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Abstract 

We propose one static and two dynamic industrial developmental planning models 
for choosing the strategic areas and for determining the associated scale of development 
over a multiperiod planning horizon. The criterion of those models is to minimize the 
present worth of the total cost required for a series of developmental programs, which 
must satisfy the given demand for development in the regions as a whole with respect to 
each planning period. We assume that the total cost function can be well specified as a 
step function of the scale. This way of treatment can be justified by taking account 
of the data availability and the existence of thresholds. Emphasis of this study is put on 
the formulation of three various models in the form of 0-1 Integer Programming, referring 
to their methods for solution and their sensitivity analysis. 

In most cases where we can break down the project into several parts and fulfill them 
in a series of stages, some additional cost accrues as compared with their joint fulfillment. 
The second model applies to the case where this additional cost, which we call "Set-up 
cost", is so small as to be negligible. The third model is devised for cases where the 
set-up cost stemming from the atagewise fulfillment will not be negligible. Thus the 
third model is the most general model among the proposed three models in this paper. 

1. Introduction 

71 

For purposes of industrial developmental planning, we propose one static and 

two dynamic models for choosing the strategic areas and for determining the associated 

scale of development over a multiperiod planning horizon. 

The criterion built into these models is to minimize the present value of the total 

cost required for a series of developmental programs. These programs must also 

satisfy the given demand for development in the regions as a whole with respect to 

each planning period. 

* Department of Transportation Engineering. 
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As for the total cost which is introduced as our objective function, it is highly 

dependent on the scale of development. Keeping this fact in mind, we assume that 

the total cost function can be well specified as a step function of the scale. This way 

of treatment might be further justified by taking account of the data availability and 

the existence of thresholds. 

We explicitly formulate three varied models in the form of 0-1 Integer Program
ming. 

The first can be called a static model, because time is not considered. It should 

be noted, however, that even this model works well so long as the total demand for 

the development is independent of the time. 

In contrast, the second and the third models are called dynamic ones in which 

the time span is dealt with. The difference between them can be stated as follows: 

In most cases when we can break down a project into several parts and carry 

them out at different times, some "additional cost" accrues as compared with the 

joint fulfillment of the project. Yet, there exist some cases, where this "additional 

cost" is so small as to be negligible. The second model applies to these cases. 

The third model is devised for cases in which the "additional cost" stemming 

from the stage-wise fulfillment will not be negligible. In this model, the objective 

function is quadratic. In other words, the third model is the most general model among 

the proposed three models in the following sense: 

(1) In the second model, we do not take into account the "additional costs" 
which are considered in the third model, 

(2) In the first static model, we do not deal with the time span which is con
sidered in the second and the third model. 

The solution of these three models is, then, illustrated with the aid of the Branch

and-Bound method and/or Dynamic Programming, which we modify to simplify 

the computation procedures. When there are competing methods for solution, we 

have compared one with another from the viewpoint of the facility of the computation 

and of the sensitivity analysis. 

The inputs in these models, such as the coefficients of our objective functions 

and total demand for the development, in most cases, have a certain amount of un

certainty. Therefore it is important to know the range of variation of these inputs 

within which the obtained optimal solution does not change. In this context, we 

have also investigated the feasibility of the models for such sensitivity analyses. 

2. Characterization of Cost Function 

For the purpose of simplicity, let us suppose a single candidate site for industrial 
development. 
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When it comes to allocating a certain amount of land for plants or factories in 

this area, we must construct new infrastructures, such as ports, railways, highways, 

etc. At the same time we must carry out well-organized zoning, in order to satisfy 

a certain level of quality, judging from social, economical and ecological criteria. 

Therefore, a project for industrial development is defined a a reasonable land-use 

plan with respect to the predetermined scale of development, e.g., the land area desig

nated for the installation of the plants. 

Once the infrastructure is completed, it can be very hard to reform it later on. 

In order to eliminate this difficulity, the projects under study must be presented as 

being mutually exclusive. In other words, if the infrastucture of a certain scale for 

the project can by no means be compatible with that of the broader one, those two 

projects are mutually exclusive. 

As a matter of fact, even to make one project requires much time and labor, since 

it must meet the multiple purposes regarding the land-use, transportation, water re

sources, etc. Therefore, practical restrictions force us to make only a few projects as

sociated with the different scales of development. This signifies that we have only 

a few points as data on the function which relates the cost to the scale of development. 

We then have to estimate the unknown costs sitting somewhere between two given pro

jects. 
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in Fig. 1. The problem is, then, how to estimate the cost when the scale takes on 

some value between OA8 , A 8B8 and/or B8C8 • 

There are at least two ways of solving this problem. The first one is to link the 

given points with continuous straight lines segments which are shown as dotted lines 

in Fig. 1. The second one is to assume that the cost is invariant in each internal; 

hence, it takes a form of a step function shown as the solid lines in Fig. 1. 

The latter is the development which we follow in this paper. The reasons for 

this are as follows : 

(1) Points A, B and C correspond to completely different plans of land-use. 

Hence, a project associated with point A, which we call project A, is only appropriate 

for a scale of development within the range of O through A 8 • In other words, over

expansion of the scale (-if we regard point A 8 as the critical one, then it constitutes the 

upper limit for project A) causes a rapid increase in the cost owing to the traffic con

gestion, lack of water, air pollution, etc. In this sense, project A cannot be used 

whenever the scale of development exceeds the point A8 in Fig. 1,1,2,3) 

Similarly the project associated with B, which we call project B, can be used 

unless the scale exceeds point B8 • 

(2) When the scale happens to be somewhere between A 8 and B8 , there might 

be a more appropriate project for that scale. This project has many facilities in it 

which have some minimum units, and hence cannot be broken down thereafter. This 

means that once the scale given by a project happens to exceed this minimum unit 

level, then the same project will raise the cost to the next larger meaningful unit. Now 

that these sorts of projects are discrete in terms of their capacity, we can conceptually 

assume the existence of thresholds somewhere between A and B. 1, 2, 3) 

(3) Furthermore, we have the following strong reason for justification. 

Consider a project which corresponds to the scale taking on some value between 

A 8 and B 8 , which we call project X. Then the cost for that project might be somewhere 

between Ac and Be, Obviously, there is no guarantee that it always lies on the line 

AB. 

Suppose that the precise cost for project X is estimated from the outset, which 

automatically requires new expenditures for time spent and labor used to make the 

project. Therefore, we can regard the total cost of Project X as the sum of the ex

penditures required to plan project X plus the estimated precise cost for project X. 

This total cost of X may be greater than, or equal to, or less than Be, 

If we adopt the viewpoint of the project maker, he would surely calculate the 

precise cost so long as he knows that the total cost of X is less than Be, 

In reality, however, he has not done that yet. This indicates that the total cost 

of X is greater than Be, whose project B can be used for the scale of X. In short, this 
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is the most crucial factor which prevents him from estimating the precise cost for 

project X. 

This suggests to us the efficiency of making use of Be as a substitute for the cost 

of project X. 

Thus if we can assume a step function as the cost function, any arbitary point on 

a segment parallel to the scale's axis (say C'C in Fig. 1.) which shows the same level 

of cost as CsC, has the scale of development less than or at most equal to Cs. There

fore we can conclude that project C is more efficient than any other project associated 

with any scale taking on some value within Bs to Cs. It suggests to us that we need 

to consider Point A, B and C alone as the efficient project in the situation under study. 

Finally, let us pay attention to one particular project. If it can be broken down 

into some feasible parts, then we can carry out the project in stages. In this case, our 

cost function also takes the form of a step function according to each small part. This 

is because any project always has some "minimum unit" which can by no means be 

broken down into smaller parts. This minimum unit takes a fundamental role in 

our analysis. 

3. The Static Model 

3.1. Assumption 

Suppose we take an economy, say a state, which intends to fulfill the industrial 

development based on the given economic plan as a whole. It can be divided into 

N regions as their suitable candidates for industrial development. In each region 

i, we also assume that there are M, development projects, mutually exclusive of the 

varied scales of fulfillment. 

Our criterion for optimality is to minimize the total cost required to accomplish 

an aim given by the economic planning agency. 

Under the assumption stated above, our model is entitled to choose the most 

strategic regions for industrial development as well as to determine the scale of opera

tions. 

3.2. Notations 

(i. j): indicates the (})th project in the (z")th region. 

D: required level of development for the region as a whole, as an 

aim given by the economic agency. 

At;: the scale of the (})th project m the (i)th region. 

Ct1: the cost of (i, j) 
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Xu= 1: signifies the fulfillment of (i, j) 

0 : otherwise 

3.3 Formulation 

s.t. 

Our model can be, then, formulated as follows; 

N M; 

min Z = .l .l CtJ XtJ 
i=l i=l 

M; 

_l X,1~ 1 
i=l 

(i= 1, ... ,N) 

N M; 

.l .l AuXu ~ D 
i=l J=l 

Xi1 = 0 or 1 (i= 1, ... , N; J= 1, ... , M,) 

3.4. Methods for solution 

There are two algorithms available: 

a. Dynamic Programming5,6) 

b. Branch-and-Bound7,S,9) 

(1) 

The sensitivity analysis may be worked out with respect to the following factors; 

a. Cu, A,1, D 

b. N, Mt 

DP is convenient for a sensitivity analysis with respect to N, Mi and D.4> Brach

and-bound is convenient for a sensitivity analysis with respect to Cu. 4> However, 

the sensitivity analysis of At1 is a remaining problem. 

Therefore, it is desirable to solve the static model by both DP and Branch-and

Bound. 

4. The Multistage Model without Set-up Cost 

4.1. Assumption 

The required level for the developmental plan must be given in advance with 

respect to each planning period. 

The developmental projects in each region are mutually exclusive as before. 

Furthermore, each of them (i,j) can be broken down into several parts (let it be KtJ 
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in general) so that we can carry out the initial projects in successive stages. To be 

more specific, each part can be labeled by a number in such a way that the part of 

number 1 can be carried out without any restriction. However, the following parts, 
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say the (k)th part can only be carried out provided that the parts, whose labels are 

less than k, have already been carried out before, or at the time when the (k)th part 

is going to be done. 

In most cases where we break down the initial project into several parts and then 

carry out them separately over time, some "additional costs" accrue as compared 

with the joint fulfillment of the initial project. However, in this case, we assume that 

such an additional cost does not occur no matter how we break down the initial project 

and carry them out disjointly. 

Thus the cost function for this type of stage development can be represented by 

a single step function. (see Fig. 2) 

Hence, our problem is to determine when the various parts of the separate projects 

should be carried out in their respective regions in order to minimizer the present value 

of the total cost. 

4.2. Notation 

(i, j, k): indicates the (k)th part with respect to the (j)th project in the 

(i)th region 

Dt: required level of development for the regions as a whole at 

period t, as an aim given by the economic agency. (t = 1, ... , T) 

L1AtJk: the net (or incremental) scale associated with the (k)th part 

with respect to the (j)th project in the (i)th region. (z' = 1, .. ·, N; 

j= 1, ... , Mi; k= 1, ... , K11) 

L1 CtJk: the net ( or incremental) cost associated with (i, j, k) 

L1CtJkt: the present value of L1Ctfk consumed at the period t. 

Mathematicaly it can be expressed as follows; 

where r: social discount rate. 

n: number of years per unit period. 

XtJkt = 1: signifies the fulfillment of (i, j, k) at period t 

0 : otherwise 

4.3 Formulation 

N M; Kij T 

min Z = ,l ,l ,l ,l L1 Ci,ktXtJkt 
t=l J=l k=l t=l 

(2•a) 
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s.t. (t= 1, ···, T) (2·b) 

T 

L X,1kt ~ 1 (i= 1, ···, N, j= 1, ···, M,, k= 1, ···, K11) (2•c) 
t=l 

t 

L X1J(k-l)T~XiJkt 
•=1 

( i=l, ···, N, j=l, ···, Mt ) 
k=2, ···, KtJ, t=l, ···, T 

(2·d) 

M; T 

L Ixw~1 (i= 1, ···, N) (2• e) 
1=1 tzl 

XtJkt = 0 or 1 (i=l, ··•,N, _i=l, ... ,M,, K=l, ... ,K,1, t=l, ···, T) 

The constraints may be interpreted as follows: 

(2·b) shows the total scales (or amounts which have been carried out before, or 

at each period t) must not be less than the required level for the industrial develop

mental plan at period t. 

(2·c) shows that once (i,j, k) is carried out at period t, then it can not be allowed 

to occur at any different period. In short, this reflects the assumption of the "ex

clusiveness" concerning the period. 

(2·d) shows that for each project j in each region i, any part k, but for k=l, can 

only be carried out provided that the foregoing parts (i.e. the 1,2, ... , and (k-l)th parts) 

have already been completed or are in progress at the same time as the kth parts. 

In short, this reflects the other assumption of "preoccupied rule" about the execution 

ordering. 

(2·e) shows that at most one project can be carried out for each region. This re

flects the assumption of "exclusiveness" concerning projects. 

4.4. Methods for Solution 

As far as the author's knowledge is concerned, the Branch-and-Bound method 

1s available for solution. 

The formulation and its algorithms using Dynamic Programming are remaining 

problems. 

A sensitivity analysis may be worked out with respect to the following factors; 

(a) LlCtJk, LlAtJk, Dt 

(b) N, M,, Ku, T 

(c) r 

Using the Branch-and-Bound procedure, the author developed an algorithm 
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for the sensitivity analysis with prespect to L1Ctik·10> However, the Sensitivity analysis 

for the other factors remains to be solved. 

5. The Multistage Model with Set-up Cost 

5.1. Assumption 

This model is devised to deal with case in which an additional cost accrues from 

the stage-wise fulfillment of the initial project, as compared with its joint fulfillment. 

Generally speaking, the grand total cost summed over the stagewise fulfillment 

of a certain project j in region i is much higher than that of joint fulfillment of the 

associated project. It might be attributed to the existence of a "set-up cost". 

In order to elucidate this point, let us consider the following case: 

We have a choice of whether a certain project j in region i should be fulfilled at 

one time or in stages over different periods. For simplicity we assume only two parts 

and two distinct periods. 

If we carry out the given project (i,j) at one time, then the total cost required 

for that project can be written as C, which is conceptually equal to LlC1 +LlC2, where 

LlC1 and LlC2 indicate the cost required for the fulfillment of the first and the second 

part, respectively. 

On the other hand, if we break down the same (i, j) into two parts, and fulfill 

them separately during two distinct periods, then the total cost may differ and hence 

it can be expressed as LlC1 +(LlC2+LlC2). Note that the latter is larger by L1C2, 

which we define an "additional cost" for (i,j,2) 
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Fig. 4. Total Cost Function with Set-up Cost. 

Diagrammatically, the above situations with 3 parts are represented in Figure 3. 

Figure 4 shows how the sequence of fulfillment affects the grand total cost under 

the same scale of a certain developmental project. 

Thus the cost function for the general multistage development cannot be re

presentes by a single curve but by a family of curves differentiated by the sequence of 

joint and disjoint fulfillment of the project parts. 

5.2. Notation 

..::::ICiJk: the required cost associated with the joint fulfillment of 

(i. j, k), 

..::::ICiJk: the additional cost of the separate fulfillment of (i, j, k), where 

k*l. 

In comparison with the case of the joint fulfillment, the partial cost for the disjoint 

fulfillment can be expressed as ..::::ICiik+..::::IC,1k• 

..::::ICiJkt: the present value of ..::::IC,;k consumed at period t, 
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.dCtJkt: the present value of .dCtJk consumed at period t, where 

b=l and t * 1. 

5.3. Formulation 

The constraints of this model do not differ from the previous ones (2·b),.....,(2·e). 

The difference emerges only in the objective function. 

It can be specified as follows: 

N M; Kij N M; T 

z = .l .l .l LlC,mXtJkl + .l .l .l LlCmtXtJlt 
i=l f=l k=l (=11=1 t=2 

(3) 

The interpretation of our new objective function is as follows: 

(1) Fz'-rst term; if (i, j, k) is carried out at the first period (that is, XtJkl = 1), then 

(i,j,1), ... (i,j,k) must be jointly carried out according to the assumption shown by the 

constraint (2·d). Therefore the coefficient of X111c1 should be .dCtJkl instead of LI 

ciJkl +.dCtJkl as shown by the first term in eq.(3). 

(2) Second term; for the first part of any project in any region, no matter whether it 

is carried out jointly or disjointly, its cost does not change as shown in Fig. 4. The 

second term of eq.(3) shows this fact. 

(3) Third term; suppose x,11ci=l (k#:1, t#:1). By virtue of the constraint (2·d), 

t 

,l Xtj(k-l)r ~ Xtjkt = 1 (4) 
•=1 

Furthermore, with the aid of (2,c) 

t T 

_l Xtf(k-1),+ _l Xt1(k-W ;:;;; 1 
r=l r•=t+l 

t 

,l XtJ(k-l)r;:;;; 1 (5) 
•=1 

From (4) and (5), we obtain the following relation: 

t t-l 

,l Xtj(k-l)r = ,l XtJ(k-l)r+X(j(k-l)t = 1 (6) 
•=l •=1 
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Keeping eq.(6) in mind, let us examine the following two possibilities separately: 

t-1 

a) l Xti(k-1)• = 1 and XtJ(k-l)t = 0 
•=1 

With XtJkt=l, this case implies that the (k-1) part has been carried out before the 

period t in which (i,j,k) is going to be carried out. 

Therefore this case implies the separate fulfillment of (i,j,k) at the period t. In 

this case, the coefficient of XtJkt in the objective function is 

t-1 

LICtJkt+LICt1kt (L XtJ<k-1>•) = LICukt+Llc,,kt (7) 
•=1 

as it should be. 

t-1 

b) l Xti(k-1)• = 0 and XtJ(k-l)t = 1 
•=1 

In this case, the fact that XtJ(k-l)t=l and Xt;kt=l jointly hold, implies that the 

(k)th stage is carried out together with the (k-l)th stage at the same period t. In 

this case, the coefficient of XtJkt in the objective function is 

t-1 

LICtjkt+LICtjkt (I XtJ(k-1)•) = LICtjkt (8) 
•=1 

as it should be. 

The above examinations exhaustively cover all cases of interest. 

5.4. Method for Solution 

One of methods for solving this model is the line~rlization of 0-1 Integer Quadratic 

Programming into 0-1 Integer Linear Programming.11) 

Concentrate our attention on the product terms 

t-1 

(I x,J<k-l>•)x,,kt 
•=l 

in eq.(3). We have already known from eq.(6) that 

t-l 

l XtJ(k-1)• = 0 or 1 (9) 
•=l 
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t-1 
To deal with the product term (~ XtJ(k-l)T)XtJkt, we need only replace it with 

T=l 

new variable Yttkt and add the three contraints: 

t-1 

(i) ,l XtJ(k-l)r+Xtjkt- ViJkt ;;:; 1 
r=l 

t-1 (10) 

(ii) - _L Xtj(k-l)r-Xijkt+2YtJkt;;:; 0 
r=l 

(iii) ViJkt = 0 or 1 

where 

i=l, ... , N, j=l, ... , Mt, k=2, ···, K11, t=2, ···, T 

To assess whether the constraints in eq.(10) will cause ViJkt to have the values of 
1-1 1-1 

(~ XtJ(k-1),)XtJkt would have, given specified values for ~ XtJ(k-1), and Xmct, let us 
T=l T=l 

examine the possible cases. 
1-1 

a) When ~ XtJ(k-·l)r=XtJkt=0, constraint (i) will not constrain Ytikt, but constraint 
T-1 

(ii) will cause YtJkt=0 as it should be. 
1-1 1-1 

b) When ~ Xtj(k-l)r=0, XtJkt=l or ~ Xtj(k-l)r=l, Xtjkt=0, constraint (ii) will 
~=1 T=l 

not constrain ViJkt, but (i) will cause ViJkt=0 as it should be. 
1-1 

c) When ~ XtJ(k-l)r=XtJkt=l, constraint (i) becomes 
T=l 

l+l-ViJkt ~ 1 or 

and constraint 2 becomes 

-l-I+2ViJkt;;:; 0 or 

ViJkt ;;;; l 

ViJkt;;:; 1 

Together (11) and (12) assure that Ytikt=l as it should be. 

(11) 

(12) 

Thus after the linearlization, we can use the Branch-and-Bound to solve the trans

formed 0-1 linear Integer Programming problem. 

6. Conclusion 

In this paper, we have proposed a static and two dynamic models for choosing the 

strategic areas and for determining the associated scale of industrial development over 

a multiperiod planning horizon. These three models were formulated by using 0-1 

IP. 

The main conclusions derived from the analysis in this paper are as follows: 

(1) A project for industrial development can be defined as a reasonable land-use plan 
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with respect to the predetermined scale of development. 

(2) It is reasonable to assume that the projects associated with the different scales 

are mutually exclusive. 

(3) Practical restrictions force us to make only a few projects associated with the 

different scales of development due to data availability. 

( 4) The static model can be easily formulated by what is called the Knapsack problem. 

As for the method for solution, both Dynamic Programming and Branch-and-Bound 

are convenient for a sensitivity analysis. 

(5) When we encounter cases where some project can be broken down into several 

parts so that we can carry them out in successive stages, the cost function in the model 

can be represented by a step function. 

(6) The case without "additional costs" accrued from the step-wise development has 

a single step cost function. On the contrary, the case with them has a family of step 

cost functions. Therefore, the latter can be represented by a quadratic form of cost 

function. Nonetheless, the constraints for the latter have exactly the same form as the 

former. 

(7) Among the necessary constraints for the dynamic models, even what is called 

"preoccupied rule" can be formulated by using the characteristics of binary variables. 

(8) By converting the quadratic form into a linear form of cost function, we can use 

Branch-and-Bound as the method for solution for both dynamic models. 
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