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Abstract 

A method is proposed for solving a problem of linear programming with unknown 
constraints. The form of the unknown constraints needs to be identified by a proper 
choice of the observation data. The present method is based upon a bicriterion formulation 
to the joint identification and optimization problem. A parametric approach is used to 
obtain an efficient solution to the bicriterion problem. Further, a decomposition into 
subproblems easily solvable is introduced. The interaction between subproblems is 
coordinated by an adjustment of a scalar parameter varying over the unit interval. 

1. Introduction 

183 

This paper presents an algorithm for solving a minimization problem with un­

known constraints. The objective function and the known constraints are assumed 

to be linear. Although the unknown constraints may be nonlinear, an "appropriate" 

linear approximation to them leads to a linear programming problem with unknown 

parameters. Then it is necessary to find both the parameters to be identified and the 

solution to the corresponding linear programming problem. The form of the unknown 

constraints is not available and the convexity of the total constraint sets is not assured. 

Therefore, the common approximation methods for nonlinear problems, such as inner 

linearization or outer linearization1>, cannot be applied directly. 

There have been few investigations on the interaction between the identification 

and optimization problems. Haimes et al. 2- 4> studied the coupling of the two problems 

and introduced the bicriterion formulation to the combined identification and opti­

mization problem. The joint approach is required for the following cases: l 1] when 

the identification problem does not have a unique solution, and [2) when the opti-
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mization problem has no feasible solution. Several computational approaches3 ,4) have 

been developed mainly to solve the problem of Case [1], i.e., the problem having many 

equally valid solutions to the identification problem due to the effects of measurement 

noise, computational inaccuracies, and inexact modeling. 

The problem treated here is that of Casef2]. The mathematical model of the 

unknown constraints is baserl. upon the available observation data, and generally is 

identified under the nonoptimal condition. Then the identified problem of linear 

programming does not have a truely optimal solution as a whole. Sometimes it has 

no feasible solution. Accordingly, a jomt treatment of the identification and the 

optimization is essential, and a suitable choice of the observation data is necessary. 

In this paper, a parametric approach is used for the bicriterion formulation of 

the combined problem. Since the combined problem is a nonconvex programming, 

it is decomposed into two subproblems easy to solve. One of the subproblems is an 

unconstrained minimization. The other is a linear programming problem, the non -

feasibility of which is checked by an adjustment of a parameter varying over the unit 

interval. The observation data used for the identification problem is replaced iteratively 

until the optimal solution to the joint problem can be obtained. Examples of small 

dimension are presented to illustrate the necessity and the effectiveness of the proposed 

algorithm. 

2. Problem formulation 

Consider the following optimization problem: 

• I mmcx 
z 

subject to the constraints 

Ax-b~O 

f(x)~O 

(1) 

(2) 

(3) 

where xis an n-vector, f is an m-vector function, A is an lx n matrix, and c and bare 

vectors of appropriate diemnsion. A prime denotes transposition of a vector or a 

matrix. The problem (1)-(3) is assumed to have a feasible solution. 

The constraint (2) is known a priori, while the form of the functionf(x) is not known 

exactly. Therefore, a mathematical model of f(x) should be found prior to solving 

the problem (1)-(3). We define the following linear model: 

h(x, {1) L:>.. B(f1)x-d(f1) ~ 0 ( 4) 

with a p-vector f1 of model parameters remaining to be identified. The linear model 

is introduced because of the easiness of the constrained optimization procedure. With 



A Method for Solving Linear Programming Problems with Unknown Parameters 185 

the structure of ( 4), the identification problem is to determine the parameter f3 so as 

to minimize the deviation between the model and the real system responses to a given 

class of inputs x:i(j=l, 2, ... , N; N';?:_p). A noiseless observation of f(x) is assumed 

in this paper. The identification problem is then presented as 

where 

N 

G(f3; xi)6. ~ llh(xi,f3)-Jill 2 
i=I 

Ji 6.f(xi) 

( 5) 

l ( 6) 

The problem formulated above has been solved by first minimizing G and then 

solving the problem (1), (2) and (4). However, as pointed out in Refs. 2) and 3), 

system identification interacts strongly with system optimization. The present problem 

requires a joint approach to the identification and the optimization for the following 

reason: The structure of f(x) may be nonlinear in x. Due to the inexact modeling, 

the parameter f3 depends upon the available observation data xi and Ji, and generally 

is identified under the nonoptimal condition. Then, the solution generated from such 

a system model is nonoptimal. Furthermore, the problem (1), (2) and (4) may have 

no feasible solutions even when the original problem (1)-(3) has them. 

The joint problem is given by 

subject to (2) and ( 4) (7) 

The problem (7) is a bicriterion minimization problem and the solution is defined as 

Definition 1 (x*, {3*) is an optimal solution to the problem (7) if 
[ i] (x*, {3*) EE, where E is the efficient set of (7). 

[ii] G({3*; xi)=min G(f3; xi), with the input data satisfying, for a small e (>0), 
PEE 

IJxi-x*ll<e, j=l, 2, ··•,N (8) 

As to the concept of the efficient set, refer to Appendix. It is noted that minimizing 

G with respect to {3EE implies solving the identification problem under the additional 

constraint assuring the feasibility of the problem (1), (2) and ( 4). 

Y. Y. Haimes et al.2- 4> have treated problems similar to (7). However, in their 

case, the identification problem is based upon the observation data given a priori, and 

then the condition (8) is not included in their definition of the solution. The purpose 

of this paper is to obtain an optimal solution satisfying all the conditions in Definition 1. 

The algorithm proposed includes the process of changing the observation points used 

for the parameter identification. 
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3. Method of approach 

Several approaches2- 6> have been proposed for an efficient solution to a vector 

minimization problem. Of these, a parametric approach3,5 ,6> is to construct a scalar 

minimization problem with parameters, and then to solve it as the parameters vary over 

an interval. The parametric solution is proved to satisfy a necessary condition for ef­

ficiency of the vector minimization. Under convexity assumptions, the equivalence 

is shown between a vector minimization problem and the corresponding scalar mini­

mization problem. The results of the previous works are summarized in Appendix. 

The present problem (7) is replaced by the following scalar minimization problem: 

min [8G(fi; x1)+(1-8)c'x] 
z,, 

subject to (2) and ( 4) (9) 

where 8 is a parameter such that 0<8<1. Note that (9) is not a convex programming 

problem in general because of the nonconvexity of h(x, fJ). The Kuhn-Tucker con­

ditions7> are necessary for the solution to (9). 

The joint problem (9) requires the constrained minimization with respect to the 

(n+p)-vector (x', fJ')'. Then it is larger and more complex than either the identification 

or the optimization problem taken separately. Therefore, from a computational 

viewpoint, a multilevel technique is used to solve the problem (9). 

The decomposition of (9) is achieved by introducing the new vector a into the terms 

where x and f3 are coupled in (9). Then, define the Lagrangian function with an 

additional constraint a=/3: 

L(x, /3, a, 71, ,\, f, 8) L:>.8G(f3)+(1-8)c'x+71'(Ax-b) 

+,\'[B(a)x-d(a)J+f(a-/3) (10) 

where 71, ,\ and f are, respectively, vectors of Lagrange multipliers for appending the 

corresponding system constraints. For the time being, the observation points xi are 

assumed to be fixed, and xi in G is omitted. 

The multilevel solution procedure is essentially to relax, in the first-level calcu­

lation, one or more of the necessary conditions for optimality and then to satisfy this 

condition at the second level. Then, the system Lagrangian L may be decomposed 

into the following sublagrangians. 

where 

L(x, f3, a, 71, ,\, f, 8) =L1(x, 71, ,\; a, 8) + L2(/3; f, 8) 

L1(x, 71, ,\; a, 8) L:>.(l-8)c'x+71'(Ax-b)+,\'[B(a)x-d(a)]+f a 

L2(fi; f, 8),f?,8G(f3)-ff3 l (11) 

At the first level, the parameter 8 and the vectors a and f are assumed to be known. 

Then, we obtain the following independent subproblems: 
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Subproblem 1 

(12) 

or equivalently 

min (1-0)c' x 
X (13) 

subject to Ax~b, B(a)x~d(a) l 
This is a problem of linear programming. Note that the problem (13) may have no 

feasible solution unless giving an appropriate value of a. The Kuhn-Tucker station­

arity conditions for L1 are 

B'>..+A'71=-(l-0)c 

Ax~b~O, 71'(Ax-b)=O 

Bx-d~O, >..'(Bx-d)=O l (14) 

It is observed from (14) that (m+l-n) components of the vector (71', >..')' vanish, and 

that the remaining n components include the terms in proportion to (1-0). The 

nonzero components of the Lagrange multiplier vector correspond to the binding con­

straints. 

Subproblem 2 

min L2(fl; g, 0)=L2(f30; g, 0) , (15) 

The solution 130 is obtained by an unconstrained minimization technique. Note that 

when f;=O, {3° is not identical with {38 , where {38 is the solution to the identification 

problem treated separately, namely 

min G(fl)=G(/3s) 
p 

If the function G(/3) is quadratic in {3, that is, 

G(fl) =(/3-/3s)' Q(/3-/3s)+Gmin, 

then the solution to (15) is given by 

(16) 

Q>O (17) 

(18) 

The task of the second level is to determine the vectors a and g so as to satisfy the 

constraint a=/3, or equivalently so that 

(19) 

for some fixed 0. The stationarity conditions lead to 

a=/3° (20) 
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The parameter 8 is determined at the third level as follows. Define the set of the 

parameter f3: 

Q 6. (/31 by which there exists an x satisfying both (2) and (4)}. (22) 

If ,88 EQ, a separate treatment, z'.e., identification followed by optimization yields the 

solution in the sense of Definition 1. However, if /38 (£.Q, the joint approach is 

necessary to obtain a feasible solution. From Theorem Al in Appendix, there exists 

a parameter 8 with 0<8<1 such that the minimum of (9) is achieved at an efficient 

point of (7). Accordingly, the task of the third level is to determine such a 8. The 

8 is found by a one-dimensional search so as to assure the feasibility of Subproblem 1 

under the decomposition of (9). For simplicity, consider the case where G(/3) is given 

by (17). Substituting (21) into (18) and using the solution ,\O of (14), the following 

is obtained 

(23) 

Then 8 (0<8<1) is found to satisfy {3°E!J, where {3° is given by (23) and /38 (£.Q. 

After the convergence of the multilevel procedure mentioned above, the observation 

points used for the parameter identification should be changed so as to satisfy the 

condition (8). Therefore, 

J=l,2, ···,N (24) 

where 0<ysl. In order to obtain a globally optimal solution, the points xi should 

be changed by (24) ,vith a small y and with the initial points scattered uniformly in the 

constraint sets given by (2). 

4. Computational scheme 

The computational procedure of the proposed algorithm is summarized in Fig. 1. 

The procedure consists of two parts. Part I calculates the solution obtained by a 

separate treatment. That is, first, an unconstrained minimization technique is used 

to obtain the solution {38 to the problem (5). Secondly, the simplex method is applicable 

to the problem of linear programming, (1), (2) and (4) with {3={38 • Phrtse 1 of the 
simplex method7> finds a feasible solution or gives the information that none exists. 

If a solution does exist, Phase 2 uses this solution as a starting point and obtains the 

optimal solution x 0 . If no feasible solution exists, the constraints (2) and (4) with 

/3=/38 are inconsistent. In that case, we require the joint treatment and proceed to 

Part II. 
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Start 

Give the initial observation points ~ 

r------------ ----------------, 
I r-----~-----, Part I I 

i----------- Solve (5) to obtain S s I 
I -----.----_. I 

no 

I ~-----~---------, I I 
I 

I 
I 
I 

Solve (1), (2) and (4) with S = S s to obtain xo 
I 
I 
I 
I 
I 

L ____ _ 
- - ---- ---- _j 

I - - - - - - - - - - Part II 7 
I 

Set e I 
I 

Solve Subproblem 1 to obtain 

no 

Give l; by (21) 

Solve Subproblem 2 to obtain s0 

I 
yes .-----'-~ I 

I s0 ➔ C< I 
I I 
L ___ -- --- - ------- - - -- __ J 

Fig. 1. The proposed algorithm. 

Part II seeks the parametric solution to the joint problem developed in the previous 

section. Given (} and a, Subproblem 1 is first solved. Then Subproblem 2 is solved 

by use of (21). This first-level calculation is repeated until the stationarity condition 

(20) holds at the second level. If Subproblem 1 is nonfeasible, the parameter (} (0< 

0<1) should be changed to make the problem (13) feasible. The initial guess a1n 

of a must be chosen so that Subproblem 1 with a=a1n has a feasible solution (x0', ,\O')', 

where ,\O =f=. 0. Otherwise no repeated first-level cakulation could be attained as a feasible 



190 Nobuo SANNOMIYA, Yoshikazu NISHIKAWA, and Kyuill LEE 

solution. Such an a1n is obtained by modifying the result of the feasibility test in 

Part I. 

If the calculation of Part I or Part II is terminated, change the observation points 

xi by (24) and return to Part I. The process of replacing the observation data is 

continued until the condition (8) holds. 

5. Illustrative examples 

Two examples are presented to illustrate the application of the present algorithm. 

Example 1 
Consider a one-dimensional problem: 

min2x 
X 

subject to l~x::;;2 and /(x)~O 

We simply assume for /(x): 

h(x, /3)={3-x 

with N=2, i.e., two observation points x1 and x2 being available. 

(25) 

(26) 

The joint problem (9) for this example is convex and the efficient solution is obtained 

l 

1 
(D 

X= I 
/3=/3s 

X= /3= I 

2 

A.,-

X=.,G =2 

Fig. 2. Efficient solutions for various values of 8 and /3,. 

X=I 
{3 =fts 

13s--

3 

Fig. 3. The solution obtained by the present algorithm. The algorithm has no 
solution in A and does not converge in B. 
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exactly. Figure 2 shows the efficient solution to (9) for various values of 0 and {38 , 

where {38, the solution to (5), is given by 

(27) 

Figure 3 illustrates the result obtained by the present algorithm. The solution in 

the sense of Definition 1 lies on the line segment expressed by 0=1 and {38 s2. In 
the hatched region, the present algorithm has no solution (in A) or does not converge 

(in B). This occurs due to solving the problem (9) by a decomposition technique. 

However, from Fig. 3, there exists a parameter 0 for which the present algorithm has 

a solution. The solution is identical with that shown in Fig. 2. Therefore, starting at 

any point on the line 0=0, the algorithm can reach the solution in the sense of Definition 

1 by adjusting 0. The line 0=1 corresponds to a separate treatment, i.e., the procedure 

in Part I. Note that the separate treatment is valid only for /3,s2. 

As an example, let f (x) be given by 

J(x)=l.9x2-7.4x+7.l 

=1.9(x-l.713)(x-2.182) (28) 

although the form of {28) is assumed unknown and is not available. In this case, 

the set of observation points which requires the joint approach is outside the circle in 

Fig. 4. Starting at a point in the region {38 >2, say, .x1 =1 and .x2=2, the convergence 

of the observation points is shown in Fig. 4. Figure 5 shows the stepwise paths toward 

the solution x*=/3*=1.713 on the ,880 plane. 

i 
N 
<X 

1.o1""'.o,_-------,-':1.5;:----------;::2.o 

-1 x-
Fig. 4. Convergence of the observation points x1 and ;e2. 
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13\ 1.713 

(D 

2 3 
/3s-----

Fig. 5. Convergence of /3. 

Example 2 
Consider a two-dimensional problem: 

min (2x1 +x2) 
X1,X2 

subject to 

l:-S:x1s3, 0sx2s2 and f(x1, x2)s0 l (29) 

The form of f(x1, x2) is assumed to be 

(30) 

The solution obtained by the separate treatment, i.e., the solution corresponding to 

0=1 is shown on the /31 8{J28 plane in Fig. 6, where (fJ1s, {J28) is the solution to (5). 

Equation (18) reduces to 

(i=l, 2) 

where 

(31) 

,\(;;:.:::0) is the Lagrange multiplier for the constraint h(x1, x2, a1, a2)s0. Note that 

LlfJ1<0 and LlfJ2<0 never holds. It then follows that fJ1°<{J1 8 and/or {J2°<{J28 • Also 

note that 

ILl{J2/Ll{J1I> 1 for Ll{J1 <0 and Ll{J2>0 

ILl{J2/LlfJ11<3 for LlfJ1>0 and Ll{J2<0 } (32) 

Accordingly, the solution to Subproblem 2 can be transferred from the nonfeasible region 
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12 

10 

8 

I 6 
<I) A 

<rt' 
4 

2 

F B 
0 

-2 -4 -2 0 2 4 
/31s -------

Fig. 6. The solution obtained by the separate treatment: A; nonfeasible, B; 
x1=l, x2=fh+fl2, C; x1=-/l2//l1, x2=0, D; x1=(2-/l2)//l1, x2=Z, E; 
x1=3, x2=3/l1+/l2, F; x1=l, x2=0. The thickline shows the stepwise 
path toward the solution fl1*= -2 and /l2*=5.88, where y=O.l. 

2 

0 2 

Fig. 7. Convergence of the observation points (x11, x2i). The solution is x1*= 
2.04 and x2*= 1.84. The hatched region shows the true constraint set. 
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to the feasible region in Fig. 6, by an appropriate adjustment of 0. 

By way of an example, take 

(33) 

and choose the following four points: 

(xi, x2)=(l, O), (1, 2), (3, O) and (3, 2) (34) 

as the initial observation points. Consequently, /318=-2 and /328=10. The con­

vergence of the solution is illustrated in Figs. 6 and 7. Note that the optimum of the 

problem (29) and (33) is not at an extreme point of the constraint set. It is observed 

that the iterative process leads to the point of tangency with the constraint set. At 

the end of iterations, Subproblem 1 has an infinite number of solutions. In this case 

the solution is obtained from the corresponding observation points. 

6. Conclusion 

An algorithm has been developed for solving a problem of linear programming 

with unknown constraints. A kind of three-level optimization technique is successfully 

used to obtain an efficient solution to the joint identification and optimization problem. 

The interaction between subproblems causes the nonfeasibility of the linear program­

ming. The idea of coordination is to hold the feasibility by an adjustment of a scalar 

parameter varying over the unit interval. The validity of the procedure is shown by 

taking examples of small dimension. The convergence proof and error estimation 

of the algorithm are being investigated with application to problems of high dimension. 
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Appendix 

The present appendix summarizes the theory of the vector minimization problem. 
2 ,5,6> Given a vector-valued criterion function f(x)=(/1(x), ···, f,(x))' and a subset 

X of Rn, the vector mimmization problem 1s 

minf(x) subject to xE.X (Al) 
X 

The solution to the problem posed in (Al) lies in the set of efficient points defined as 

Definition A A point Xe is said to be an ejjicz"ent point of (Al) if Xe EX, and there 

exists no other feasible point x such that f(x)<S.f(xe) and f(x)~ f(xe)-

The efficient solution is also known as the noninferior solution or Pareto optimal 

solution in economics and game theory. 

The fundamental results characterizing the efficient point are given in the following 

theorems. 

Theorem Al 

At~O and 

If Xe is ejjicient in (Al), then there exists a vector A=(A1, ... , Ar)' with 

r 
~ At=l 
i=l 

such that Xe is optz"mal in the scalar minimization problem: 

min A'j(x) subject to xE. X (A2) 
X 

Theorem A2 Let X be a convex set, and let the Ji(x) be convex on X. Then Xe 

is ejjicient in (Al) if and only zf Xe is optz"mal in (A2) for some A with strictly positz"ve 

components. 

As for the proof of the the0rems, refer to Ref. 5). 

From a computational viewpoint, finding efficient solutions is reduced to a para­

metric programming problem. Tn the case of r=2, i.e., the bicriterion minimization 

problem, Haimes et al.2> proposed another method, called the E-constraint approach. 

The method involves replacing one of the criterion functions by a constraint and con­

structing an ordinary minimization problem. Their theorem is 

Theorem A3 Let .~min ]2(x) and let Xe be a solution to 
X 
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min fi(x) subject to xEX and fz(x)<S.t (A3) 
X 

Further assume that, if Xe is not unique, then Xe is an optimal solution to (A3) with 

minimum value of /z(x). Then Xe is efficient in (Al). 

In the problem treated here, fi(x) is linear and the constraint Xis defined by a 

set of linear inequalities, but /2(x) is a nonlinear function. Accordingly, applying the 

.-constraint approach to the present problem is reduced to a nonlinear programming 

problem. Then, we have used the parametric approach to solving the problem (7). 

Geoffrion6l has proposed a slightly restricted definition of efficiency, called proper 

efficiency, in order to eliminate efficient points of a certain anomalous type. As to the 

problem considered in this paper, there is no significant difference between the two 

concepts of efficiency. For that reason, the details are omitted here. 


