the estimation functions, we can find 

the values of Uopt or Mopt and Kopt, which make the estimation functions maximum 

or minimum, and give the optimum distribution of every quantity within the duct. 

Also in Article 4.3, an optimization theory of the constant length duct has been 

derived, in which Pontryagin's principle was used. 
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