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Synopsis 

A method of analysis is discussed to obtained the probability distribution of the 
maximum response of structures subjected to a non-stationary random earthquake 
motion. The envelope of the narrow band response of structures is analyzed, from 
which an approximate result for the probability distribution of the maximum response 
is derived. The accuracy of the analytical results is chekced by means of a numerical 
simulation. 

1. Introduction 

It is frequently the case in structural design for dymaic loads that sefety of the 

structure is stipulated as the requirement that the maximum response be not in 

excess of a prescribed allowable value. When the design for random seismic 

loads is considered, the concept of the structural reliability takes an important 

role, and in this case, the probability distribution of the maximum response should 

be a response parameter of primary importance since it represents the load distri­

bution in the reliability analysis. 

Because of its role in the discussion of the structural behavior in random 

vibration, the analysis of the probability distribution of the maximum response has 

received considerable attention from many researchers. Its basic formulation 

involves a kind of the pure-birth-process equation1
J•GJ,si, or the first passage time 

density2J•
3
J,?J, 9J•

12
J•taJ• 16J. However, no exact solution for this problem has been 

presented since the random response of structures is usually a narrow band process 

which consequently causes a high correlation between consecutive response peaks. 

Therefore, the methods of analysis so far developed provide approximate pro­

cedures. They include a simple Poisson process approximation1
\ taking account 

of the correlation effects between the response peaks in a direct way"\ or in terms 

of the mean clump size2
J·

12
\ or a renewal process approximation9

J,13), and obtaining 
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The method of analysis in this study deals with the envelope of a narrow band 

response of structures. Since the envelope of the structural response varies relatively 

slowly, a Poisson process approximation can be applied to it. Lin"l applied this 

idea to the case of a statioary response. However, this method has not been checked 

from the aspect of its accuracy. Morevoer, it is necessary to treat random earth­

quake motions as non-stationary processes. In the subsequent chapters, the non­

stationary response of structures is discussed as an amplitude-modulated narrow 

band random process, and the probability distribution of the maximum response 

is obtained from the response envelope. The accuracy of the method is surveyed 

by comparing the analytical result with the result of numerical simulation. 

2. Basic Properties of Random Earthquake Response 

of Simple Structures 

(1) Random Earthquake Motion and r.m.s. Response 

A statistical model of earthquake acceleration z(t) proposed by the author8l is 

employed: 

z(t) = flf(t; r)g(t) .................. ( 1) 

where g(t) is a stationary Gaussian process with a zero mean value, the variance of 

unity and the power spectral density Sg(w), fl is a constant with the dimension 

of acceleration, andf(t; r) is a deterministic positive function with the maximum 

value of unity. The parameter r is the equivalent duration") defined as the dura­

tion of a finite portion of a stationary process flg(t) cut out so that its mean maxi­

mum acceleration may be equal to that of the non-stationary motion in Eq. (1). 

Representing the earthquake ground acceleration in the form of Eq. (1) 

seems to be appropriate in some cases'0l•' 7l_ However, it does not mean that 

Eq. ( l) is capable of representing any type of accelerogram. Eq. ( l) should be 

understood as a first order approximation of accelerograms which should be re­

placed by a more precise model, especially with non-stationary spectral character­

istics beased on future developments in the strong motion seismology18l• 19l. 

For f(t; r), the following form is used"l: 

.................. ( 2) 

Eq. (2) is modification of the type employed earlier15
) to give a linear initial set 

up and an exponential subsiding tail of the earthquake motion. Whenf(t; r) in 

Eq. (2) is used, and if g(t) has a single predominant frequency w0, the equivalent 
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duration , 1s approximately related to s as8
) 

S _ (, )-1.09 --C-
(i)o To 

.................. ( 3) 

where T0 =2r/CiJ0 is the predominant period ofg(t), and C is dependent on~­

The maximum valuef(t; ,)=l is attained at 

1 t = tm = - log(l+,;) s, .................. ( 4) 

Sets of numerical values for stm, ,, and C are given in Table 1. 

The relation between the equivalent duration , and the acceleration para­

meter fl has been obtained'l• 5
\ as shown in Fig. 1, in which am is the expected 

value of the maximum ground acceleration. 

Table I. Non-stationarity Parameters of Earthquake Motion 

stm I 
1.0 

0.8 

0.6 

0.4 

0.2 

1.5 

I\ 
\ 
I 

0.5 
\, 

e I 
C 

0.0 0.166 

0.539 0.136 

1.579 0.108 

4.047 0.077 

13.30 0.050 

"-...... -
5 10 30 60 100150 200 

!/To 

Fig. I. Intensity Parameter P (cubic-root scale for abscissa). 

With the assumptions described above, the statistical characteristics of the 

earthquake acceleration has been specified. Hence, it is possible to deal with 

the structural response y(t) given by 

y(t) = 
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which represents the relative displacement of a simple structure with the natural 

circular frequency w,. and the damping factor h,.. 
A close approximation to the r.m.s. response ay(t) of y(t) for the model of 

earthquake acceleration discussed above can be obtained from8
l 

where 

.................. ( 6) 

e (t) = e0(s, s, t) + e0((l+e)s, (l+f)s, t) 
1 

,l(s) ,l((l+e)s) 

---2--- {eo(s, ( 1 +e)s, t) +eo((l +e)s, s, t)} 
,l(s) +,l ((1 +f)s) 

A= (l+f)<l+lfel 
f 

The power spectral density Sg(w) of g(t) is assumed to take the following form8
l: 

S (w) = 4h0 (w/w0)
2 

.................. ( 7 ) 
g 1rw0 {l-(w/w0)2} 2 +4h~(w/w0)

2 

For the numerical computations in this study, the following values are assigned to 

the basic parameters which appeared in the preceding discussions8
l: 

stm = 0.4 

1:/T0 = 3, 10, 20 

h,. = 0.02, 0.05, 0.1, 0.2 

h0 = 0.9 

(a) T0/T0 =1 

-T/T0 =10 
---- i:/T0 =3 

(b) earthquake motion 

2 

Fig. 2 Non-stationary r.m.s. Response. 

---

6 
t/r 
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Some examples of the r.m.s. intensities ay(t) and f(t; -r) of y(t) and z(t), 

respectively, are shown in Fig. 2, in which aymax is the maximum value of ay(t). 

Delay of the time of appearence of aymax from tm exhibits the transient effect. 

(2) Spectral Characteristics of Response 

The structural response y(t) in Eq. (5) is a random process which is non­

stationary both in intensity and spectral characteristics. However, since the 

spectral non-stationarity is significant only at an early stage of response which has 

little effect upon the maximum response, it would be appropriate to representy(t) 

in the following form analogous to Eq. (I) : 

y(t) = ay(t)r(t) .................. ( 8) 

where ay(t) is given by Eq. (6) and r(t) is a stationary Gaussian process with a zero 

mean value, the variance of unity and the power spectral density Sr(w). Eq. (8) 

differs from the exact expression in that it neglects the initial non-stationary 

frequency contents. However, this spectral non-stationarity vanishes very rapidly 

before ay(t) grows significantly, since the correlation coefficient betweeny(t) and 

j,(t) approaches zero very quickly6J,aJ. Hence, Eq. (8) would be justified in the 

analysis of the maximum response which is the main subject of this study. 

The stationary process r(t) in Eq. (8) can be represented in the following 

spectral form: 

r(t) = [ cos (wt-p(w))dc(w) ............... ···( 9) 

Here p( w) is a random phase angle distributed uniformly over [O, 2ir] and forms a 

white noise on the w-axis. The random amplitude de( w) has a Gaussian distribu­

tion with 

E[dc(w)] = 0, and E[ {dc(w)} 2
] = 2Sr(w)dw ............... (JO) 

The random process c( w) is of uncorrelated increments on the w-axis. 

The power spectral density Sr(w) ofr(t) for a slightly damped simple structure 

can be represented by 

The auto-correltation function of r(t) is obtained as 

Rr(-r') = [sr(w) cosw-r'dr' 

··· ··· ··· ··· ... ··· (11) 

=e-h•"'•7 '(cosvI-h2 w r'+ hn sinVl-h2 w r') ...... (J2) 
" n V 1-h;. " " 
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From Eqs. (8) and (9), the responsey(t) can also be represented by 

where 

Ic(t) = .f~ cos ((J)t-w,.t-p(w))dc(w) l 
I,(t) = ~

0 

sin (wt-w,.t-p(w))dc(w) 

.................. (14) 

Here Ic(t) and I.(t) are slowly-varying random amplitudes of the cosine and sine 

members of the response in Eq. (13). It is noted that ((t) and I.(t) are stationary 

Gaussian processes with a zero mean value. 

It can be verified14
J that Ic(t) and I.(t) have a same auto-correlation function 

represented by 

...... · · · · ..... · · · ( 15) 

The cross-correlation function between Ic(t) and I.(t) is obtained as 

.................. (16) 

Ifwe set 

· .............. · · · ( 17) 

the variances of /c(t), I.(t), jc(t), j,(t) are obtained as 

Likewise, the correlation coefficients between Ic(t), I.(t), jc(t), j,(t) are obtained 

from 

l ............. (19) 

Since both R1(r') and Rr(r') decrease as e-h•"'•"
t

, it can be stated that Ic(t) and 

I.(t) have the same degree of auto-correlation as r(t). 

Fig. 3 shows R1 (r') and Res(',') for S,.(w) in Eq. (11). It is noted in this 
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figure that Res(',') almost vanishes for r:'> T,., and that R1 (r:') has an appearence 

similar to the envelope of Rr(r:') in Eq. (12). Indeed, R1 (r:'), shown in Fig. 3 can 

be closely approximated by 

in which ( assumes the values listed in Table 2. 

0:: 

f 
J 0.5 

Fig. 3, Correlation Characteristics of lc(t) and /,(t). 

Table 2. Parameter , 

h. I ' 0.01 0.2655 

0.02 0.2555 

0.05 0.2259 
0.1 0.1776 

0.2 0.0824 

3. Analysis of Response Envelope 

( 1) Envelope Formulation 

............... ···(20) 

Let the structural response y(t) be represented in the following form: 

y(t) = W(t) cos (Cu,.t+¢(t)) 

= ay(t)R(t) cos (Cu,.t+¢(t)); 

R(t)"i?;;O, 0~¢(t)~21r 

... · · · · · · · .. · .. · ·· (21) 

Fig. 4. Illustration of Structural Response and Its Enveloe. 
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where W(t) is the response envelope of y(t) shown in Fig. 4, R(t) = W(t)/ay(t) is 

the envelope of the stationary process r(t), and <J,(t) is the slowly-varying phase 

angle. 

From Eqs. (13) and (21), R(t) and </J(t) can be expressed in terms of Ic(t) and 

Is(t) as 

R(t) = VI~(t)+I!(t) 

<p (t) = tan- 1 (/s(t)/Jc(t)) } ............... ···(22) 

By virtue of Eq. (22), it is expected that the auto-correlation characteristics 

of R(t) are similar to those of Ic(t) and Is(t), and hence to those of r(t). This 

statement verifies the appropriateness of employing the response envelope in 

analyzing the probability distribution of the maximum response in the next 

chapter. 

(2) Joint Probability Density of W(t), </J(t), and Their Derivatives 

The joint probability densities of W(t), </J(t) and their derivatives can be ob­

tained by the method analogous to that used by Lin11
l for stationary processes. 

First, introduce four random processesy1(t)~ y 4 (t) defined as 

y1(t) = ay(t)lc(t) 

y2(t) = !!_(ay(t)Is(t)) = ay(t)Is(t)+ay(t)t(t) 
dt 

Ya(t) = ay(t)J9 (t) 

y 4(t) = !!_(ay(t)Ic(t)) = ay(t)Ic(t)+ay(t)ic(t) 
dt 

......... ···(23) 

By using Eqs. (18) and (19), the variances and the covariances of y1(t)~ y 4(t) 

are obtained as 

a;1 = a;
3 

= a:(t) 

a;2 = a;4 = w~,B2a;(t)+a;(t) 

a>'1a>'2PY1Y2 = -a>'aa>'4PYa>'• = w,.,B1a:(t) 

Uy1Uy4PY1Y4 = Uy2Uy3PY2Y3 = ay(t)ay(t) 

(JY1(JY3PY1Y3 = (JY2(1>'4PY2Y4 = 0 

......... ···(24) 

Since Ic(t), J9 (t), t(t) and l 8 (t) are Gaussian processes, so are y 1(t)~ y 4(t). 

Hence, the joint probability desity of y 1(t)~ y 4 (t) is represented by the multi­

dimensional Gaussian distribution with the null mean value vector and the 

covariance matrix given by 
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(12 
II w,.,B1a! 0 <Jy<Jy 

0 w,.,B1a: , w!.B2a:+a: , Gy<Jy ' [A]= 
0 (12 -w,.,81a: 

...... ···(25) 
f1y<Jy II 

Gy<Jy 
' 

0 
' -w,.1a!, w!.B2a:+a! 

The determinant of [ A] is obtained as 

...... ············(26) 

where 

The inverse matrix of [ A] is 

where 

0 , -w,.r 

-ro,.r , 0 

w!.B2+r2' w,.,81 

r = r(t) = ay(t) 
w,.ay(t) 

ro,./31 ' 

...... ···(27) 

From these results, the joint probability density ofy1(t)~ y 4 (t) is obtained as 

............... ···(28) 

where 

Next, Eqs. (13), (21) and (23) lead to the following expressions: 

Hence, we have 

. . 
y 2 ( t) = W ( t) sin ¢ ( t) + W ( t) cos ¢ ( t) • ¢ ( t) 

Ya(t) = W(t) sin ¢(t) . . 
y4(t) = W(t) cos¢(t)-W(t) sin¢(t)•¢(t) 

dy1dy2dy3dy4 = I B(y,,yz,Y~,Y4) ldWd¢dWdif, 
8(W, ¢, W, ¢) 

= W 2(t)dWd¢dWd¢ 

} ···············(29) 

............... ···(30) 
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With the aid of Eqs. (28)~(30), the joint probability density of W(t), ¢(t), 

W(t) and ef>(t) is obtained as 

<l>c(W, ¢, W, ¢) = 4 2 ~2B 4 exp [-2Bl 2 {(.B2+r2) w2 
1T: co,. C111 (1" 

-
2r ww- 2.B1 w2i +~ (W2 + W2¢2)}] ······(31) 
co,. co,. COn 

The joint probability density of W(t), and W(t) is represented by the marginal 

density function of¢ c( W, ¢, W, ¢.) with respect to ¢ and ¢ i.e., 

For the form of Sr(co) in Eq. (11), ,8,, ,82 and Bare obtained as 

where 

2 ((J _ ;-2 ) .B2 = -2,81 =. / 2 -+ V l-h,.-1 
vl-hn 1T: 

B = 1--1-(1-~)2 

1-h! 11: 

} ............... (33) 

4. Probability Distribution of the Maximum Response 

If Y denotes the maximum absolute value of the response y(t) during the 

earthquake, its probability distribution is represented by6
),BJ 

([)(Y) = P[maxly(t)I ~Y; O~t<oo] 

= a0(Y) exp {-[ c0 (Y, t)dt} •·•··•··· •·· •·· •··(34) 

wherea 

a0(Y) = P[ly(O) I~ Y] 

c0 (Y, t)dt = P[I y(t+dt) I> Y lmaxjy(t') I~ Y; O~t'~t] 
} ······(35) 

in which P [ A] is the probability of event A, and P [AI BJ is the conditional proba­

bility of event A on the hypothesis of event B. No success has been made in 

obtaining the exact solution for c0 (Y, t) in Eq. (35) in an explicit form, and 

therefore, many approximate solutions have been proposed as indicated in I. 
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The significance of co(Y, t) is the rate of the upward crossing of I y(t) I= Y 

under the condition that no such crossing took place in the past response. From 

discusions in the foregoing chapters, an approximation is made herein by equating 

c0 (Y, t) to the unconditional crossing rate Nw(Y, t) of the envelope W(t) at the 

response level Y; i.e., 

..•...... ·········(36) 

The crossing rate N w (Y, t) is obtained as 

If the maximum or the minimum value of y(t) is related to the structural 

design, Eq. (34) is modified as 

or 
© 1(Y) = P[maxy(t);;;;;Y; o;;;;;t<oo] 

©2(Y) = P[miny(t)>-Y; o;;;;;t>oo] 
l ······ ............ (37) 

In the response of structures with symmetrical dynamic properties in the posi­

tive and negative domains of response, an approximation can be made by using 

N w( Y, t) /2 instead of N w ( Y, t) in Eq. (36). Hence we have 

©1(Y)~ P[y(O);;;;; YJ[ exp{-[ N w(Y, t)dt }J'2 

©2(Y)~ P[y(O) >-YJ[ exp{-[ Nw(Y, t)dt }J'2 

Fig. 5 shows the numerical results of the probability distribution of the 

maximum response given by Eq. (36), computed for the model of the erathquake 

discussed in 2. (1). It also shows the experimental values obtained from a 

numerical simulation made by means of the Monte Carlo method. It is noted that 

the agreement between the theoretical and simulated values are fairly good, 

except for high response levels of very slightly damped oscillators. For such cases 

where the method of this study fails to be accurate, the pure-birth-process method 

and the peak envelope method8
J give a better approximation. However, whereas 

these two former methods are applicable only in a limited range of parameters, 

Fig. 5 would demonstrate that the analytical method discussed in this paper 
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Fig. 5. Probability Distribution of the Maximum Response. 
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furnishes a fairly good approximation over a wide range of response level and other 

structural parameters. From these results, it could be recommended that the 

method of analysis adopted herein be used for obtaining the distribution of the 

maximum response in the intermediate response levels. 

5. Moments of the Maximum Response 

( 1) Mean Response Spectra 

From the probability distribution given by Eq. (36), the mean maximum 

response Sn can be obtained as 

Sn= E[Y] = r {1-©(Y)}dY ................. ,(40) 

Fig. 6 shows plots of Sn in the form of response spectra. The ordinate of this 

figure shows the pseduo-velocity response spectra. The dotted lines are the results 

of numerical simulation. It is observed that the analytical and simulated results 

0 

- Eq,(14)-(16) 

h =0.02 - -- - simulation 
/ ,n 0.05 

- hn"'O.t f/To =3 
02 ----------:--

00~~~-2~-~-4~-~-6 
Tn/To 

0 ---'-
4 0 

Tn/To 6 

~ 4 T/To=20 
IQ 

' Q 2 Cl) 

00 2 4 6 
Tn/To 

Fig. 6. Mean Response Spectra. 

> 
(.) 

> 
(.) 

> 
(.) 

0.6 

0.4 

0.2 

00 

0.6-

0.4 

02 

00 

0.6 

0.4 

-- theory 
- --- simulation 

2 

_ L__ ~-- l ____ L ____ !._ _ 

2 4 6 
Tn/To 

Fig. 7. Coefficient of Variation of the 
Maximum Response. 
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are in fairly good agreement. Especially for the damping ratio larger than 0.05, 

the agreement is satisfactory. This agreement is considered as a consequence 

of the relatively good approximation of the analytical results oh the probability 

distribution in intermediate response levels. 

(2) Coefficient of Variation 

The coefficient of variation Cv of the maximum response has also been obtained 

on the basis of the results of the preceding discussions. Cv is represented by 

C = {E[Y 2]-S1}'12 

V SD 
............... ··•(41) 

The mean square of the maximum response has been computed from8
l 

E[Y2
] = 2 r dY[{l-©(Y')}dY' ............... ··•(42) 

The numerical results are shown in Fig. 7 along with the simulated results. 

It can be stated from this figure that the method of analysis in this study fails to give 

a good approximation to the coefficient of the variation of the maximum response 

as the duration r of earthquake motion or the natural period Tn of the structure 

increases. 

6. Concluding Remarks 

In this study, an approximate method of analysis has been discussed to obtain 

the probability distribution of the maximum response of structures subjected to 

non-stationary random earthquake motion by using the response envelope. From 

the numerical results, it has been confirmed that the method in this study is a 

good approximation in an intermediate range of the response level. And as a 

consequence, the mean response spectra based on this method shows a fairly good 

agreement with the result of numerical simulation. However, when a high level 

of the maximum response is discussed, the method in this study is less accurate. 

Since no exact method has been developed to deal with the maximum response 

statistics of structures subjected to continuous random process excitations, some 

suitable approximate method should be adopted according to the objective of the 

analysis. In this sense, the method of analysis discussed in this study is to be 

incorporated into the group of other approximate methods so far developed. 
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