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by Relative Motion between Super and Normal Fluids 

By 
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Abstract 

Liquid helium II is represented by Landau's two-fluid model and the sounds are 
defined as the singular surfaces in it. The propagation velocities of the first, second 
and fourth sounds are perturbed by the relative motions between the super and normal 
fluids. The perturbed velocities are calculated whithin the first order approximation 
of the relative :'elocity. 

1. Introduction 

The phenomenon of the superjluidity of liquid helium II at a temperature below 

2.19 K was first analyzed by Landau1l in l 941 ; and he introduced the two-fluid 

model for it, where helium II is regarded as a mixture of two different liquids, that 

is, a super fluid and a normal fluid. By means of this model, Landau showed theo­

retically the existence of the first and second sounds in liquid helium II, where two 

fluids were assumed to have no relative motion. 

In sufficiently narrow capillaries, the super fluid may flow through, but the 

normal fluid must be stationary. Then there is a peculiar sound called thefourth 

sound, which was studied by Atkins.2l 

For references on the subject, refer to Landau and Lifshitz,3l and Khala­

tnikov. 4l• 5
l 

In general, we have theoretically three kinds of waves, that is, the singular 

suiface, the characteristic, and the harmonic oscillation, which give the same propagation 

speeds in many cases. The method of the singular surface has been applied, in the 

past several decades, to the sound propagation in the large variety of continua. 

For general reference on the subjects, refer to Truesdell and Toupin,6
J and Trues­

dell and Noll. 7
) 

The author8
l applied the theory of singular surface to the two-fluid model of 

liquid helium II, and he investigated theoretically the sounds in it. 
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In this paper, the analysis adopted in the former article8
) is applied to the 

sound propagation in liquid helium II with a small relative motiop between the 

super fluid and the normal fluid. The perturbed propagation velocities of the first, 

second and fourth sounds are calculated. 

2. Easic Equations 

The two-fluid mpdel has two densities Ps and Pn, and two velocities v. and v0 

at every point. Also, there can exist two simultaneous but independent motions, 

where suffixes s and n denote, respectively, the super and the normal parts of the 

fluid. We assume that the magnitude of the relative velocity 

( I ) 

is not so large that the theory is physically significant. 

There are four kinds of field equation: the equation of continuity, the equa­

tion of conservation of entropy, the equation of potential flow for the super fluid, 

and the equation of conservation of momentum. They are expressed as 

( 2) 

( 3) 

( 4) 

( 5) 

in a coordinate system which moves with a constant velocity being equal to that of 

the normal fluid at a point and a time concerned, where P=P.+p 0 : the density, 

s: the entropy density, µ: the chemical potential, p: the pressume, and p, s, µ, 

and Ps are assumed to be functions of the independent state variable p, the tem­

perature T, and w. From the familiar relations of the thermodynamics and the 

property of isotropic function we have 

dp = u2dp+pn2 adT+l___adw2
, 

2 

ds= _u
2

adp+Cvdr+_!__bdw2 

p T 2 ' 

dµ = !!~dp-(s-u2a)dT +_!__cdw2
, 

p 2 

dp5 = edp+JdT+_!__gdw2
, 

2 

( 6) 

( 7 ) 

( 8) 

( 9) 
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where we put 

u =(ap r2 ' 
8p T,w a= - ; (:; t.w ' Cy= r(~) , 

ar P,w 
(10) 

a=2( ap) 
- 8w2 P,T' 

b=2(~) 
- 8w2 P,T' 

c=2( 8µ) 
- 8w2 P,T 

1 ( l l) 

e =( ap•) 
- 8p T,w' 

1=( aP.) 
- 8T P,w' 

-2( 8p·) g- ~ 
- OW2 P,T' 

(12) 

a and cv are called, respectively, the thermal expansion coefficient and the specific 

heat at constant volume. 

Now we define a surface as the sound in liquid helium II if the following two 

conditions hold: 

(i) p, T, v. and v0 are continuous everywhere, 

(ii) the first derivatives ef them have jump discontinuities across the surface but are continuous 

everywhere else. 

The geometrical and kinematical compatibility conditions of the first order of 

<p are given by6> 

- [a"'] -[v'</1] = n</1' at = -U</1' (13) 

where n is the normal of the sound surface and U is the normal velocity of it. 

Applying the compatibility conditions ( 13) to the field equations (2)-(5) and 

to the condition of potential flow 

(14) 

for the super fluid, and neglecting the second and higher order terms of w, we 

have five independent field equations 

QKM(U, w)aM = 0 (K = l, ···, 5), (15) 

where 

QKM(U,w)= 

-U+ew1 fw, p -pn 0 

-U(s-u2a) -UPCv 
T 

ps -ps-Upbw1 -Upbw, 

u2 
-(s-u2a) -U+w1 ' 

(16) 
cw, CWt 

p 

u2 -Uew1 pu2a-Ufw1 -Up+2P.W1 Up 0 +aw1 aw, 

-Uew1 -Ufwt p&wt 0 Up" 
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(17) 

Here, the bar denotes the jump discontinuity of the respective quantity, the sub­

scripts l and t denote, respectively, the normal and the tangential components 

for the singular surface; and the above quantities are evaluated at w=O. 

3. Perturbation of First and Second Sounds 

The definition of the singular surface depicted in the above section demands 

that the surface may exist if the propagation conditions: 

det 0..KM(U, w) = 0 ( 18) 

holds. The solution U of (18) is called the propagation velocity, and the non-vani­

shing aK satisfying (15) under the condition (18) is called the amplitude. 

From (16) we can easily show that 

( 19) 

holds within the second order of velocity. Referring to the matrix (16), the 

propagation condition (18) and the relation (19), and neglecting the terms of 

O(w2
), we can easily show that the field equations (15) are reduced to 

(I'= I,···, 4) 

for non-vanishing propagation velocity, where 

R~A(U', w')= 

-U'+e'wf 

u'( 1 _ u:a) 

I-U'e'wf 

U,=u 
- ' u 

a'=!!_ 
p 

aTJ'wf -p~ 

-U'Cv -I-U'b'wf 
s 

-(sJ-ar) -U'+wf c'wf 

aT(I-U'J'wO -U'+2p;wf U'p~+a'wf 

P'=p• p'=/Jn w!:3W1 
s- , n- , " 

p p u 

T'-=_.!__T, 1J;=_.!__v., wf-=_.!__w,, 
T u u 

2 

b' =!!:_b, c'-=c, e'-=e, 
s 

l is a reference length, and the prime indicates a dimensionless quanity. 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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After a brief manipulation of det Rf A( U', w') =0, we have the propagation 

condition: 

where 

In the case wf =0, (26) reduces to 

U6'-U62 (1 +.B2 +r) +,82 = 0, 

which has the solutions: 

(26) 

(27) 

(28) 

(29) 

(30) 

where the plus and minus signs in (31) refer, respectively, to the first (a=l) and 

second (a=2) sounds. In the case w:=1=0 we can easily obtain the solutions of 

(26) by the form 

(a= 1, 2), (32) 

where 

U{(l) = -2U60 >v' (,82 
- 1)2 +2(,82 + l)r+r2

' 
(33) 

U6~2>A+B 
(34) 

The ratio of the amplitudes af of the perturbed sounds can be calculated 

easily and given by the ratio of the co-factors of the elements of a row of the matrix 

(21). Here, for simplicity, the explicit depiction of their expressions is omitted. 

4. Perturbation of Fourth Sound 

In narrow capillaries, the normal fluid must be stationary. In this case the 

first order approximation of the field equations are given by8> 
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R~m( U', w')a{,. = 0 

where 

R~(U', w')= 

-U'+e'wf aTJ'w: 

-U' Cy 

s 

(k = 1, 2, 3) , 

-U'b'wf 

-U' + (1 +c')wf 

403 

(35) 

(36) 

(37) 

In the case of non-vanishing velocity the propagation condition detR~m( U', w') 
=0 reduces to 

(38) 

where 

For the zeroth order approximation w~=O we have the propagation velocity: 

U'= ./ '+ ,(fi-·fpsT)2 

0 'V Ps Pn 'V Pn (40) 

and for the first order approximation we have the perturbed propagation velocity: 

where 

Uf = -~. 
2 

(41) 

(42) 

The perturbation of the ratio of the amplitude is also easily obtained by the same 

method mentioned in the last part of the above section. Its explicit depiction is 

omitted. 
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