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Abstract 

Recently, problems of decision making process have been discussed in many 
fields, and in particular, several mathematical approaches have been proposed for 
economic problems. 

Decision making for management contains many complex situations and has 
theoretically unsolved problems. However, there are effective approaches for some 
problems. 

One approach is a sequential decision analysis by a decision tree. This ap­
proach is often used because the analysis is applicable even if the decision stages 
are mutually dependent on each other or are subject to certain constraints. 

On the other hand, it is known that a sequential analysis by the statistical 
decision theory can be used for problems of decision making even under uncertain 
information. 

This paper investigates a truncated sequential game, an N-truncated se­
quential analysis. 

1. Introduction 

One kind of specialization of two-person games leads to a class of games 

known as statistical games. In these statistical games, the two players will be 

referred to as nature and the statistician. In statistical games, nature cannot be 

considered as a conscious opponent who can take advantage of mistakes made 

by the statistician. The statistician has at his disposal a class A of possible 

actions which he can take in the face of the unknown state of nature w. If he 

decides to take an action without experimentation, we assume that he incurs a 

numerical loss L(w, a), a known function of the state w and the action a which 

he selects from A. 
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The possibility of "spying" on the opponent by performing experiments is a 

distinguishing characteristic of all statistical games. The possibility of perform­

ing experiments and thus reducing the loss by gaining at least partial information 

about w is open to the statistician. He must decide which experiments he is to 

perform, in what sequence he is to perform them, when he is to terminate ex­

perimentation, and what action he is to take once experimentation is terminated. 

What prevents the statistician from getting a full knowledge of w by unlimited 

experimentation is the cost of the experiments. 

At each stage he can choose one of two sampling methods as a subexperi­

ment. A different sampling method has a different sampling cost. The total num­

ber of possible subexperiments does not exceed a certain preassigned integer N. 

The N-truncated sequential game described above can also be considered as an 

N-truncated sequential sampling plan. 

2. Formulation of N-Truncated Sequential Sampling Plan 

An N-truncated sequential sampling plan is a procedure by which a decision 

is made as to whether a sampling is to be continued or not; and a terminal 

decision is made when the sampling is truncated. Let us define the state space 

!J= (wi, w2,···, wm) and the decision space A= (ai, a2, ···, an), where wi is the index 

of state i and ai is a terminal action. 

Next, the following loss function or opportunity loss is introduced; 

L(wi, a1) = max Wtk-Wt;, 
k 

i=l, 2, ···, m 

j=l,2,··•,n 

(1) 

where w0 is the payoff if nature is in state i and the statistician's decision is 

j. An optimal solution is a solution which minimizes the total expectation of 

losses. Let E be the space of a priori probability distributions on tJ. Then E 

can be respresented as an (m-1) dimensional simplex with point, 

~t>O for all i and t~t = 1. 
i-1 

(2) 

It is assumed that two sampling methods can be used. One sampling method 

is to observe !Yl, which has a probability distribution fw(Y), with a cost C1• 

The other is to observe {Zl, which has a probability distribution /w(Z), with a 

cost C2• This paper treats only discrete probability distributions. 

Assumptions 

1. Sampling cost is C1 or C2 for each of the observations of !Yl or {Zl, 
respectively. Only one of two observations is permitted at each stage. 
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2. Sampling is truncated within N stages. 

3. When sampling is truncated before the N-th stage, a terminal action 

should be made. 

4. Probability distribution at each stage of the same sampling is mutually 

independently and identically distributed 

Let us define the observation vector x(N) = (x1, x2, ... , xN), where x1 re­

presents the i-th observation, that is 

y: observation of !Yl 
z : observation of [Zl 

Now x(N) is considered to be a point in N-product space SJ,,(N) =SJ,, x ... x 
SJ,, where SJ,,=SJ11 or SJ,,=SJ., and SJ 11 consists of all observation values of {Yj and 

SJ, consists of those of {Zl . 
Further, x(j) represents the observation vector whose first j elements assume 

observation values, and the remaining (N -j) elements are arbitrary. 

Terminal action aEA is written as terminal decision function d of j and x; 

a=d(j, x), (3) 

where 

d (j, x) =d (j, x') if and only if x, x'ESJ,, and x1=x/ for i=l, 2, ... , j. 

d (j, x) is an action, using the information Xi, x2, ... , x1• Let D be a set of terminal 

decision functions d. 

Definition Let ~ be a class of partitions for an N-product space SJ,,. If SN 

E:~. then SN= (SoN, S1N, ... , SNN). When x, x'ESJ,, and Xt=X/ for i=l, 2, ... , j, 

then xESiN if and only if x'ESJN· That is, each SJN is a cylinder set. 

An element (SN, d) of ~ xD determines a sequential sampling plan. The sets 

SJN of SN are sometimes referred to as "stopping regions". 

Let us introduce other elements of decision process : 

C1 (x) =sum of costs for sampling Xi, x2, ... , x1, 

P.,(x)=probability of x when nature is in state w, 

p(w, SN, d) =risk when nature is in state w and we use (SN, d), 

If a priori probability distribution on SJ is given by t then 

p(~, SN, d) =~p(w, SN, d)~(w) 
'" 

(4) 
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E1e(h)=conditional expectation of bounded function h on .Qx.Q:r, when x1, 

.x2, ... , .x1 are given. 

For any .x, the value of E 1<(h) at x is 

P,(.x) = ~P .. (x)Hw), (6) ., 

if w has distribution e and .x has distribution P., for fixed w. F1(x) is a set of 
points, the first j elements of which have the same elements as those of x. 
Therefore, 

and 

By using these equalities, 

N 

p(e,sN,d)=~ ~ CC,(x)+EJ<CL(w,d(j,x))JJP,(w). 
j-0:xESJl', 

Some definitions are introduced in the following: 

'<J(X, a) =EJ<CL(w, a)J= ~e,(w)L(w, a), ., 

where 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Now, an optimal SN* of N-TSSP for a given a priori probability distribution 

e is constructed. 
At first, a posteriori probability distribution on .Q, under the condition that 

the observation of .x(j) is made, is derived by Bayes' Theorem, 

(14) 

It is noted that 
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if Q,,i=!J-i, 

if Q,,1=!2,1 for each i. 
(15) 

Then, it is shown that 

N j 

P,. (x(j)) = ~ TI q,. (x1) = TI q,. (xl) 
Xj+t.·",XNi-1 z"-1 

(16) 

Pe(x(j)) = ~f;(w)P w (x(j)) = ~f;(w) TI Qw(X1). (17) 
en w i-1 

Among the j elements of x(j), m elements are given by the observation of !Yl 
and (j-m) are by !ZJ, Therefore, 

and if X1=Z1, 

f,. (Y1)f;1-mm-l (w) 
~f,.(Y1)!;1-mm-l (w) 

(18) 

(19) 

In any case, f;1 can be expressed by T x;e1-i, i.e., by f;1_1 and x1. The a 

posteriori probability distribution f;1 becomes the a priori distribution for the 

next observation. 

Remarks Let h be a real-valued and bounded function on E; and for any 

j and fixed f;1E.E let 

(20) 

and 

ExCh(T xt;)J=~~f;(w)h(T ,,f;)q,.(x). (21) 
X w 

Now, the conditional expected value of f;H1, given x1, x2, •··, x1 is written as 

E1Ch(T Xj+1e1)J= ~ ~Mw)h(Tx1+1e1)Qw(XJ+1) 0 (22) 
Xj+1 ltJ 

This expression can be derived from the definition of symbol E 1 and the fact 

that x/s are independent of each other. Since the x/s are also identically dis­

tributed, the above equation shows that, if f;1=f; and xi+l =X, then 
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E1Ch(Tx;+,e1)J=E1Ch(Txe)J. (23) 
X 

The following notation is used below: 

E1Ch(T ,J1)J=E1Ch(T ,,e1)J. (24) 
X 

3. Theorem and its Proof 

Theorem There exists an optimal solution SN*= (SoN*, S1N*, •··, SNN*) for 

N-TSSP, given a priori probability distribution e. 
And the Bayes risk is given as follows : 

PN*W =min (cp(e), C1+ECPN-1*(T11e)J, C2+E(PN-1*(T.e)JJ, (25) 
y • 

where 

SN* is a partition of N-product space SJ,,. 

Proof Proof consists of two parts. 

(IJ Construction of SN*. 

Functions ho, h1, •··, hN on E are defined as follows: 

hoW =c/J<e) =min~e(w)L(w, a), 
aEAw 

and by induction on j, j=l, 2, •··, N, 

h1(e)_min(cf;(e), C1 +ECh1-1 (T 11e)J, C2+ECh1-1 (Ti)JJ. 
y • 

Let 

where 

m1=the number of observations of !Yl, 
j-m1=the number of observations of !Zl. 

And by induction backward 

Finally, the following notations are introduced 

It is noted that 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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={ C1(mN-l +l) +C2(N-mN-1-l) +ho(T11eN-1) =CiNN11 (eN-1) 

CimN-1 +C2(N -mN-1) +ho(T ,eN-1) =CiNN' (eN-1)' (32) 

CiN-1' N=CiN-1, N(eN-1) =min(U N-1, EN-! (eNN11), EN-! (eNN') J 
1/ ' 

=C1mN-! +C2(N-l-mN-1) +h1(eN-1) 

={ C1(mN-2+l) +C2(N-l-mN-2-l) +h1(T11eN-2) =CiN-1 11 , N 

C1mN-2+C2(N-I-mN-2) +hi (T.eN-2) =CiN-1', N, (33) 

CiN-j, N=CiN-}, N(eN-J) =min(U N-}, EN-J(CiN-1+111, N), EN-J(CiN-1+1', N)) 
y ' 

=C1mN-1+C2(N-j-mN-1) +h1(eN-j) 

={ C1(mN-J-l +I) +C2~N-j-mN-1-1-l) +h,(T11eN-J-1) =CiN-111, N 

CimN-J-1 +C2(N-J-mN-1-1) +h,(T,eN-J-1) =CiN-J', N (34) 

CioN=C1mo+C2(-mo) +hN(eo) =hN(~o)- (35) 

i) Let us define 

SJN*= !x[aN-cN-r>, N<U, for r<j, a,N=U;l 

where 

= lx[hN-r(e,) <¢(.;,) for r<j, hN-1(e1) =¢(e,) l 

= 1x1e,EEEN-r for r<j, e1EB'N-il' 

B'1= !e[h,(e) =¢(e)}, 

B'111= l.;lh1(e)=C1+E(h;-1(T11.;)Jl, 
y 

B'1,= l.;[h1(.;) =C2+E(h1-1(T,.;)Jl. 
z 

If a,N<U,, then a,N=min(E,(a,+111, NJ, E,(a,.+1', NJJ. 

Therefore, 

where 

y z 

Q,,r+l=SJy 

Q,,r+l=SJy 

if a,N=E,(a,+111, NJ, 
1/ 

if CirN=E,(a,+1', NJ, 

if and only if .;,EB'N-r, 11, 

if and only if .;,EB'N-r, ,. 

ii) StN*nS1N*=</> for any i, j (O<i, j<N, i=t=j) 

(36) 

(37) 

(38) 

(39) 

(40) 

Proof For any P, q (P<q), .;pEEB'N-p for all xESqN*. On the other hand, .;p 



Bayes Procedures for Truncated Sequential Game Identifying 121 
an Alternative of Different Sampling Plans 

E.BN-p for all xE.SpN*• 

Therefore, 

iii) Any point in !J,, belongs to only one of S1N*• 

Proof If x does not belong to any S1N*U<N), then x belongs to SNN*, 

because aNN=U N• 
In consequence of i), ii) and iii), SN* is a partition of !J,,. 

The meaning of each notation is as follows : 

L1(~1) =the risk of optimal terminal action after j observations, 

a1N=the risk of j-th stage assuming that optimal actions are made after the 

j-th stage. 

Therefore, at each stage, if a1N=U1, then the optimal terminal action should 

be made, and if a1N<U1, then a sampling of {YI or !ZI should be used, ac­

cording to a1N=a1NY or a1N•, respectively. 

BN-J represents the stopping region. That is, if at the (j+l)th stage a 

priori probability distribution ~1E.BN-J, then the optimal terminal action should 

be made. 

BN-J, 71 represents the region where !YI should be observed. 

BN-J,. represents the region where !ZI should be observed. 

(II) It is shown in the following that SN* is Bayes' optimal. 

It is sufficient to show that 

where SN is a partition of Q,,. 

PN*(~) is given as follows: 

(41) 

PN*(~) =min(¢(~), C1 +E(PN-1*(T 11~) ), C2+E(PN-1*(T.~) )). (42) 
y • 

If ~o is fixed, then ~, depends on only X1, Xz, ... , x 1• 

Therefore, the following expression can be introduced ; 

for any xE.SJN, 

where aJN(x) as well as U,(~,) =U,(x) mean that they are functions of only Xi, 

Xz, ... , XJ, 

Let SN= (SON, S1N, ... , SNN) be an arbitrary partition of Sl,,, and 

for r=O, 1, •··, N, 

then 
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r-1 

g(r) = ~ ~ a1N(x)P.(x) + ~ a,N(x)P.(x) 
j-0xES1N xETr 

It can be shown that 

where 

E,(a,+i, NJ=min(E,(a,+111, NJ, E,(a,+1', NJJ. 
11 • 

By (43), (47) and definition of aJN, the inequality 

holds with equality if a,N=E,(a,+1, NJ, and does 

for any SN. 

If SN=SN*, then xtf_SJN (j=O, l, •··, r) for xET,+1, and 

arN(x)<Ur(X). 

Therefore 

and 

g(r+l) =g(r). 

The inequality holds 

because 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(51) 

(52) 

(53) 

(54) 
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Therefore, SN* is a Bayes solution with respect to e, and the following holds: 

for N=0,l,2,••·· 

Next, Sk* for k-TSSP is considered. Then, 

It is shown that Sk* is a part of SN*, in the following. 

(56) 

(57) 

Let us consider (N-j0)-TSSP, where (N-j0) observations are permitted 

after the j0 observations. 

A priori probability distribution is e,
0

• The total cost of j0 observations is 

Let 

where 

and 

Then 

U1-1o'=U,-C10=C1m,+C2U-m,) +¢- !C1m,0 +C2Uo-m,0) l 
=C1 (m,-m,0) +Cz(j- jo-m,+m10) +¢ 

=C1m1-1o' +C2U- jo-m1-10') +¢, 

In this case, an optimal solution for (N - j 0)-TSSP can be constructed by 

where 

S,*, N-10= {Xlar, N-10<Ur' for r<j, a,, N-10=U/) . 

JJ.,r+i is decided for r=O, 1, •··, N-j0-l similarly in N-TSSP according to 

ar, N-1=min(Er(ar+1 11 , N-10), Er(ar+1', N-J0)J. 
y z 

Then, SN-J* can be considered as a partition of (N-j0)-product space 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 
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By the following equalities, 

ar+111 , N-Jo(e/) =ar+I• N-Jo(T-ver') =ar+I+Jl, N(er+Jo)-C,o, 

ar+1', N-Jo(e/) =ar+I• N-Jo(T.e/) =ar+l+Jo'• N(er+Jo) -C,o 

can be rewritten as 

(67) 

(68) 

(69) 

r=0,l,•••,N-j0 -l. (70) 

Furthermore, 

akN(ek) =min(Ek(ak+111, N(ek) J, Ek(ak+I·• N(ek) JJ, 
IJ z 

k=jo,jo+l, .. ,,N-1. (71) 

If 

or 

ar, N-Jo=ErCar+111, N-JoJ, 
IJ 

ar, N-10 =ErCar+1', N-J0J, 
• 

for r=O, 1, ... , N-j0 -l, 

then equalities 

or 

hold respectively. 

Therefore, 

and 

akN=Ek(a,,,+111, NJ, 
IJ 

a,,,N=E,,,(ak+1', NJ, 
z 

{r=O 1 ... N-1·0-l 
for ' ' ' 

k=jo,jo+l, ··•,N-1, 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(N - j 0)-dim vector x in (65) can be extended to N-dim by adding fixed (x1, •··, 

x,0) for the first j 0 elements. Denoting this, 

S,*, N-1 0= {xJar, N-,.<Ur' for r<j, a,, N-10=U/l 
= !xlar+Jo• N-C,0<Ur+10 -C,0 for r<jo, ai+Jo• N-C,0 =UJ+10 -C10l 
= !xlar+Jo• N<Ur+Jo for r<j, aJ+Jo• N=U1+1 0l 
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= {.xlar, N<Ur for r<j+jo, al+Jo• N=U1+Jol 

=SJ+J/, N, j=O, 1, •··, N-j0• (78) 

Therefore, 

SN-1/= (So*, N-J0 , S1*, N-J0 , "', SN-J/, N-J0) 

= (S1/, N, S10+1*, N, "', SNN*), 

This shows that Sk* is a part of SN*• 
Hence 

for j=O, l, ... , N, 

and 

(79) 

(80) 

PN*W =min[¢(.;), C1 +ECPN-1*(Tvc;)J, C2+E[PN-1*(T,c;)JJ. (81) 
y z 

This completes the proof of [II). 

Corollary 1. 

Corollary 2. PN*(c;) is a concave function with respect to c;. 

Conclusion 

A special kind of statistical game, an N-truncated sequential game, has been 

investigated where the statistician can choose one of two sampling methods as 

a subexperiment at each stage. 

The existence of an optimal strategy for the statistician, that is, an optimal 

solution SN* for N-TSSP, is proved. Then, given an a priori probability distri­

bution c; on Q, Bayes risk PN*(c;) is derived in the Theorem. 

Further, some properties of Bayes risk are shown in the Corollaries. 
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