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Synopsis 

This paper concerns the capacity expansion problem of inter-regional water supply 
facilities, and presents a mathematical model to analyze the problem. The model postulates 
such an inter-regional water supply system that is managed by a body which is independent 
of municipalites; and provides water to municipalities by conveying purified water to 
distribution reserviors in the municipalities through conduits laid between them. The 
formulated model, which belongs to a nonlinear programming, is solved by both an enu
meration method and dynamic programming. A case study was conducted by applying 
the model to the capacity expansion problem in the region consisting of Takasago, Kako
gawa and Akashi Cities in Hyogo Prefecture The calculated results show that such a 
management system as is presumed in the model, is economically effective mainly because 
joint expansion for the increased supply in several municipalities will save associated costs, 
provided that unnecessarily excessive expansion is avoided. 

1. Introduction 

In Japan, a popular method of expanding water supply capacities is that each 

municipality manages to build water supply facilities, completely independent from 

other municipalities, to secure water which is demanded within the municipality. 

However, such a method of expansion is not considered reasonable for the following 

reasons. 

(1) Unexpected high rates of demand increase are forcing each municipality into a 

situation where water demands exceed the forecast quantity. 

(2) In highly urbanized areas, most available water sources have been developed. 

Some have become unsuitable for water intake mainly because the aggravated water 

quality resulting from the integrated urban activities. 
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(3) Increased amounts of water demands are burdening each municipality with 

extremely heavy expenses. 

( 4) The urban growth is extending beyond city limits. This means that capacity 

expansion of water supply facilities within each municapality would not be necessarily 

reasonable. 

(5) Especially for this reason, many regional development plannings are carried out 

in a broad scope-, and land use plans are drawn up. Moreover, a water distribution 

project is required to be made in such a large-scale that would permit water to be 

conveyed from one river to another through artificial channels. This tendency means 

the necessity of providing a water supply project in a broader frame, where the traditional 

management system of water facilities need not necessarily followed; and the possibility 

of an inter-regional water supply system is taken into account. 

For those reasons, the study mainly deals with the capacity expansion problem of 

an inter-regional water supply system, which is assumed to be managed by a third 

sector completely independent of the concerned municipalities. 

The capacity expansion problem involves a variety of matters, and should be 

discussed from various angles. Amongst those many matters, our main focus is placed 

on the analysis of location and time of expansion of water supply facilities. Hereafter, 

water supply facilities are limited to two kinds of facilities, namely filtration plants 

and distributing conduits. These facilities are assumed to be constructed between 

located filtration plants and those municipalities requiring water to be transported from 

other municipalities. 

In the analysis of this problem those two points are important. 

(1) A larger type of expansion will save costs chiefly due to scale merits. This sug

gests that separate expansions by municipalities would not be effective from an economi

cal point of view. Therefore, such expansion projects should be unified in order to 

carry out a joint expansion in a scale as large as possible. 

(2) An unecessarily large scale of expansions would not be considered effective even 

from economical viewpoints, because such expansions would lead to an '"idle' state, 

which means that part of the capacity of a facility is not used. 

(3) A more integrated scale of expansion will require longer and larger distributing 

conduits, which would consequently require higher costs associated with this method. 

In view of the above points, we will present a mathematical model for the analysis 

of the problem. 

2. Assumptions of the Model 

(1) In each stage of the project, the sum of all the capacities of the filtering plants 

exceeds, or at least equates, the total amount of water demands throughout the entire 
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region. 

(2) Distribution Conduits conveying water from filtering plants to those cities needing 

water are constructed at the outset of the project. This is done in a scale equal to the 

maximal amounts of water through the conduits over the project period. 

(3) The total amount of water which undergoes purification is already secured by 

certain means which will not be specified here. 

( 4) The system treats those processes from water purification to water distribution 

up to service reservoirs, excluding a water transmission process for conveying water 

to the individual user of water. 

3. Model Formulation 

First notations used here are given as follows. 

k, l are indices representing cities. 

M is the number of those cities included in the system. 

i,j are indices representing stages of the project period. 

T is the project period. 

-r is the time length of each stage, with each length being equal. 

Thus T=n-ra. 
x,k represents the scale of the extended filtering plant in city k in stage i. 

y,ki represents the amount of water transported from city k(k E Ai) to city 

/(/ E .A,) in stage z·. 

A, denotes the set of those cities with a surplus of suppliable water. 

A, denotes the set of those cities in need of suppliable water. 

Dk(t") represents the water demand in city k in stage i. This is a function with 

respect to i. 

Qk(t") represents the construction cost of the extended filtering plant in city k in 

stage i. This is a function of x,1• 

O(w,k) represents the management cost of the extended filtering plant in city k 

in stage t". This is a function of w,k which is defined as: 

for kEA,, !EA,, 

for kEA,, !EA,. 
(1) 

K(jk1) represents the construction cost of the water main connecting the service 

reservoir of city k with that of city /. This is a function of yk1 which is defined as: 

(2) 

P(_v,k1) represents the management cost of the distribution conduit connecting 
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the service reservoir of city h with that of city l in stage i. For convenience of notation 

Dk(i) is also expressed as n,,11:, if there is no danger of ambiguity. 

According as the notations are defined above, the constraints of the model are 

formulated as follows : 

1 
~ x,k~Dl+ ~yll (hEAt, iEA1,), (j=l, 2, ... , n) ( 3) 

f=l l 

j 
D1>I:x,k~Dl-'E.y/k (hEAt, !EA,), (j=l,2,···,n) (4) 

i= 1 l 

j M M 

I: I: x,k~'E, Dl 
i=lk=l k=l 

(J=l, 2, ... , n). (5) 

Before going into the formulation of the objective function, its underlying criterion 

for an evaluation of the system will be presented. 

The evaluation criterion taken by the model is that such a pattern of expansion 

is optimal, if it can estimate the minimal total amount of repayments plus management 

costs over the project period. The reasons are as follows. 

(1) Since most of the capital needed for facility expansion projects are due to public 

bounds, the major concern of the public organization is the amount of periodical re

payments rather than the total cost of the project. 

(2) The amount of repayment within a certain period is regarded as the extent of 

financial pressure on the organization. This means that if the facility is overly ca

pacitated, the amount may be considered as a dominant criterion for the estimation of 

'idle costs'. 

(3) In terms of cost accounting of the facility as fixed property, depreciation accounts 

over the project period correspond to the concept of the sinking fund for redemption. 

Moreover, since the price of water supplied to each user is calculated on the basis of 

cost price, total depreciation accounts over the period may be a greater concern to each 

user as well as to the public organization. 

(4) In this context, total repayments over the period should be calculated as total 

depreciation accounts-by use of the following coefficient g(r): 

g(r) 
r(l+r)m 

(l+rr-1' 

where r and m represent the annual interest rate of the loan capital and the amortization 

period respectively. Trus is called the 'Coefficient of the Sinking Fund Depreciation', 

which is multiplied by the total cost to give annual repayments. 

Then, the sum of repayments over the project period for the filtration plants con• 

structed in stage i is expressed as 

S( k ')-( ·+1)• . r(l+r)30 ·C( k) x1, , z - n-t Tfl (l+r)30_ 1 Xi • (6) 
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As stated above, water mains connecting city k with city l are constructed at the 

outset of the project period. Then the sum of repayments over the project period for 

the constructed distribution conduits is expressed as 

(7) 

Through the above discussiohs, the objective function framed into the model i!' 

written as follows: 

nM nM nMM 

Z= ~ ~ S(xt'c, i)+ ~ ~ R(jkl)+ ~ ~ O(wtk)+~ ~ ~ P(ytkl) 
i=l k=l k l i=l k=l i=l k=l l=l 

---+ min. (8) 

Thus, we have formulated our model which is expressed by equations (1) to (8) 

where unknown variables are xtk, y,k1. (i=l, 2, ···, n: k, l=l, 2, ···, m) The model 

belongs to a nonlinear programming which has already been approached through 

various methods according to the feature of formulated programs. We observe a large 

number of unknown variables as well as constraints, which might involve complications 

and also a tremendous number of calculations. In this view, we propose two efficient 

methods, namely an enumeration method and dynamic programming in order to solve 

the model. 

4. Algorithm for Solving the Model 

We first observe that the minimum and maximum of the scale of the filtration plant 

may reasonably be set by practically considering the technical and economical problems 

associated with the construction and operation of the filtration plant. 

Let Ll denote the minimum unit of the scale of the filtration plants, and Xmax the 

maximum of the scale. The values of Xik, Ytkl are continuous and can take any set of 

values that satisfy the constraints. However, we assume that xtk can merely take the 

following discrete values as 

For the given xtk the range of the values of Ytkl is correspondently determined, since 

both xtk and Yikl are mutually correlated to satisfy the constraints. Thus, for the 

given Ll and Xmax, both the minimum and maximum of the scale of Yikl can be deter

mined. Let 8 denote the minimum unit of the scale of ytkl and Ymax the maximal 

unit of the scale. Then we may set the values of Ytkl as: 

For xtk and Ytkl as thus determined, the number of comLinations of the values of 
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x,k can be calculated as (RLJ)nM. This means that with an increase in the number of 

cities M and terms n, the number of combinations of the values of Xik exponentially 

increases. 

The same is true of the combinations of the values of y,kl. In this respect, the 

enumeration method is applicable only to a small number of cities and terms. 

5. Enumeration Method 

After setting the minimum unit of plants and their maximum scale, we can select 

all the possible combinations (patterns) of sclaes of plants with respect to project stages. 

They are expressed in terms of a matrix 8 as: 

( 9) 

, where gpt (i=l, ···, n;p=l, ... ,p) represents the expansion scale in patternp at stage 

i; and fp=(gpl ··· gpt ··· gpn) is vector representing the expansion scales of pattern p. 
Let Pi represent the pattern of city l; and we then get 

(10) 

Any one of the possible combinations of the pattern with respect to each city is 

expressed by the matrix Xq as: 

[ 

gP1l tP12 ··· tP1n l [ fp, l 
Xq = t+1 g~,2 ··· t~m = ff, 

gPLl gPL2 ... tPLn f PL 

(11) 

, where q represents an alternative of possible combinations of all the patterns P1, P2, 

···, PL with respect to each city. The total number of all the possible combinations 

1s expressed as: 

For given the tP1t, the values of Yik;l are obtained and referred to as 7Jt,l1, which 

satisfies the following constraints: 

i 
~ tPit-~ 7Jt,l1=Dtk for kEAt 
i=l l 

(12) 

i 
~ gP1t+ ~ 'Ylt kl=Dt1 for IE.At i=l k ., ,q (13) 

L i L 

~ ~ tP1t= ~ D,1 (i=l, 2, ···, n). 
l=I i=l l=l 

(14) 
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If some patterns of expansions do not satisfy the above constraints, they are ex

cluded from feasible patterns. 

Then for each set Xq, whose elements are 'T/t,l1, the value of the objective function 

is calculated and referred to as Zq. Likewise, S,1, Rt,/'1, O,,i, P,,/'1 are referred to 

as St,/, R1,l1, o,,/, P,,l1-

L n L 1, n 
Zq= ~ ~ s,,i+ ~ ~ R,l1+ ~ ~ o,,i+ ~ ~ ~ P,,/'1• (15) 

l=l t=l k I l=l t=l k I f=l 

Then, the approximate optimal solution for the enumaration problem corresponds 

to the set Xi for zo as obtained by comparing the values of Zq (q=l, 2, ···, Q). 

zo=min (Z1 Z2 · ·· Zq · · · Zg) 
0 ' ' ' ' ' • q 

6. Dynamic Programming Approach 

As stated before, the enumeration method can be practically applied to deal with 

those cases where the number of cities and terms is small, at most 3 or 4. Otherwise, 

a method using the dynamic principle can be efficiently applied to solve the problem. 

First, we rewrite the objective function Z as: 

where 

If we set 

for i=l, 2, ···, n-l 

for i=n 

(16) 

(17) 

j M M 
Z;(x1, Y1)=min ~ { ~ S(x,1c, i)+ ~ ~ R(y,kl)+ ~ O(y,k)+ ~ ~P(y/'I)} (18) 

f=l k=l k I k=l k I 

and 

Xj=(x;1 ··• XjM) 

Y1=(y;1 · · · Yl · · · Y1M) 

, then by applying the dynamic principle to the problem we get the following recursive 

relation as : 

ZJ(x1, Y1)=min [{ f S(xl,J)+ ~ ~ R(y/1)+ }2 O(yl)+ ~ ~ P(y/1)} 
k=l k l k=l k I 

+ Z1-1(X1-1, Y1-1)], (19) 

where 
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The outline of the process of the solution algorithm may be stated as follows. 
First we begin with the case for j=l and set 

(k=l, ···,M), 
and 

(k=l, ···,M). 

Then for each value of x1k (x11) and y1k1 we check whether city k(/) belongs to 
the set A1 or .A.1 and whether the values of x1k (x11) andy1k1 satisfy the constraints. 
Next, for those values of x1k andy1kZ which are found to be feasible, we calculate Z1 (x1, 

Y1). Likewise for i=2, we calculate Z1 (x2, Y2) by checking the values of x 2k and 

y2kl and using the values of Z1(X1, Y1) as determined in the previous process. By 
continuing the same procedure we finally obtain the value of Z 11(x 11 , Y11) for j=n. 
Here we find Z11 (X11 , Y11) such that 

(21) 

It seems to be reasonable to conclude that Xn and Y11 are the optimal solutions set for 

the problem and Z11(x 1" Y11) gives the value of the objective function for it. 

7. Case Study 

(1) Region 

We applied the mathematical model as formulated above to the capacity expansion 
planning of filtration plants in the region comprising the cities of Kakogawa and 
Takasago through which the Kakogawa River runs into the Seto Inland Sea. The 
main reasons for taking this region are as follows: 

a) Both cities bear some close resemblances in geometry, land use pattern and popu

lation. For example, most parts of the two areas are open fields. They both have 
residential and commercial areas in their central parts. In their southern parts along 
the Seto Inland Sea, there are industrial areas where heavy industries demanding 
much water are dominant. 

b) Both cities collect water from the Kamo River. 

c) In one section, an inter-regional water supply system 1s already in operation 
between the two cities. 

d) For those reasons, it might be quite significant to consider an inter-regional water 
supply system in the region which includes the two cities. 

(2) Predicted Water Demand 

In predicting the water demand for the coming years in the region concerned, we 

assumed 
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qt=at+b 

p - _____!£__ 
t- l+ea-fix 

Qt=qtPt, 

where 

qt: maximum quantity to be supplied per capita in year t. 
Pt: population in year t. 

Qt: total quantity to be supplied in year t. 

a,b; a,/3t: parameters determined by use of regression analysis to the past data 

on Pt and qt. 

Predicted Qt thus estimated is illustrated in Fig. 1. This shows that Qt may 

be approximately regarded as a linear function of t. 

Or 

7 

6 

5 

4 

3 

2 _..,, 

I 

1965 1970 
(0) 

1975 
(15) 

-- Kakogawa City 
---- Takasago City 
o Predicted Water Demands 
• Water Demands which 

Actually happned. 

1980 
(20) 

1985year 
(25) (t) 

Fig. 1. Predicted Water Demands. 

(3) Functions and Parameters 

Functions and values of their parameters are listed in Table 1. 

( 4) Results of the Case Study 

With the values and forms of parameters and functions as shown in Table 1, we 

considered the following cases. 

a) Case 1 and Case 2 

We consider Case 1 as a fundamental example. The annual interest rate r is set 

at 0.065 for Case 1, and 0.070 for Case 2. Qt, which is the total quantity of water 

demand at time t is assumed to follow the predicted linear equation with respect to 
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Table 1. Input Data of Case Studies 

I 
i ARE ASSUMED TO 
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TAKE THE & STANDS FOR 
! FOLLOWING VALUES OR FORMS NOTATION I 
I 

T 
I 

entire time length 
I 15 yrs. {project period) 
I 

1'd, 

I 
length of each period 

I 
5 yrs. for Cases 1 to 3. 

( constant for each) 3 yrs for Case4. 

I number of periods 
I 

3 for Cases 1 to 3. n 5 for Case 4. I ----------· 

r 
I 

annual rate of interest 
I 

0.065 (rate for the local bond) 
0.070 (rate for the national treasury) 

I 
Construction cost for the filtration 

I 
C(x;k) plant in city k in period i {1.40 X 107 X (x;k)-0,75+ 1000) ·x;k 

(function ofx1l') 

I 

Operation cost for the filtration I 
O(w;k) plant in city k in period i 

I 
l.4w;k 

(function of w1k) 

I 

Construction cost for the distribu-

I 
K(_pkl) tion conduits between cities k and see Table 4 

l. (function of yk1) 

I 

Operation cost for the distribution 

I 
P(y/cl) conduits between cities k and l. 1.5 y;kl 

(function of y;kl) 
----------------------------~~~~-------, 

PATTERNS OF ANNUAL DEMAND INCREASE(~:::~) 
Case 3 

DEMAANDEPRANTOTFERN I Kakogawa City I Takasago City (p TTLIQt ) (104m3/day/yr.) (104 m3/day/yr.) 
------, 

A Qfl I Q~ 
B Q~ Q~ 

C Q~ ; Q~ 

PATTERNS OF DEMAND INCREASE (Case 4) 

~ODI 
~F CITY --.._____ 

PERIOD 1 I PERIOD 2 

1 1. 0 (104 m3/day) 1. 0 

2 1.0 2.0 

3 2.0 4.0 

time, as mentioned before. Therefore, the annual demand increase LIQt, which is 

equal to Qt-Qt-1, is assumed to take 0.41 X 104 m3/day/yr. and 0.45 X 104 m3/day/yr. 

for Kakogawa City and Takasago City, respectively. 

Other parameters are set to take the valuesas listed in Table 1. 

The results of calculations using both the enumeration method and dynamic 

programming are shown in Table 2 and Fig. 2. They show that: 

1) It is better to expand a filtration plant on a large scale in one of the cities rather 



Table 2 Calculation Results 
(r=0.065) 

1> Management Sum of Repay- Sum of Repay- Management tj t"' Capacity Expansion of Capacity Expansion ot ments for the 
'i:ltzj >-3 Cost for ments for the Construction Cost tor Total >i5::tzj City Kakogawa City Takasago Dsitribution 

Construction Costs for Filtration >-l>:,:, Costs for Filtra- Associated 
>-lzZ (104 m3/day) (104 m3/day) Conduits tion Plants Distribution Plants tzjtj > Conduits Costs :,:, >-3 (over the ) (over the ) (over the ) 
z < PERIOD *ERIOD 21PERIOD 3 PERIOD 1IPERIOD 21PERIOD 3 project period project period (over the ) project period tzj project period 

tj 1 
'i:ltzj 

0.00 I 4.50 
I 4.50 4.50 I 4.50 I 9.00 4,912 150,223 I 2,006 497,416 

I 
654,557 

>i5:: 2 4.50 
I 

4.50 
I 4.50 0.00 

I 
4.50 

I 
9.00 5,111 150,223 

I 
2,006 497,416 

I 
654,758 >-l> 

>-lz 
tzj tj 

31 0.00 I 4.50 I 9.00 I 4.50 I 4.50 I 4.50 I 5,846 
I 

150,223 I 20,06 497,416 I 655,492 :,:, 
z 

> 41 4.50 I 4.50 
I 

6.75 I 4.50 I 4.50 I 6.75 
I 

0 I 180,582 I 0 I 497,416 I 677,998 

tj 1J 0.00 I 3.60 
I 

3.60 
I 

3.60 
I 

3.60 I 7.20 I 3,938 134,685 I 1,192 I 397,933 I 530,069 'i:ltzj 
>i5:: 2 3.60 I 3.60 I 3.60 0.00 3.60 I 7.20 I 4,097 134,685 1,192 I 397,933 I 530,229 >-3:,.. 
>-lz 
~tj 3 0.00 I 3.60 7.20 3.60 3.60 I 3.60 I 4,644 134,685 1,192 I 397,933 I 530,820 
z 

4 3.60 I 3.60 5.40 3.60 I 3.60 I 5.40 I 0 153,206 I 0 397,933 I 551,139 
to 

tj 1 0.00 I 5.40 I 5.40 I 5.40 I 5.40 I 10.80 I 5,836 I 173,083 I 2,112 596,899 I 777,825 
'i:!t,1 
>i5:: 

21 5.40 I 5.40 I 5.40 I 0.00 I 5.40 I 10.80 I 6,075 I 173,083 I 2,112 I 596,899 I 778,064 >-3:,.. 
>-lz 
~tj 31 0.00 I 5.40 I 10.80 I 5.40 

I 
5.40 I 5.40 I 6,946 I 173,083 I 2,112 I 596,899 I 778,936 

z 

41 5.40 I 5.40 I 8.10 I 5.40 I 5.40 I 8.10 I 0 I 207,500 I 0 I 596,899 I 804,399 
c.) 

+------------1Million Yenl-------------+ 
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capacity 

Kakogawa City 

5 (I04m3/day) 

4 
3 
2 

~-=""4 

Capacity 

Takasogo , 
City / 

5 (I04m3!day) // 
stands for 4 / 
the capacity / 
of filtration 3 / 
plant. 2 / 
stands for 1 ,/ the predicted 

1970 1975 1980 1985 year water dema- 1970 1975 1980 1985 year nds. 
Shaded area stands 
for the total quantity 
of water transported 
from the other city 
in a given period. 

Fig. 2. the Optimal Expansion Pattern of Filtration Plants in the 
Region Comprising Kakogawa City and Takasago City. 

than build plants in both of the cities. 
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2) Although the expansion of a plant on a large scale in either of the cities is more 

advantageous than separate expansions of plants in each city, the scale should not 

exceed the total demand occured over the period in the entire region. 

3) This does not necessarily mean an advantage of constructing plants in every period 

in a fixed city. It is also necessary to consider the increased costs of the distribution 

conduits which convey water from one city to other cities. The model presents the 

optimal pattern of plant expansions over the entire period. 

4) An increased rate of interest by a certain percentage will increase each construction 

cost equally by the same percentage. Consequently, it will lead to the increase of that 

percentage in the total amount of construction costs. This means that the increase 

in the annual interest rate r will not change the optimal pattern of expansion if, and 

only if, it will not change the optimal pattern of distribution conduits. 

Quite similarly, if the interest rate r decreases, the total amount of construction 

costs will decrease. However, the optimal pattern of plants and other associated 

facilities will not change if, and only if, the optimal pattern of distribution conduits 

remains the same. 

The results of those cases where the interest rate r increases are shown in Table 3. 

They show that because of a relatively higher order of construction costs, the optimal 

pattern of plants and other associated facilities will take the same pattern as the original 

value of r. 

b) Case 3 

Since the prediction of water demand growth can hardly be free from uncertainty 

factors and therefore, possibilities that the water demands will not really grow as pre

dicted, it would be reasonable to consider the case where the growth pattern of water 

demands shifts from the predicted growth pattern. For this purpose, we set forth two 



Table 3 Calculation Results 
(r=0.070) 

I 
...,. ~ Management lsum of Repay- :sumt off Retphay- Management 
v Capacity Expansion of Capacity Expansion ot , h ,men s or e 

>i:, trJ ;J . . Cost for ;ments for _t e !Construction Cost for 
> :S: ::,:I City Kakogawa City Takasago D" "b . Construct10n C t f F"l . 
+-,l > z 1stn ut10n Costs for Filtra- os s or 1 trat10n 
..., z > (104 m3/day) (104 m3/day) C d .t If PI t !Distribution Pl t 
trJ Cl on m s 10n an s Conduits an s 
::,:I j ----- --- (over the ) (over the ) I (over the ) 
Z < PERIOD 1jPERIOD 2/PERIOD 3 PERIOD llPERIOD 21PERIOD 3 project period I project period (ove~ thte . d) project period 

trJ ' , proiec peno 

>-o ~ 1 I 0. 00 I 4. 50 I 4. 50 I 4. 50 I 4. 50 I 9. 00 I 4, 912 I 158, 088 I 2, 112 I 497, 416 I 

S ~ 2 I 4. 50 I 4. 50 I 4. 50 I o. oo I 4. 50 I 9. oo I 5. 111 I 158, 088 , 2, 112 I 497,416 I 

~ t.1 3 I o. oo I 4. 50 I 9. oo I 4. 50 ! 4. 50 I 4. 50 I 5, 846 
1 

158, 088 , 2, 112 ! 497,416 I 

> 4 I 4. 50 I 4. 50 I 6. 75 I 4. 50 I 4. 50 I 6. 75 I o 1 190. 036 I o I 497, 416 I 

"'~ 1 I o. oo I 3. 60 I 3. 60 I 3. 60 I 3. 60 I 7. 20 I 3, 938 I 133, 654 I 1. 255 I 397, 933 I 

S ~ 2 I 3. 60 I 3. 60 I 3. 60 I o. oo I 3. 60 I 7. 20 I 4, 097 I 133, 654 
1 

1, 255 I 397, 933 I 

:~:: ::: 1 ::: 1 :: I :: 1 :: 1 ::: I ··~ I :::: I i,,: 1 ::: 

"' ~ 1 I o. oo I 5. 40 I 5. 40 I 5. 40 I 5. 40 I 10. 80 I 5, 836 I 182,144 I 

S ~ 2 I 5. 40 I 5. 40 I 5. 40 I o. oo I 5. 40 I 10. 80 I 6, 075 I 

~ Cl 31 0. 00 I 5. 40 I 10. 80 I 5. 40 I 5. 40 I 5. 40 I 6, 946 I 

: 41 5. 40 I 5. 40 I 8. 10 I 5. 40 I 5. 40 I 8. 10 I o I 

182,144 ! 
I 

182,144 ! 
I 

218. 362 I 

2,112 

2,112 

2,112 

0 

596,899 

596,899 I 

596,899 

596,899 
I 

I 

Total 

Associated 

Costs 

662,528 

662,728 

663,463 

687,452 

536,781 

536,941 

537,532 

559,159 

786,992 

787,232 

788,134 

815,261 

-(Million Yen)------------+ 
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The 

results are shown in Table 2 and Table 3. They show that the optimal pattern of 

expansion will not change even for the increased water demand of each city by 20%. 

The main reason is that the marginal cost of plant construction slightly changes with 

the increase in the scale of plants in question. 

c) Case 4 

In Cases 1 to 3, we dealt with the region comprising Kakogawa City and Takasago 

City, and considered the optimal pattern of the expansion of plants and other associated 

facilities. Here, we consider the expansion problem of another region, comprising 

three unspecified cities in 3 periods, and then re-examine the general results obtained 

from the previous cases. In this case, the approach of the dynamic principle becomes 

more useful than the enumeration method because of the increase in the number of cities 

and periods. 

Fig. 3 shows the results, whereby it is clear that even if the number of cities and 

periods increases, the general results obtained in Cases 1 to 4 will have the same tendency. 

8. Conclusions 

Since the marginal cost of a filtration plant decreases with the increase in scale, 

separate constructions in each city will not be effective if our interest is to minimize the 

total cost. 

The optimal scale of the expansion in each period should be no more than the 

total demand growth in the concerned municipalities. 

The municipality which should receive preference over others in the expansion of 

concerned facilities is the one which exceeds others in the rate of demand growth. 

Capacity 
(J04m3/day) 

Capacity 
(J04 m3/day) 

Capacity 
(J04m3iday) 

city city 2 city 3 

10 10 JO 

8 8 8 

6 6 6 

4 4 4 

2 2 

Fig. 3. the Optimal Expansion Pattern of Filtration Plants in the 
Region Comprising unspecified 3 cities. 
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Table 4 Estimated Costs for the Construction of Distribution Conduits (by pumping) 
(perm) 

*Optimal Diameter Distribution Capacity Materials Costs tor Total Construction Costs 
Distribution Conduits for Distribution Conduits (mm) ot Conduits (m3/day) (m3/day) (yen) 

200 2590 631 1011 

300 5000 952 2118 
400 8640 1376 2616 
500 18000 1868 3341 
600 30000 2464 4248 
700 43200 3263 5442 

1000 86:400 6000 8973 

* There may be many kinds of combinations of diameter and capacity of conduits with attached 
pumping facilities. But the optimal diameter from economical viewpoints can be selected among 
them. 

In practice, within the scale as considered here, it might be reasonable to examine 

first the optimal pattern of plant expansion. Next comes the examination of the costs 

needed to distribute water from one municipality to others. Then, by taking into 

account both costs, the optimal pattern of the expansion of plants and related distribution 

facilities can he decided. 

It was found that the above results hold true even if the interest rate, costs and 

demands should change their values. 

It is not true that a pattern of construction most advantageous to an entire region 

will be just as favorable to particular sections within the region. 

The model excludes other important facilities such as distribution reservoirs, 

distributing pipes, service pipes etc. Actually, the costs of the excluded facilities may 

sometimes amount to as much as those considered in the model. In such cases, the 

excluded costs will not be negligible, and those models which can include such costs 
should be developed. 

The estimated value of costs associated with the facilities in each city are assumed 

to be independent of the location places, and set to be uniquely equal. However, in 

many cases this will not hold true, and an estimation of the costs should be carefully 

examined so that local differences in values can be reasonably reflected. 

If the numbers of municipalities and the entire time length amount to more than 

5, the necessary calculations will become so great that practical applications of the 

model without any fujther modifications would be difficult, even with the implementation 

of the most modern high-speed electronic computers. In these cases, one way to solve 

the problem is to decompose the model, and to find some efficient algorithms to com

bine the results. 

As mentioned in the introduction, the problem of capacity expansion involves a 
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variety of matters, some of which are precluded from the study. One precluded im

portant technical problem is the possibility of conveying water from one municipality 

to another in a certain period of time; and then the reverse, from another place back to 

the municipality in another period, always using the same conduits connecting two 

regions. It has already been examined by technical experts in this field, and felt to 

be faintly possible. However, it would require some preparatory operations before 

switching the direction of distribution. 

With those problems ·yet to be examined in further detail, the model proved to be 

of practical help for studying the complicated problem chiefly from a financial point 

of view. 
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