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(Summary) 

The present paper is concerned with an application of the integral equation 
method to the analysis of the transient stresses produced around cavities of arbitrary 
shape, which are excavated in an infinite elastic medium and subject to longitudinal 
and transverse waves of arbitrary pressure-time history. The method used in the 
present paper consists of such a technique as devising a solution for the transient 
problem from the superposition of appropriate steady-state solutions, which are 
obtained by use of the integral equation. 

The validity of the present method is demonstrated by several examples such 
as : (1) steady-state stresses around a circular cavity due to longitudinal and 
transverse waves, (2) transient stresses around a circular cavity due to step-form 
longitudinal and transverse waves, and a triangular-form longitudinal wave, (3) 
transient stresses around a horseshoe-shaped cavity due to a step-formed longitu
dinal wave. 

It may be concluded that the present method is advantageously applied to 
transient problems. specifically with boundaries of arbitrary shape and accompanied 
also with traveling waves of arbitrary pressue-time history. 

1. Introduction 

From the anti-seismic and anti-blasting desingn point of view, it is of basic 

importance to accumulate knowledge about transient behaviors of a structure

surrounding-medium system impinged upon by traveling waves. Although an 

exact analysis of such behaviors of the system is rather difficult, approximate 

numerical analyses may be quite satisfactorily applied with appropriate idealizations 

of the concerned system v. In most cases, an underground structure-surrounding. 

medium system may well be idealized as a cavity excavated in the elastic medium, 

which is also an extreme case of the real structure-medium system. 

The present paper is concerned with an application of the integral equation 
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method to the analysis of the transient stresses produced around cavities of an 

arbitrary shape during the passage of traveling waves of an arbitrary pressure

time history. The subject matter of the present paper was partially studied by a 

number of investigators1i-5i. The di fraction of a transient pressure pulse by a 

cylindrical cavity in an infinite elastic medium was analysed by the use of 

integral transform or related techniques2i-4i_ or the superposition of appropriate 

steady-state solutions5i. The former techniques usually lead to formidable diffi

culties in the inversion process, whereas the latter is far simpler when the 

construction of a train of pulse of traveling waves is possible from the steady

state sinusoidal components. Each pulse represents, with sufficient accuracy, the 

time history of the transient stresses in the incident wave. 

The use of a steaby-state solution to obtain a transient response has been 

suggested by Bisplinghoff, Isakson and Pian6i. The validity of the method was 

demonstrated slso in the reference5i. 

The method used in the present paper consists of such a technique as devising 

a solution for the transient problem from the superposition of appropriate steady

state harmonic solutions to the Helmholtz equations. These are obtained by the 

integral equation method, which can be applied to any problems of an arbitrary 

shape of boundary. The accuracy of the solution obtained by the present method 

may be improved as much as is desired by choosing correspondingly many steady

state solutions and boundary points used in the numerical procedures of the 

integral equation. Since all the operations in the present method are performed 

in the physical plane, the direct physical insight into the problem may be easily 

obtained. 

2. Integral equation method 

Fundamental equations, i. e., equations of motion, constitutive equations, and 
strain-displacement relations, of homogenous and isotropic linear elastic solid are 

expressed in a rectangular cartesian coordinate system (xi, X2, Xa) as follows: 

t"jt,J+f,=pii, .............................................................................. (1) 

t"tJ=AeuOtJ+2f-J.ftJ ······· .. ···· ........................................................ (2) 

E!J= 1 (Ut,J+UJ,!) ........................................................................ (3) 

where r:11, •tJ, u,, ft and o,., imply the stress tensors, strain tensors, displacement 
vectors, body force vectors and Kronecker's delta, respectively, A and µ represent 

Lame constants and p the density of the solid. The comma and dot notations 

imply the partial differentiation with respect to the following index and time, 

respectively, i. e., ,J,,J=8r:Ji/8x1 and ii1=82uij8t2• Further, the indices cover range 

1, 2, 3; and the summation convention rule is also applied, 
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Equations of motion are also expressed in terms of displacements by sub

stituting from Eqs. (2) and (3) into Eq. (1) 

(J.+µ)u;,;,+µu,,;;+f,=pu, ······ .. ·· ............................................... (4) 

These are the fundamental equations called Navier-Cauchy equations. 

Now we assume that the whole system or the elastic solid is the state of 

steady harmonic motion and the body forces may be neglected. The space and 

time variables, thus, may be separated 

u;(x,, t) =Re {u;(x,)e- 1"'t} ............................................................ (5) 

where u; (x,) are functions of space variables only, and Re means to take the 

real part of the quantities, and aJ is the circular frequency different from eigen

freq uencies. 

The Na vier-Cauchy equations ( 4) are thus transformed by substituting from 

Eq. (5) to 

(cr2-ca2 )U;,t; + ca2u,,;; + aru, =0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(6) 

where 

C12= J.+2µ 
p 

and cl= E__ ..... • .. • .. • .. • ... • • • •• .. •• .. • .......... • • .. • • • • • •• ..... • • .. (7) 
p 

imply the squared velocities of the longitudinal and transverse waves, respective 
ly. 

We now introduce a new operator .d* defined as 

.d*=(c12 -ca2)grad r• +clr2= (c?-ca2)83e;8,e,• +ca28;8;·· ................ (8) 

where r=B,e, and e, are unit vectors in the coordinate directions, a, mean partial 

differentiation with respect to the index. Eq. (6) is thus expressed in a vector 

form as (bars are ommitted hereafter for the sake of simplicity) 

(.d*+ai)u=Lu=O ··········································· .. ························(9) 
with L=.d*+w2 •••••••••• ........................................................... (I.Q 

This is the fundamental equation to be solved with appropriate boundary condi

tions, and is called Helmholtz equation. 

We shall next transform the fundamental differential equations into a system 
of integral equations. 

Suppose now two displacement vectors u and v, which satisfy Eq. (9) in the 

domain D and its boundary S as shown in Fig. 1. Then assume that their partial 

derivatives up to the second order are continuous in D+S. Utilizing the Green's 

jdentity, the following relation can be obtained after some manipulation 

( (v•Lu-Lv•u)dv= ( {v•T"u-(T"v)T•u}ds ......... , .. , ........ , ........ (11) Jr - )• . . 
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Fig. 1 Exterior domain D and its boundary S, and auxiliary boundary S'. 

T"u = (ci3-2cl)ndivu + 2c22n• gradu + ci(n x rotu) .. · .............. · · .... ·(12) 

and n is a unit outward normal vector on S. 
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We here consider the following differential equation corresponding to Eq. (9) 

LI'(P;Q)= -o(P;Q) .................................................................. (13) 

where P (xi, x2 , x8) and Q (Yi, Y2, Ys) are called observation point and source 

point, respectively, and o (P; Q) means a delta function defined as o (P; Q) =D (x1 

-y1) o (x2-y2) o (x8 -y3). The solution which satisfies Eq. (13) is called a 

fundamental solution or elementary solution, which is equivalent to Green's function 

in an infinite domain. 

The substitution of u and I' for u and v, respectively, in Eq. (11) leads to 

the following integral equation 

where 

u(P)F(P) = )s {I'(P;R)•T"u(R)-[T"I'(R;P)]7'•u(R)}ds ............ (14) 

for PED 

PES 

PEED, PEES 

••••••••••••••••••••••••••••••••••••••••••••••••••• (15) 

and RES, that is, P is a point either in the domain, on the boundary, or not, 

whereas R is a point always on the boundary. Eq. (14) is a basic integral 

equation corresponding to the differeJitial equation (9). Since the fundamental 

solution I' may be easily obtained, Eq. (14) is reduced to a system of integral 

equations with a singular kernel with respect to the unknown function u. The 

system of integral equations may somehow be solved, then displacements and 

thus stresses at any points shall be easily determined. 

Hereafter, we restrict ourselves to problems in the state of plane strain unless 

otherwise mentioned. ln the state of plane strain, the fundamental solution can 
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be easily obtained by taking account of the Sommerfeld radiation condition. The 

solution, i. e., the Green tensor, can be expressed by a matrix of two by two. 

The elements of the matrix r,k are obtained as follows: 

rjk=-i-[Hf/)(l;zr)ojk- 1 82 
{H?>(l;1r) -H~D(f;zr)}]·········(l6) 

4µ /;22 8XJ8X1; 

where l;1=w/c1, l;2=w/c2, r=PQ=✓(x,-y,)(x,-y,), 

and H~1
) (l;,.r) implies the zero order Hankel function of the first kind with an 

argument l;,.r. 

3. Statement of problems and applied technique 

Although the integral equation method mentioned above may be applied to 

any kind of bounbry value problems, we shall deal with stress boundary problems 

in the state of plane strain. These would include long cavities excavated in an 

infinite elastic solid impinged upon by plane longitudinal and transverse waves of 

arbitrary pressure-time history, traveling in the direction perpendiculart to the axis 

of the cavities. 

The method of solution of the problems presented in this paper consists of 

three steps. The first is to approximate the transient longitudinal and transverse 

waves of arbitrary pressure-time history by the Fourier series. The second is to 

obtain the steady-state solutions of the respective sinusoidal waves by use of the 

integral equation method. The third is to superpose the solutions in such a way 

as the original traveling waves are constructed. 

In the first step, in order to meet the initial traction free condition at the 

boundary of cavities, care must be taken to choose enough time between pulses 

to allow the surface energy to be dispersed into the surrounding medium. The 

accuracy of the Fourier series must be also checked in comparison with the inci

dent waves. The most stringent example is a step-form wave, which is illustrated 

in Fig. 2, i. e., the Fourier series expansion with ten terms superposed. 

In the second step, it is rather difficult to solve the system of integral 

equations analytically even in a simple case. Thus, we are forced to treat the 

system by numerical procedures. 

Let the boundary S be divided into N subdivisions and the values u(R), 

I' (P;R) be assumed constant throughout the subdivision. Eq. (14) can be ap

proximated by the following algebraic equations 

where R.,. and Rri imply the midpoints of the subdivision. In the types of 
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Fig. 2 Fourier expansion of step-form pulse with ten terms. 
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problems considered in the present paper, the solution shall be conveniently 
expressed by using a type of single-layer potentiaF) with a density ip(Q) such as 

u(P)= )
8
I'(P; Q)ip(Q)ds ............................................................ 08,) 

with the boundary condition 

T"u(R)=g(R), RE.S··································································09) 

Eq. (14), therefore, is reduced to 

g(R)= 1 ip(R) + )
8

T"I'(Q; R)ip(Q)ds .......................................... C?J» 

or is approximated by the expression, noting I'(R; Q)=I'(Q; R), 

I N ( g(R,.)=-ip (R,,.) + :E 'P (Q)) T"I'(Q; R,,.)ds ................................. ~J) 
2 n-1 S 

where R,,. implies the midpoint of the subdivision. 

In the numerical procedures, it is more ?esirable to introduce an approximate 

auxiliary boundary, and transform the system of singular integral equations into 

an equivalent system of regular integral equations. 

Let 1,1s n9w intr9duce an appropriate auxiliary boundary and approximate it 
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Fig. 3 Boundary S and corresponding auxiliary polygonal boundary S'. 
Part of them are shown. 

by an appropriate polygon, as partly shown in Fig. 3, and then assume that the 

density 'P (R') is constant throughout the .subdivision. Eq. (21) may be transform

ed to 

g(Rm) = :E 'P (R,.') ( T"I'(R,,,i; Rm) as .................................... ...... r:t!J 
n-1 )s 

where Rm and R,.' imply midpoints of the subdivision of the real boundary and 

the auxiliary boundary, respectively. 

Eq. (22) can be easily solved for the idensity cp(R,.'). Then, displacements 

and also stresses at an arbitrary point may be obtained, respectively, by the use 

of Eq. (18) and Eqs. (2) and (3). The procedure of superposition of steady-state 

solutions thus obtained is straightforward. The Duhamel integral procedure, i. e., 

numerical integration in the present case, is also applicable, if transient solutions 

due to traveling unit step-form waves are available at an appropriate series of 

time. 

4. Numerical examples 

4. 1 Steady-state stresses around a circular cavity 

(A) Stresses due to longitudinal wave 

In order to test the accuracy of the numerical procedures of the integral 

equation method, steady-state stresses around a circular cavity due to longitudinal 

plane displacement waves were calculated and compared with the solutions obtained 

by Pao8i by use of the eigen-expansion method. 

The incident plane displacement wave considered is expressed by 

a=.-!'21___=_.?n . ............................................. (23) 
C1 l1 

where A, a, w1, and 11 represent the amplitude, wave number, circular frequency 

of the wave and wave length, respectively. 

The problem analysed is a circular cavity in an infinite elastic plate of plane

stress state, as shown in Fig. 4, with its auxiliary boundary and corresponding 
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Fig. 4 A circular cavity in an infinite elastic medium and its auxiliary 
boundary and boundary points, used in the numerical procedures. 
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boundary points. The accuracy of the numerical results, which is influenced by 

the selection of the auxiliary boundary and its boundary points, was discussed 

elsewhere9
\ and found to be appropriate in the present case to choose the points 

in such a way as shown in the figure. 

The numerical results of circumferential stresses on the boundary of the 

cavity are shown in Fig. 5, in comparison with Pao's results8l, where a, a0 and T 

mean the radius of the cavity with a= 1.0, the maximum value of stress due to 

the plane displacement wave and the period of the wave, respectively. Pisson's 

ratio was assumed y=0.35. Both results show an excellent agreement. 

As the wave length increases, the stress distribution approaches that of the 

static case. When the wave length decreases, a scattering of waves reduces overall 

stress concentration. 

Similar results obtained in the state of plane strain with Poisson's ratio y= 

0.25 are again shown in Fig. 6. The accuracy of the numerical results may 

progressively decrease for waves with a short wave length, because the limited 

number of boundary points selected may not be enough to fully reproduce the 

wave form. 

(B) Steady-state stresses due to transverse wave 

Steady-state stresses on the boundary of a circular cavity in the state of 

plane strain due to transverse displacement waves are shown in Fig. 7, where -r0 

and T are the maximum shear stress due to the transverse displacement wave and 

the period of the wave, respectively. The incident transverse wave is expressed 

in the same way as the longitudinal wave 
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Fig. 5 Circumferential stresses on the boundary of the cavity due to longitudinal sinusoidal 
wave compared with Pao's results (in the state of plane stress). 
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Fig. 6 Circumferential stresses on the boundary of the cavity due to 
longitudinal sinusoidal wave (in the state of plane strain). 
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3.0 

where B, fJ, w2 and 12 represent the amplitude, wave number, circular frequency 

of the wave and wave length, respectively. In the numerical procedures, the similar 

auxiliary boundary as shown in Fig. 4 but 48 boundary points were chosen and 

the Poisson's ratio is J.1=0.25. 

As the wave length increases, the shape of stress distribution becomes similar 

to that in the static case, but slightly larger, as might be expected. The scattering 

effect becomes increasingly predominant as the wave length decreases. When the 

wave length becomes so short as to be comparable to the distance between the 

adjacent points on the boundaty, the accuracy of the results may be questionable. 

It is a quite difficult problem to select boundary points in order to guarantee a 

certain accuracy of the results. As a whole, it may safely be said the more points 

are selected on the boundary and the more apart auxiliary boundary from the real 

boundary is chosen as far as solvable of the problem, the more accuracy can be 

expected. 
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--- Positive ----- Negative 

Fig. 7 Circumferential stresses on the boundary of the cavity 
due to transverse sinusoidal wave. 

4. 2 Transient Stresses around a circular cavity 

(A) Stresses due to longitudinal waves 

Transient stresses due to a traveling wave are easily constructed from the 

stresses of steady-state, such as those obtained a hove by the use of the principle of 

superposition as mentioned in section 3. 

The most fundamental and valuable state of stresses is that which is due to 

a step-form traveling wave. Thus, transient stresses due to such a longitudinal 

traveling wave are obtained as a first example. In advance, to show the results, 

it should be noticed that the tremors remain unswept in the traction free period 

following each pulse, which are influenced, of course, by the approximation of the 

wave by Fourier expasnion as shown in Fig. 2. The tremors shown in Fig. 8 

correspond to just the instant at which the incident pulse arrives at the left 

boundary of the cavity. As the traction free interval becomes large enough, the 
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In the following examples, the Fourier expansion with period 6n and terms up 

to the tenth are used. 

Fig. 9 shows the transient circumferential stresses on the boundary of the 

circular cavity, where different types of curves correspond to the respective 

positions of the wave front relative to the cavity as shown in the small figure. 

The circumferential stress at point 0=90°, due to the incident step-form lon

gitudinal wave, is shown in Fig. 10 with the results by Garnet and Pascal5l, where 

time t is taken to be zero at the moment at which the wave front arrives at the 

---- 11 =277: 
47C 
67C 

2.0 

Fig. 8 Tremors due to fluctuations of approximated longitudinal wave by 
Fourier expansion and precurssion wave, at the instant at which 
the wave front arrives at the left boundary of the cavity. 

-1.0 0 1.0 2.0 
O"e 
O"o 

Fig. 9 Transient circumferential stresses on the boundary of the cavity 
due to a longitudinal step-form wave corresponding to the indicated 
positions of wave front. 
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Fig. 10 Circumferential stress-time history at a point 8=90° on the boundary 
of the cavity due to longitudinal step-form wave. Time t is taken 
zero at the instant at which the wave front arrives at the left boundary. 

left boundary of the cavity. In the curve of the present method, the small 

fluctuations caused by the approximation of the wave by the Fourier expansion 

(see Fig. 2) are reasonably eliminated. The maximum circumferential stress 

appears at the nondimensional time 3.5 and its value is about -2.98, whereas it is 

-2.67 in the static case. 

The circumferential stress at point 8=0°, due to the incident longitudinal 

step-form pulse, is also shown in Fig. 11. The results obtained by the present 

method show some disagreement with the results by Garnet and Pascal5>, especially 

in the range of small values of the non-dimensional time. The reason is not 

clear, but may be found in the difference of the Poisson's ratios in the both 

cases. The transient maximum stress concentration is about 0.22 at 1.5 of the 

nondimensional time, whereas it is zero in the static case. 

The second example is of circumferential stresses produced on the boundary 

of the cavity during the passage of a triangular longitudinal traveling wave. The 

results are shown Fig. 12, where each type of line corresponds respectively to the 

instantaneous positions of the wave as shown in the small figure. The maximum 

stress is observed to follow just after the peak of the traveling wave. 
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The stress-time history of a fixed point at the boundary of the cavity may 

easily be constructed by the Duhamel integral procedure, using the results due to 

the step-form traveling wave, such as shown in Fig. 10, for example. The prelim-

Present method 

L_ 
-0.40 ,.~0--~--~-~--

2.0 3.0 

0--0---0--0 
5) 

Garnet Pascal 

.:!.!. 4.0 

2a 
Fig. 11 Circumferential stress-time history at a point 6=0° on the boundary of 

the cavity due to a longitudinal step-form wave. Time t is taken zero 
at the instant at which the wave front arrives at the left boundary. 

1.0 2.0 

O'e 
<Yo 

Fig. 12 Transient circumferential stresses on the boundary of the cavity due to 
a longitudinal triangular wave, corresponding to the indicated positions 
of the wave. 
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inary test of the stress at the boundary at point {) = 90° revealed that the stress 

constructed by the Duhamel integral (summation in this case) with ten steps, 

agreed with that by the direct Fourier expansion of the wave within 4 percent 

errors. Thus, it may be concluded that the stress-time history at the boundary 

point at {)=90° and 0°, due to any form of traveling waves, is easily constructed 

with a sufficient accuracy. 

The third example is of the circumferential stresses on the boundary of the 

circular cavity, due to a single traveling pulse of the longitudinal sine wave. The 

results are shown in Fig. 13, with the respective positions in the small figure. 

These results are compared with those due to the harmonic trains of the same 

-1.0 0 LO 2.0 
O"e 
Oo 

Fig. 13 Transient circumferential stresses on the boundary of the cavity due to 
a longitudinal single sine pulse corresponding to the indicated positions 
of the wave. 

Fig. 14 Circumferential stresses on the boundary of the cavity due to 
longitudinal sinusoidal wave train, each position of the peak 
corresponds to a single sine pulse shown in Fig. 13. 
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wave and at the same positions, as shown in Fig. 14. It may safely be said that 

the transient stress concentration due to the first half-sine wave is slightly higher 

than that due to the harmonic wave with the same amplitude. On the other 

hand, the stress concentration due to the second half-sine wave is slightly lower 

than that due to the harmonic wave. 

(B) Stresses due to transverse wave 

Transient stresses due to a traveling transverse wave are analysed in a similar 

manner as mentioned above in the case of longitudinal waves. 

The transient stresses due to a traveling step-form pulse with several relative 

positions to a circular cavity are shown in Fig. 15. The tremors just in advance 

of the incident wave may not be very small, which are caused by the selection of 

I 
I 
I_ 

'1 

I ✓i ,1 
I 

', 
' ,.. __ 

--- Positive 
------ Negative 

4.o ere 
i "Co 

Fig. 15 Transient circumferential stresses on the boundary of the cavity 
due to a transverse step-form wave corresponding to the indicated 
positions of the wave. 
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the Fourier expansion period and precussion wave. In this case, the period was 

chosen l2 =6rrc2 =3.46rr, which is about half of that in the longitudinal wave. 

Because of the fading effect of the precursive wave, the tremors are maximum 

at the position of the wave shown top in Fig. 15. Thus, the maximum error in 

the results may be ten percent at most. 

The circumferential stress-time history of the boundary at 8=45° is shown in 

Fig. 16, where time t is taken to be zero at the moment at which the wave front 

arrives at the left boundary of the cavity. The small fluctuations due to the 

approximation of the step-form wave and the precursion wave are eliminated by 

a simple observation. The transient stress concentration increases with an increase 

of the nondimensional time passed up to about 5.2 at time t=2.5, whereas it is 

4.0 in the static case. 

Stress concentration at the point 8=45°, due to any form of traveling trans

verse waves, may also be obtained by the Duhamel integral procedure as in the 

case of longitudinal waves mentioned in the previous section. 

4. 3 Transient stresses around a cavity of arbitrary shape 

The most important merit of the present method over other semi-analytical 

-----·---~-~---------~I 

i 

-3.0c---

C2t 

2a 
Fig. 16 Circumferential stress-time history at a point 6=45° on the boundary 

of the cavity due to transverse step-form wave. Time t is taken zero 
at the instant at which the wave front arrives at the left boundary. 



An Analysis of Transient Stresses Produced around Cavities of 
Arbitrary Shape during the Passage of Traveling Waves 45 

methods is that it is applicable to any problem with a boundary of arbitrary 

shape with equal ease. As a typical example, transient stresses on the boundary 

of a horseshoe-shaped cavity during the passage of a longitudinal step-form pulse 

traveling in a horizontal direction have been analysed, and are shown in Fig. 17. 

O'a 
(JO 2.0 1----------JII--H+-

1.0 

0 l,'--',-!~H--1m.-!l-----\cc.--l""-'-",± 

25~---+----,13 11· 4 I 46 43 37 31 
-1.0•· ~ 

25 

-3.0 r-----t-t----+---+----t--+--+------+-----,f---~ 

Fig. 17 Transient circumferential stresses on the boundary of the horseshoe-shaped 
cavity due to a traveling longitudinal step--form wave, corresponding to 
the indicated positions of wave front. 

It is observed that high stress concentration occurs at the rounded toe corners 

with a small radius, and also at the crown of the arch section. However, the 

transient stress concsntration is not so high as compared with that of the static 

case obtained elsewhere9). 

The more complicated problems may be similarly treated with ease, although 

it is recommended to check the accuracy by comparing the results obtained by 

selecting several different auxiliary boundaries and boundary points as well. 

5. Concluding remarks 

The validity and the availability of the present integral equation method for 

a transient analysis of stresses during the passage of traveling waves may be 

confirmed by several examples. 

Although there remain some ambiguities about the estimation of errors in the 

numerical procedures, the present method may be advantageously applied to tran-



46 Yoshiji NIWA, Shoichi KOBAYASHI and Noriaki AzuMA 

sient problems, specifically with a boundary of arbitrary shape and accompanied 

with arbitrary-formed traveling waves. 
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