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Synopsis 

The nonlinear foundation effect upon the response of the tower and pier system of 
a long-span suspension bridge is investigated by the random vibration theory. As 
the equivalent linearlization yields the nonproportional damping matrix, the exact 
response is evaluated both through the frequency domain analysis and the complex 
mode analysis. Also discussed is the approximate response analysi~ using classical 
normal modes for the practical design procedure. 

I. Introduction 
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The random response analysis of the towar and pier system of a long span 

suspension bridge is dealt with in this paper. This system, comprising the very 

flexible towar shaft and the rigid body pier, shows such a complicated vibrational 

behavior that the classical normal modes do not exist due to the drastically divergent 

damping distribution along the system. That is, the damping effect at the tower 

shaft ascribes mainly to the structural one of small magnitude, while that of the 

pier coming from the interaction between this and soil might be great upon con­

sideration of the latter's geometric and hysteretic energy dissipation. This makes 

the so-called non-proportional damping matrix for the system. 

To solve the above model, two different methods of analysis are considered; 

namely, the frequency domain analysis and the complex modal analysis. The 

primary interest is placed on the evaluation of the nonlinear soil effect upon the 

system response and on the proper assignment of the clasical modal damping factor 

for a practical design procedure. Throughout this invstigation, the stationary 

white noise process is used as an excitation. This would be acceptable to detect the 
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general dynamic trend of the system. 

2. Governing Equation 

A dynamic modelling is made for the present structure, such that the tower 

shaft is replaced by the eight-lumped mass system, and the pier is a rigid body free 

to rotate and translate around the rotational center, R. The illustration is given 

in Fig. 1. The corresponding governing equation is then expressed in a matrix­

vector form as, when the system is subjected to the base acceleration of zo(t), 

Fig. 1 System Considered, 

[m]{ji} +[c]{j} +[k]{y} = {F} z0(t) (2.1) 

where {y} is the response vector, representing the pier's rotation and translation 

together with the tower's displacement and {F}T=-{0 l•••l}[m]; and [m], [c] 
and [k] denote, respectively, mass, damping and stiffness matrices. For the 

elements of [m] and [k], the authors' previous papers1
l•

2
J can be referred to, and 

for those of [c] the following consideration is made. 

So far, the so-called proportional damping matrix has frequently been assumed 

for response analysis to take advantage of the classical normal mode method. 

This would be acceptable for the relatively uniform structure. However, for 

the present system, the interaction between soil and pier being an important 

aspect, imposing the damping effect independently upon the tower and the pier 
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seems to be preferable. This results in a system of the so-called non-proportional 

damping matrix. 

Expressing the vector {y} in terms of pier's displacements { :P } and tower's 

deflection {x}, one can get 

. {y} = [ [ {h} I {l}] I[/]] {L:RJ} 
{x} 

(2.2) 

where {h} is the vector of the mass height from the rotation center R, {l} is the 

vector of l and (/] is the unit matrix. The use of Eq. (2.2) for the undamped 

system, with the following partioning of the mass and the stifiness matrices 

[m] = [[m]pl [O] J 
[O] I [mh 

yields the governing equation of 

[k] = [ [k]p l[k]PT] 
[k]TPI [kh 

From this, the quation of motion for the pier part is found to be 

[m]p{:P }+([k]p+[k]PT[{h}l{l}]){~} = [k]PT{x} 

-[m]p{ ~ }z0 (2.4.a) 

and that for the tower part, upon consideration of [k]TP+[k]r[ {h}I {l}] = [O], is to 

be 

Now introduce the damping effect for the pier part of 

c8 = 2/38V K8lp 

c,. = 2(3,.vK,.mp 

for rotation 

for translation 

(2.4.b) 

where (38 and /3,. are the damping factors for rotation and.translation, respectively, 

and / p is the inertia of moment of the pier around axis R, and mp is the mass of the 

pier. The associated motion is then governed by 



408 Yoshikazu YAMADA and Hirokazu 'fAKEMIYA 

[m)p{ :P }+[~ ~J{ :P }+([k)p+[k]PT[{h}l{l}]){ :P} = [k]PT{x} 

-[m]p{ ~ }zo (2.5.a) 

The tower part, on the other hand, is assumed to have the classical normal modes. 

This leads to the following equation in normal mode co-ordinates {q}, when Eq. 

(2.4.b) is transformed by the modal matrix [VJ for the tower part only. 

[/) {q} +['2,B;ro;"] {q} +["ro!"J {q} = -[VJT[m]r( {h}ii+ {I}~p+ {I} i 0) 

(2.5.b) 

where [VJT[m]r[V] = [/), 

and [VJT is the transposition of [V]. In Eq. (2.5.b), W; and ,B; denote, respec­

tively, the natural frequency and damping factor for the tower's i-th mode. The 

entire system equation thus obtained becomes the form of Eq. (2.1) in the physical 

co-ordinates with the damping matrix of 

(2.6) 

This kind of damping matrix has been used for the entire system analysis by the 

authors3l. Recently, it is also proposed by Pajuhesh and Hadjian•l as the composite 

damping matrix for the analysis of soil-structure interaction. Eq. (2.6) includes 

the damping matrix proposed in Ref. (5) as a special case, where the pier's motion is 

restricted only to rocking about the R axis and the tower's damping is such that 

,8;=.Br (const.). 

3. Exact Response Analysis 

The response of the system considered can either be obtained by solving 

Eq. (2.5.a) and (2.5.b), or by Eq. (2.1). The former approach, which is first 

considered, is to use the frequency domain analysis6l and the latter, which is taken 

secondly, is to lead the complex eigenvalue problem. 7
J 

Taking the Fourier transform of Eq. (2.5.b), one can get 

where 

{Q} = ["Hr;(w),J[VV[m]r{( {h}0+ {l}Xp)w2 +Z0} 

{Q}c{q} 8c0 XpCXp ZoCZo 

(3.1) 

and the notation C means the Fourier transform, and Hr;(ro) is the frequency 

response function for the tower modes as defined by 
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Hr.(CJJ) = ~-~1
-.-~ 

' CJJ7-CJJ2+!2fi';CJJ;CJJ 
i: imaginary unit (3.2) 

Substituting Eq. (3.1) into the Fourier transform of Eq. (2.5.a), and solving for 

{ :P }, one can get 

(3.3) 

where H 9 (CJJ) and H,,P(CJJ) are, respectively, the frequency response functions for 

rotation and translation of the pier; and they are calculated as follows 

{Z:;( 2)} = [CJJ 2 (-[m]p+[k]PT[V][''Hr;(CJJ),J[V]T[m]r[[h]l{I} ]) +iCJJ[~ ~J+ 
+[k]p+[k]PT[ {h}l{l} n-1

• ( [k]PT[V][''llr;(CJJ),J[V]T[m]r{l}-[m]p{ ~}) 

(3.4) 

In doing operation in Eq. (3.4), one may reasonably save the computing time by 

trunacting the number of modes, instead of taking all the modes. In this case 

where Mis the number of modes used (M < N: N is the number of degrees of 

freedom). 
The Fourier transform of tower modes' response is found as, when Eq. (3.3) is 

substituted into Eq. (3.1), i.e. 

(3.6) 

where 

When the excitation is given by a random process, the primary interest is to 

obtain the response covariance matrix, i.e. 

where E [ •] denotes the expectation of random quantity and 

-[ [I] I [OJ ] 
[T]- [{h}l{l}Jll[V] 

For the stationary random process, the covariance matrix is related to the power 

spectraJ density matrix through the Wiener-Kintchine formula, such that 
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(3.8) 

The power spectral density matrix [Syy] is given from Eqs. (3.3) and (3.6) as 

Where S;oCw) is the power spectral density of the input acceleration i 0(t), and 

the asterisc in the above means the complex conjugate. In particular, the 

variances of the pier's rotation and translation are from Eq. (3.3) 

a:= E[82] = [
00

IH8 (w)j 2 S~0(w)dw 

a!,= E[x!] = [~IHx,(w)j 2 S~0 (w)dw 
(3.10) 

The alternative method for the response covariance matrix is to solve Eq. 

(2.1) by converting it into the first order differential equation as suggested by Foss.7
' 

Introducing the state vector {u}T={{j}T! {y}T} into Eq. (2.1), one can get the 

governing equation of 

[A]{u} +[B]{u} = {P} 

where 

or pre-multiplying Eq. (3.11) by [Ar\ 

{u} +[D] {u} = [Ar 1 {P} 

where 

The orthogonal co-ordinates' transformation of 

{u} = [<D]{r} 

leads Eq. (3.11) into 

{i} + [''J;"] {r} = [" l Jr;"] [0]T {P} = [0JT {P} 

(3.11) 

(3.12) 

(3.12) 

(3.13) 

(3.14) 

where A; represents the eigenvalues obtained from I [DJ-4[/] I =01 which are in 

general a complex form of 
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and [0) is the associated complex modal matrix which satisfies 

The response covariance matrix in this case takes the form of 
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(3.15) 

(3.16) 

This is evaluated from Eqs. (3.13) and (3.14) through the spectral approach in 

Appendix A. 

Since for the present system, the rotational spring has great influence upon 

the entire system behavior2
\ only the nonlinearity of the surrounding soil effect 

is considered here. Furthermore, the simplification of the restoring moment 

-rotational angle is made such as the bilinear hysteretic type of yield level 8y and of 

the slope ratio a, as shown in Fig. 2. This would be substatiated from Appendix 

B in one sense. The difficulty about analysing this nonlinear system is overcome 

herein by the equivalent linearization technique. The method taken is the one 

developed by one of the authors and et a1.•i which, for prediction of any response 

variance, is superior to the commonly used Caughey's method. 9
J According to this, 

the equivalent rotational spring for the nonlinearity response state a8/8y is found by 

¢(0) 

--

--

«: :1a 
I 

-0 
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where 
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K,-,eq = /p(J)~.eq = /p(J):{a+(l-a)fn(;;)} 

(J)9 = V K,./lp 

The equivalent linear damping factor, on the other hand, is found by 

where erfc ( ) denotes the complementary error function of 

2 rv 
erfc (v) = 1-V1t: 

30
exp (-r/)dTJ 

(3.17) 

(3.18) 

The numerical computation is made for the typical cases2
' where the undamped 

system modes are close to each other (at A ergion in Fig. 3), and the undamped 

modes are well separted (at B region in the same figure). The damping factor for 

the tower shaft is assumed as 2 % of the critical value for each tower mode, while 

that of the pier is assumed, based on the solution of machine-foundation on the half 

space101, as 5% of the critical value for rotation and as 20% for translation. 

Fig. 4 gives the equivalent linear rotational spring costant K,.,eq and the equivalent 

linear damping factor /3.-,eq versus the nonlinear response level for a=O.l and 0.5. 

Note that the equivalent damping factor increases to the amount usually encountered 

at field tests11
'. Since the response of the bilinear hysteretic system shows the na­

arrow band process for a<l[~ 1, the above linearization might well explain the field 

test results. Fig. 5 shows the rms responses for the white noise excitation 

input, i.e. 

(3.19) 

versus the nonlinear response level. Although the actual earthquake motion has 

very different frequency contents than the white noise12l, this might be useful for 

its advantage in simplifying the subsequent analysis and yielding the general 
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response feature. It is known that the bilinear hysteretic system has a least re­

ponse at a certain nonlinearity state"). The same thing is also observed for the 

system of linear modes being close to each other, and that about half of the linear 

response is attained in the region of u8 /0y=l.5~3. On the other hand, for 

the system of linear modes being well separted, the nonlinear response differs by 
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the value of a. In contrast to the former case, the drastic reduction of nonlinear 

response does not occur in this case. 

4. Approximate Response Analysis'3
l 

Although the previous two methods of analysis give the exact response of the 
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system, they consume relatively much computing time. Furthermore, from the 

practical design procedure, the use of the classical normal modes with good accuracy 

for the entrie system is greatly desired as an approximate analysis. In what 

follows, such will be the interest of this investigation. 

Introducing the undamped normal modes in Eq. (2.1) and expressing them 

by the associated co-ordinates with use of {y} = [W] {q}, one can get 

[I]{q} +[c]{q} +["w!,J {q} = [WY {F} io(t) (4.1) 

where [W]T[m][W] = [I], [Vf]T[c][W] = [c], [W]T[k][W] = ['-w~"] 

and w, are the undamped natural frequencies of the entire system. The damping 

matrix [c] is not diagonal in general as is true in the case of the proportional 

damping system. By subtstuting {q} = {Q}e-M into homgeneous equation of Eq. 

(4.1), this results in the frequency equation of, 

J = -c'21A 42 •••••. 

-cN
1
A .......... ::·::::::::. J~ 

=0 (4.2) 

where A,= l 2 -cul+w~ and 

for general systems, the off-diagonal elements are small. The expansion of Eq. 

(4.2) is then 

where the second term means the effect of the off-diagonal elements which appear 

at least by the second power. If all the diagonal elements were neglected in Eq. 

(4.2), the solution would be for a small c;; 

(4.4) 

where 

On the other hand, the exact solution of Eq. (4.2) is given by Eq. (3.15). From 

the comaprision between this and Eq. (4.4), the undamped frequencies are given by 

v' µ:+v: and the damping factors by µ/...J.uf+11T from the complex eigenvalues. 

Further, generally, µ1~v, so that these are well approximated by µ1 and µ;Jv,, 
respectively. It must be noted that these undamped frequencies are clearly 

different from w, in Eq. (4.1), since the damped frequencies from Eq. (3.15) get 

closer between coupled modes, so that one of these undamped frequencies becomes 

greater than the corresponding frequencies in Eq. (4.1), as indicated in Table l. 
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Modes 

I 

2 
3 

4 

Modes 

I 

2 

3 

4 

4.468 

5.315 

13.38 

24.16 

-
(t); 

4.441 

5.289 

13.39 

24.17 

Y oshikazu YAMADA and Hirokazu T AKEMIY A 

Table I. Modal Frequencies and Damping Factors 

At A Foundation, a=0.5, as/8y=0.3 

P; A P; /i; (t); 

0.0370 4.456 0.0383 0.0380 

0.0339 5.335 0.0352 0.0356 

0.0200 13.37 0.0202 0.0200 

0.0204 23.84 0.0284 0.0204 

At B Foundation, a=0.I, as/8y=l.5 

P; A P; /i; (t); 

0.1505 4.386 0.1769 0.1706 

0. 1333 5.420 0.1610 0.1738 

0.0206 13.45 0.0214 0.0206 

0.0200 24.20 0.0209 0.0201 

vµHv~ µ;fyµHv1 

4.476 0.0370 

5.308 0.0339 

13.38 0.0200 

24.16 0.0202 

vttHvi µ;fyµHv1 

4.814 0.2289 

4.887 0.0564 

13.38 0.0207 

24.16 0.0201 

Sometimes the damping factors for classical modes are evaluated by14
l 

h. = _l_, }?i~~i_p~te~t':nergy per cy<:lt':_!:>Y the i-th mo~e- (4.S) 
' 4ir Maximum energy stored by the same mode 

This is equivalent to finding the damping factors of fl, in Eq. (4.4). A claer 

demonstration is given in Appendix C. 

When the off-diagonal elements in Eq. (4.2) grows as to induce the intermodal 

coupling motion strongly in the system, this must be taken into account for a 

response evaluation. Herein, the following two approaches are considered. The 

first is the application of the linearization technique of nonlinear systems,15
) that 

is, rewriting Eq. (4.1) in the form of 

to choose the equivalent damping factors ft, and equivalent modal frequencies w, 
so as to minimize the error vector {e} by means of 

8E[{e}T{e}] = 2E[e•q· .] = 0 8E[{e}7{e}] = 2E[e•q•] = 0 (4.7) 
A • ' ' a A2 ' • a(2f/,w,) w, 

These requirements yield, when the stationarity of response is assumed 

(4.8) 

The second rnethod is to use the dynamic properties of the system considered. 
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Among the important modes from earthquake-resistant design, only one strong 

coupling appears between adacent modes2
). This leads to the following expres­

sions for Eq. (4.1), namely, 

for closely correlated modes 

where {F'} = {P'} T {F} and 

for other modes 

(4.9.a) 

(4.9.b) 

In solving Eq. (4.9.a),one's assuming the white noise of Eq. (3.19) for i 0 (t) would 

be acceptable because of the filtering nature of the lightly damped system with 

<.JJ;'~(J)j• 

The resultant response variance is 

( 4.10) 

Matching this with the response variance of the equivalent mode system of 

( 4.11) 

I.e. 

(4.12) 

the equivalent damping factor /3; is found to be 

Similarly, the equivalent damping factor /3 i is obtained by interchanging the above 

suffix i andj in Eq. (4.13.a). The equivalent damping factors from Eq. (4.9.b) 

are given by 

(4.13.b) 
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Table l indicates the comparison of such obtained equivalent modal frequencies and 

damping factors. Note that the difference between #; and P; is very small. 

Once the equivalent modal frequencies W;, 6 q and the damping factors /3;, 6 q 

are found, the response analysis is straightforward by the usual classical normal 

modes method. The spectral analysis relates the response-excitation relation in 

the frequency domain as16> 

(4.14) 

where [ R] is the receptance matrix of the system, [ R*V is its conjugate transpose, 

and [Sp]=[{F} {F}TJ S·;
0
(w). The existance of the classical modes yields 

[R] = [W]['B;'-.][W]T (4.15) 

where ['--H;'--] is the d·agonal matrix of the frequency response function of each 
mode, i.e. 

(4.16) 

For the white nmse excitation of Eq. (3.19), through the Wiener-Khintchine 

relationship for Eq. (4.14), one can get the response covariance matrix as 

( 4.17) 

where the symbol ® means the multiplication of elementwise only, and 

(4.18) 

For computation of E[ {j,} {y} T] and E[ {j} {j} T], one must replace Eq. (4.18), 

respectively, by 

j.. = 2n-So(wtef/-wtef/) 

•J ( wLq-W7,ef/)
2 +4(/3 i,ef/wi,ef/+ /3 j,ef/W j,ef/) (/3 i,ef/W j,ef/+ /3 j,ef/wi,ef/)w;,eqW j,ef/ 

(4.19) 

j _ 4n-So(/3i.ef/W j,ef/+ /3 j,ef/wi,ef/)w;,eqW j,ef/ 

ij - ( wtef/-W7,ef/)
2 
+4(/3;,ef/wi,ef/+ /3 j,ef/W j,ef/) (/3;,eqW j,ef/+ /3 j,ef/wi,ef/)w;,ef/W j,ef/ 

(4.20) 

It must be noted here that the phase of each mode should be discarded in Eq. 

( 4.17), since the equivalent modal frequencies and damping factors are obtained 
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by presuming the complete modal independence. This 1s tantamount to the 

concept of the root-mean-square value of each modal response (R.M.S. response). 

Fig. 6 shows the comparison of the exact r.m.s. displacement response and 

the approximate responses using the modal frequencies of w, and the damping factors 
- V 

(3, and (3,. Note here that when the modes are well separted and/or the damping 

effect f3r,eq is small, all the approximate responses are very close to the exact one, 

while when f3r,eq is great and the modes are in proximaity, only the R.M.S. response 

superposition using iii, and /3, gives the acceptable approximation. It is then 

concluded that for the present system the R.M.S. response using iii, and /3; yields 

the best approximation for the whole situation. 

5. Conclusions 

Through the investigation reported herein, the following conclusions may be 

drawn:, 

1. The proper determination of the damping matrix for the entire system is made 

by taking account of the properties of each composing part. 

2. The linearization of the nonlinear foundation increases the damping effect 

and decreases the stiffness of the foundation. 

3. The combined damping matrix makes the so-called nonproportional form 

which violates the classical normal mode analysis. The resulting effect of the 

intermodal coupling is clearly investigated. 

4. The exact response analysis shows that the least nonlinear response of about half 
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the linear response can exist for the system whose linear modes are m prox­

imity in the region of a8/0y = 1.5,.....,3; while the nonlinear response does not 

diverge so much from the linear response for the system whose linear modes 

are well separated. 

5. The approximate response analysis 1s proposed for the practical design 

purpose, taking the R.M.S. response superposition of each mode. This works 

well and gives the safe-side response for the system having strongly coupled 

modes. 
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Appendix A. Response Covariance Matrix 

This derivation is given here from the spectral analysis of the system. 

corresponding power spectral density matrix for Eq. (3.11), i.e. 

is found through the input-output relationship in frequency domain as 

The 

(A.I) 

(A.2) 

where [''-Hr;'-] is the diagonal matrix of the frequency response function of the com­

plex mode system of Eq. (3.14),i.e. Hr,((J))=-1-.- and ['-Hr;*'-] is its conjugate-
J,+!(J) 

matrix and [SF]= [ {F} {F} T]S zo ( (J)). Consideration of the nature of the modal 

matrix [0] which consists of the ones for displacement [<l> d] and for velocity 

[ 0 d] ['-A;'-.], i.e. 

(A.3) 

leads Eq. (A.2) into 

[
[S;;,] l[S;.y]] _ [ [0d]["J"]['-H,.'-][a>dY[SF][©d]]["-H,.'-.]['-J'-.][0dY I 
[S;.yYl[Syy] - [0d]['-H,.'-] [©d]T[SF][©d] ['-H,. *"-]["J"][0d]T 

[0d] ['-J'-] ["-Hr'-.![0d]T[S F! [0d] ['-H,. *'-.][0d]T] 

[0 d] ["-H,'-.] [<l> dY[S F] [<l> d] ["H, *"-] [0 dy 

(A.2) 

For the response covariance matrix, one can apply the Wiener-Kintchine formula 

(A.4) 

As a special case, when the white noise of Eq. (3.19) is assumed for the excitation 

z0(t), this integration is easily carried out by the residue theory. The result is 

where the symbol Re denotes taking of the real part of the complex value and 

l, m mean the integer O or 1, _!{____{(l)a-0 }=J,{(l)a-1i}, and I;i=S0/r,ri(J,+Ji). 
dt 



422 Yoshikazu YAMADA and Hirokazu T AKEMIV A 

The above covariance matrix is also obtained by another method elsewhere13
) by 

the authors. 

Appendix B. Modelling of Foundation 

Assume the foundation constant under the pier to be represented by a bilinear 

hysteresis loop. For this, consider the modelling in Fig. B.l.a where each element 

is continuously distributed. The force-deformation relationship of each element 

has an initial stiffness of K*=k1*+k2*, a yield level of Y=f*/K* and a slope ratio 

between the initial stiffness and the stiffness after yeilding of a=k2*/K*, so that 

the hysteresis loop is defined by 

for phase I 

for phase II 

for phase I II 

for phase IV 

; 11 >O, Os1Jsf*/K* 

f(1J) =kf1J+ (1-a)f* ; 17?:. O,j*/K* S1/ sA 

f (1J) =K*1J + ( I -a)f* -kl* A; 11 sO, A-2f* /K* s 1J sA 

f(1J)=kf1J-(l-a)f* ; 11<0, -As1JsA-2f*/K* 

This illustration is given in Fig. B. l. b. 

Fig. B. l. a. Model of Foundation 

f(n) 

Fig. B. I. b. Foundation Characteristic 

1 (B I) 
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When the pier is rotated around the rotation center R. by () from the state at 

rest, the total restoring moment is derived from the restoring forces of each ele­

ment. Referring to the reaction distribution of Fig. B.2.b, one can evaluate this as 

the sum of the phase I reaction in th;e region 1-= I ~ Y/0 and the phase II reac­

tion in Y/0~ I ,;J ~a, i.e. 

C.L. a 

I 
•' 

I (a) 

I 
y 

y 

Fig. B.2.b. Distribution of Restoring Forces 

mi,c(Y/9,a) a 

M(0) = 2{ l ,;•K*r;de+ ! ,{k2*TJ+(l-a)f*}d,] 
o minCY/9,a) 

] (B.2) 

Where b is the pier width along the rotational axis and the integral bound min 

(Y/0, a) means that one should choose the smaller one in the braket. From Eq. 

(B.2), if Y/0?:. a or () ~ Y/a, all the elements remain in lienar so that 

ML = M(0) = J_K*a3h0 = KR() (B.3) 
3 

where KR represents the linear rotational spring constant. On the other hand, if 

Y(0<a or 0>Y/a, referring to Fig. B.2.b, one can get 

where 

(B.4) 

After reaching the maximum angle ()m, the pier begins to rotate in the opposite 

direction. In this case, the restorting moment is the sum of the effects of phase 

I, III and IV reactions as illustrated in Fig. B.2.c. Then, 
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minCYl9m,a) min<2Yl<9,.-8),a) 

M(O) = 2{ ! ,K*r;de+ ! ,{K*r;+(l-a)f*,--k1*A}d, 
o m;n(Y/8,.,a) 

a 

+ ! ,{k2*r;-(l-a)f*}d,] (B.5) 
m;nc2Y/8m-8),a) 

If 0,,.?: Y/a is assumed, this becomes 

where 

1

0-(1-a)0,,.+3(1;-a)(~)-(l~a)(~.r 0~; 8,,.-2(~)::;;0::;;0,,. 
</J(O) = aO 3(l-a)(l:)+(l-a){ 4 __ I }(_!_)3

• -0 <O<O -2(_!_) 
2 a ·· (0,,.-0) 2 -20! a ' ,,._ - m a 

(B.6) 

Usually, the value of Y/a is Y/a~ 1, so that one may neglect this higher order term 

in the above function </J ( 0). This results in the bilinear hysteretic type of the 

restoring moment-rotational angle relationship represented by 

l
o ; d>o, o::;;os;oy, Oy = 1-(_!_) 

</J(O) = 2 a 

a0+(1-a)Oy; 0?:0, 0'?::_0y 

(B.7) 

in replace of Eq. (B.4), and 

(B.8) 

in replace of Eq. (B.6). The comparison between the exact and the approximate 

M(O) is shown in Fig. B.3. for some typical cases. Note here that a good approxi-

a = 0.1 a = 0.5 

Y/a = 0.005 Y/a = 0.005 

-1 

-1 -1 

Fig. B. 3, Rotation Angle-Restoring Moment Characteristic 
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mation is attained except a~ 1 cases. For the foundation restoring force-deforma­

tion one might assume this condition. 

Appendix C. Weighted Average Modal Damping Factors 

Presume the system considered is in a resonance state of i-th classical vibration 

mode {~Cil}. Then, 

(C.l) 

are substituted into Eq. (2.1 ). Pre-multiplying Eq. (2.1) by {j} r, and integrating 

this over one cycle duration 2rr/w,, one can get 

f {j,} T[m] G} dt+f {j} T[c] {j} dt+f {y} T[k] {y} dt = f {j} r {F} cos w,t (C.2) 

Since the first term in the left hand side can be rewritten as f {j}T[m]•d{j}, the 

second term as f d{y}T • [c]{j}, and the third term asfd {y} T[k]{y}, they represent 

the kinetic energy, the dissipative energy, and the strain energy, respectively. As 

expected, the above integrals of the kinetic and the strain energy vanish. 

The weighted average damping factors defined in Eq. (4.5) mean the ratio of 

the dissipative energy over one cycle duration to the maximum strain energy. The 

former is evaluated as 

(C.3) 

and the latter is evlauated as 

Es= [
12

;;;; {j}7[k]{y}dt 

= -{~<il}7[k]{~<il}w, [
2

;;;; sin ( w,t- ; ) cos ( w,t-; )dt 

= _!_{~<il}7[k]{~CO} (C.4) 
2 

Substituting Eqs. (C.3) and (C.4) into Eq. (4.5) results in 

h. = l_. ai,{~<il}7[c]{~Cil} 
' 2 {~(i)} T[k] {~<il} 

(C.5) 
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which further leads to the following expression upon consideration of the relation­

ships of {WCil} T[c] {W<O} =c;; and {WCO} T[k] {WW} =w!, 

(C.6) 

This is the same as the damping factors to be obtained by neglecting the modal 

coupling effect in Eq. (4.1.). 


