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Abstract 

In this paper, the state estimation problem is considered for a class of 
linear systems with state-dependent noise. The optimal nonlinear estimator in 
the mean square sense is first derived on the basis of the Bayesian approach. 
Then a sub-optimal estimator is proposed, in which the estimate is still nonlinear 
in the observation data, and the covariances are obtained recursively using the 
observation data. The case where the state-dependent noise is white is treated 
specifically. Some simulations for this case are made in order to examine the 
practicability of the proposed sub-optimal estimator, and the result is compared 
with that of the linear estimator by McLane. 

1. Introduction 

127 

A recursive minimum variance state estimation procedure for linear stochas­

tic systems was first introduced by Kalman and Bucy1, 2l. Since then, there have 

been numerous papers written on alternative ways of deriving the conditions for 

the optimal estimator and on extensions of the original works. 

The present paper considers the estimator which can be applied to the 

system with state-dependent noise. This kind of system can model either a 

system in which the parameters vary randomly, or a system in which an additive 

stochastic disturbance depends linearly on the state variables. The former is 

found in process control systems while the latter is seen in aerospace systems. 

In these systems, the a posteriori probability density function of the state 

based on observation data becomes non-Gaussian, even though the dynamics and 

the observation mechanism are linear. Therefore, the optimal estimator in the 

mean square sense requires a nonlinear estimation procedure. An approximate 
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method for the state estimation of these systems was discussed by McLane3J. 

He derived a sub-optimal estimator by solving the Wiener-Hopf equation, which 

is the optimal linear operation on the observation data. This approach is ap­

plicable onl.y when the influence of the state-dependent noise is relatively small, 

and the state variable is nearly Gaussian. The present paper proposes a sub­

optimal estimator by an approach different from the above. 

In Section 2, the optimal state estimation problem is formulated with the 

specification of a system. The Bayesian approach4J is then used to derive the 

optimal estimator in Section 3. By treating the a posteriori probability density 

function as a mixture density5l, we show that the best estimate is obtained as 

the weighted mean of estimates, each accompanied by a specified state-dependent 

noise sequence. This procedure, while it is optimal, is not a realistic procedure, 

since it requires evergrowing computational labor. Therefore, we propose a sub­

optimal estimator based on a certain assumption, which will be given in Section 

4. In Section 5, the sub-optimal estimator is derived for the case where the 

state-dependent noise is white. In Section 6, some simulations are made to show 

the practicability of the sub-optimal estimator. Concluding remarks are given in 

Section 7. 

2. Problem Statement 

The system is characterized by the equations 

x(t+l) =A(t)x(t) +B(t, 17(t))x(t) +u(t) 

y(t) =C(t)x(t) +D(t, e(t))x(t) +v(t) t=O, 1, 2, ··· 

(2.1) 

(2. 2) 

where x(t) is an n-dimensional state vector; y(t) is a p-dimensional observation 

vector ; A (t) is a known n x n matrix; C (t) is a known p x n matrix; and u (t) 

and v(t) are additive white Gaussian noises with zero means and covariances 

Q(t) and R(t), respectively. The state-dependent noises are denoted by 17(t) and 

Ht), and 17(t) influences the dynamics through an nxn matrix, 

(2. 3) 

and e (t) influences the observation mechanism through a p x n matrix, 

(2.4) 

where m and l are dimensions of 17(t) and e(t) respectively; r;1(t) and e1(t) are 

the i-th components of r;(t) and e(t) respectively; B1(t) (i= 1, 2, •··, m) is a 

known nxn matrix; and D;(t) (i=l,2, •··,/) is a known pxn matrix. These 
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state-dependent noises are Markov chains with transition probability density 

functions p(r;(t) lr;(t-1)) and p(e(t) IHt-1)), and with initial probability density 

functions p(r;(O)) and p(e(O)). The noises r;(•) and H·) may be distributed in 

any form, but their covariances must be bounded. The initial state x(O) is a 

Gaussian random vector with the mean x(O) and the covariance F(O). The noise 

sequences {u(t)J, [v(t)j, lr;(t)j, l~(t)J, and the initial state x(O) are assumed 

to be mutually independent. 

The problem to be considered in this paper is the derivation of the estimate 

x(t) which minimizes the conditional expectation, 

E {(x(t)-x(t)J'M(x(t)-x(t)JJY(t)l 

based on the accumulated observation data, 

Y(t)~ {y(O), .. ,,y(t)l. 

(2. 5) 

(2.6) 

Here Mis a positive definite symmetric matrix, E HY(t)l denotes the condi­

tional expectation given Y (t), and the prime denotes the transpose of a vector 

or a matrix. 

3. The Optimal Estimator 

It is well known that the best estimate which minimizes the conditional 

expectation (2.5) is given by 

x(t) = )x(t)p(x(t) JY (t) )dx(t). 

Define the sequence of the state-dependent noise by 

S(t) ~ [s(O), ... , s(t)] 

(3. 1) 

(3.2) 

where s(t) is the index of the distribution, and r;(t-1) and~(t) are its samples, 

i.e., 

s(t) ~ lr;(t-1), ~Ct) l . 

Using definition (3.2), the probability density function in eq. (3.1) can be des­

cribed as the mixture density5l, 

p(x(t) iY (t)) = )P(S(t) iY (t) )p(x(t) iS(t), Y (t) )dS(t). (3. 3) 

According to Bayes' estimation theory, we have 

p(x(t) iS(t), Y(t))~N lx(tiS(t)), F(tlS(t))l * (3.4) 

* p (:x) ~N Im, Rl denotes the Gaussian distribution 

p(:x) s= (21r)-Cni2)1R1-om exp{-+cx-m)' R-1 (:x-m)} 
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where we define 

x(t[S(t))@.E {x(t) [S(t), Y(t)l 

.P(t[S(t))@. cov {x(t) [S(t), Y (t) l . 

Since the state-dependent noise sequence S(t) is fixed, the system described by 

eqs. (2.1) and (2.2) becomes an ordinary linear system with additive noises and 

its estimation formulae are exactly the same as those of a Kalman filterll : 

x(t[S(t))=x(t[S(t)) +I'(t[S(t))(y(t)- {C(t) +D(t, e(t)Jl x(t[S(t))J (3.5) 

F(t[S(t)) =F(t[S(t))-I'(t[S(t)) {C(t) +DCt, e(t)Jl P(t[S(t)) (3.6) 

I'(t[S(t)) =F(t[S(t)) !C(t) +D(t, e(t)Jl' 

x C {C(t) +DCt, e(t) Jl F(t[S(t)) !C(t) +D(t, e(t)Jl '+R(t)J-1 (3. 7) 

x(t+l[S(t+l)) = !A(t) +B(t, r;(t)Jl .x(t[S(t)) (3.8) 

P(t + 1 [S(t + 1)) = !A(t) +Bet, r;(t) Jl F(t[S(t)) !A(t) +Bet, r;(t) Jl '+Q(t) (3. 9) 

where x(t[S(t)) and F(t[S(t)) are defined by 

x(t[S(t))@E [x(t) [S(t), Y(t-l)l 

P(t[S(t))@.cov [x(t) [S(t), Y(t-l)l. 

Using Bayes' rule, the probability density function p(S (t) [Y (t)) is transform­

ed to 

p(S(t) !Y(t)) = p(S(t) [Y(t-l))p(y(t)[S(t), Y(t-1)) . (3_ lO) 

} p(S (t) [Y (t-1) )p(y(t) [S(t), Y (t-1) )dS(t) 

From eq. (2.2), p(y(t)[S(t), Y(t-1)) is Gaussian of the form, 

p(y(t) [S(t), Y(t-1)) ~N ! !C(t) +D(t, e(t)Jl x(t[S(t)), 

!C(t) +D(t, e(t) Jl F(t[S(t)) !C(t) +D(t, e(t) Jl '+R(t) J . (3.11) 

The Markov property of !s(t)l yields 

p(S(t) [Y (t-1)) = p(s(t) [s(t-1) )p(S(t-1) JY (t-1)). (3.12) 

Therefore eqs. (3.10) and (3.12) give a recursive relation for p(S (t) JY (t)). 

By treating the a posteriori probability density function p(x(t) [Y (t)) as the 

mixture density given by eq. (3.3), the best estimate is obtained as the weighted 

mean of estimates, each containing a specified state-dependent noise sequence. 

It is obvious from eqs. (3.3) and (3.10), however, that these equations require 

evergrowing computational labor for the numerical integration. Therefore, the 

algorithm derived in this section, while it is optimal, is not a realistic procedure. 
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4. Derivation of a Sub-optimal Estimator 

Avoiding the computational difficulty, a sub-optimal estimator is proposed. 

It is based on the assumption that the probability density function of x(t) given 

Y(t-1) and s(t) is Gaussian, i.e., 

where we define 

p(x(t) 1s(t), Y (t-1)) ~N !i(tls(t)), .P(tls(t)) l 

x(tls(t)) ~E !x(t) ls(t), Y (t-1)] 

.P(tls(t)) ~ cov !x(t) ls(t), Y (t-1)] . 

(4. 1) 

Using assumption (4.1), the amount of computation will be constant with respect 

to time t. The probability density functionp(x(t)IY(t)) can be transformed into, 

p(x(t) iY(t)) = ~p(s(t) IY(t))p(x(t) ls(t), Y(t))ds(t). (4.2) 

Bayes' formula provides 

PC (t) I (t) Y(t)) _p(y(t) 1s(t), x(t))p(x(t) ls(t), Y(t-1)) 
x s ' - p(y(t) ls(t), Y(t-1)) (4.3) 

Now, the probability density functions in the right hand side of eq. (.4.3) will 

be examined. First, p(x(t)ls(t), Y(t-1)) is Gaussian according to eq. (4.1). 

From observation equation (2.2), p(y(t) ls(t), x(t)) becomes Gaussian of the form, 

p(y(t) 1s(t), x(t)) ~N !!C(t) +D(t, ~(t) Jl x(t), R(t) l . (4. 4) 

Furthermore, from eqs. (2.2) and (4.1), p(y(t) ls(t), Y(t-1)) becomes Gaussian 

with the mean, 

!C(t) +D(t, ~(t) Jl x(tls(t)), 

and the covariance, 

!C(t) +D(t, ~(t) Jl .P(tls(t)) !C(t) +D(t, ~(t) Jl '+R(t). 

Let us define 

x(tls(t)) ~E !x(t) ls(t), Y (t) l 

F(tls(t))~cov!x(t)ls(t), Y(t)]. 

(4.5a) 

(4.5b) 

Substituting eqs. (4.4) and (4.5) into eq. (4.3), and using the assumption (4.1), 

p(x(t) ls(t), Y (t)) can be shown to be Gaussian of the form, 

p(x(t) 1s(t), Y Ct)) ~N !x(tls(t)), F(tls(t)) J 

where 
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.x(tls(t)) =x(tjs(t)) +I'(tjs(t))Cy(t)- {C(t) +D(t, e(t)Jl x(tjs(t))J, (4.6) 

F(tls(t)) =.P(tjs(t))-I'(tjs(t)) {C(t) +D(t, e(t)Jl P(tjs(t)), (4. 7) 

and where 

I'(tjs(t)) =.P(tjs(t)) {C(t) +DCt, ,et)Jl' 

X C{C(t) +D(t, Ht) Jl P(tjs(t)) {C(t) +D(t, e(t)Jl / +R(t)J-1• (4. 8) 

Using Bayes' rule, the probability density function p(s(t) jY (t)) in eq. (4.2) be­

comes 

P(s(t) jY(t)) = p(y(t) js(t), Y(t-l))p(s(t) jY(t-1)) . . (4_9) 

~ p(y(t) js(t), Y (t-1) )P(s(t) jY (t-1) )ds(t) 

where p(y(t)js(t), Y(t-1)) is given by eq. (4.5); and from the Markov property 

of {s(t)l, p(s(t)jY(t-1)) can be described as 

p(s(t) jY (t-1)) =) p(s(t) js(t-1) )p(s(t-1) jY (t-1) )ds(t-1). (4.10) 

Substituting eq. (4.10) into eq. (4.9), it becomes 

p(s(t) jY(t)) 

p(y(t) js(t), Y (t-1)) )P(s(t) js(t-1) )p(s(t-1) jY (t-1) )ds(t-1) 

)P(y(t) js(t), Y (t-1)) )P(s(t) js(t-1) )p(s(t-1) jY (t-1) )ds(t-I)ds(t) · 

(4.11) 

Eq. (4.11) gives the recursive formula for the calculation of p(s(t) jY (t)). 

In order to make use of eqs. (4.6), (4.7) and (4.8) as recursive formulae to 

obtain .x(tjs(t)) and F(tjs(t)), it is necessary to have equations for the one­

step-ahead predicted mean and covariance. Let us consider the probability density 

function p(x(t+l)js(t+l), Y(t)). From the system equation (2.1), we have 

where 

x(t+lls(t+l)) = {A(t) +Bet, 7J(t)Jl .x(tjs(t+l)) (4.12) 

.P(t+ljs(t+l)) = {A(t) +B(t, 7J(t)Jl 

xP(tjs(t+l)) !A(t) +B(t, 1J(t)Jl '+Q(t), (4.13) 

.x(tjs(t+l))@E {x(t) js(t+l), Y(t)l 

F(tjs(t+l))@cov {x(t) js(t+l), Y(t)}. 

Now, the formulae for the calculation of .x(tjs(t+l)) and F(tjs(t+l)) should be 
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obtained. Applying Bayes' rule, .x(tls(t+l)) can be obtained* from .x(tls(t)) by 

.x(tls(t+l)) = ).x(tls(t)) P(s(t) IY(t))P(s(t+l) ls(t)) ds(t). 
)P(s(t) !Y(t))p(s(t+l) ls(t))ds(t) 

(4.14) 

The conditional covariance F(tls(t+l)) can be obtained* from F(tls(t)) by 

P(tls(t + 1)) =) !F(tls(t)) + C.xCtls(t)) -x(tls(t+ 1)) J 

x (.x(tls(t)) - .x(tls(t+ 1)) J'l p(s(t) ls(t+ 1), Y (t) )ds(t) (4.15) 

where 

p(s(t) ls(t+l), Y(t)) 
P(s(t) IY Ct) )P(s(t+ 1) 1s(t)) 

~p(s(t) !Y(t))P(s(t+l) ls(t))ds(t) · 
(4.16) 

Eqs. (4.6) ~ (4.8) and (4.12) ~ (4.16) provide the formula for deriving .x(t[s(t)). 

The probability density function p(s(t) iY (t)) can be obtained from eqs. (4.5) 

and (4.11). Therefore, with the initial conditions, 

x(Ols(O)) =X(O), P(Ols(O)) =F(O), p(s(O) !Y(-1)) =P(s(O)), 

and given the transition probability density function p(s(t) ls(t-1)), the sub-

I I I 
I I I 

r_L_LJ._, 
I I r--
1 I I 

r __ ,!(_j,_j, __ ~ 

1x(t-1 ls(H)} 
I I 
l_ --- --,-

1p(s(l-l)IY(t·1l>i 
1,_ - -- _ _, 

I I 
_t_ ___ J~ 

: x(t- 1l: 
~------1 

I 
' ' , ___ _!l. ___ , 

iP(Hls(H)~ 
'------- _J 

x(t-11s(I)) f----'1'-------, 

P(Hls(tl) 
x(tls(I)) 1---~ 

~(I Is(!)) 

Fig. 1. The sequential structure of the estimator proposed in Section 4. 

* For derivation, see Appendix. 
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optimal estimate can be obtained using the following equation, 

x(t) = )x(tls(t) )P(s(t) IY(t) )ds(t). (4.17) 

The sequential structure of the sub-optimal estimator is illustrated in Fig. 1. 

5. The Sub-optimal Estimator when the State-dependent Noise is White 

When the state-dependent noise is white, the sub-optimal estimation algori­

thm can be simplified. Eqs. (4.6), (4.7) and (4.8) are same, but the remaining 

formulae in the previous section can be simplified. 

Let s (t) be white. As the sequence {s (t) l is an independent process, eq. 

(4.10) becomes 

p(s (t) IY (t-1)) = p(s(t)). 

Therefore eq. (4.9) can be described by 

p(s(t) !Y(t)) = p(s(t))p(y(t) ls(t), Y(t-1)) . 

)P(s(t) )p(y(t) ls(t), Y (t-1) )ds(t) 

From eq. (4.16), 

p(x(t) ls(t+l), Y(t)) =P(x(t) [Y(t)), 

and 

x(tls(t+l)) =x(t). 

Therefore eq. (4.12) becomes 

x(t+l ls(t + 1)) = !A(t) +B(t, 7}(t) Jl x(t). 

Also, from eqs. (5.3) and (5.4), we have 

.P(tls(t+l)) =F(t). 

The covariance F(t) is obtained from 

F(t) =) !F(tls(t)) + Cx(tls(t)) -x(t) JCx(tls(t)) -x(t) J'l p(s(t) iY (t)) ds(t). 

(5.1) 

(5.2) 

(5. 3) 

(5.4) 

(5.5) 

(5.6) 

(5. 7) 

Finally, eq. (4.13) can be written as 

P(t+lls(t+l)) = !A(t) +B(t, 7J(t) Jl F(t) !A(t) +B(t, 1J(t)Jl '+Q(t). (5. 8) 

Therefore, eqs. (4.6)~(4.8), (4.17), (5.2), (5.5), (5.7) and (5.8), with the 

initial conditions, 
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x(O[s(O)) =x(O), F(O[s(O)) =F(O), 

and given the probability density function p(s(t)), complete the estimation 

algorithm. The sequential structure of the estimator derived in this section is 

illustrated in Fig. 2. 

6. Simulations of the Sub-optimal Estimator 

Simulation results are shown here in order to examine the practicability of 

the proposed sub-optimal estimation algorithm, and to compare the performance 

of the proposed estimator with that of the linear estimator proposed by McLane3l. 

Consider the following time-invariant scalar system 

x(t+l) =Ca+b1J(t)Jx(t) +u(t) 

y(t) =Cc+d~(t)Jx(t) +v(t). 

(6.1) 

(6.2) 

For the comparison of the simulations with those of the linear estimator given 

by McLane, we treat the cases where the state-dependent noises are white Gaus­

sian. Let 1J(t) and ~(t) be white Gaussian with zero means and covariances S1 

and S2, respectively. 

Digital simulations are carried out in two cases, (1) and (2). (1) is the 

case when the state-dependent noise is influencing the system dynamics only, 

and (2) is the case when the state-dependent noise is influencing the observation 

mechanism only. For case (1), the following set of numerical values is chosen: 

I 

' 
~ _ _t ___ r:_-~ I I I 

: i(t-1) :..------------------, : : : 
L____ _ __ J /LLLt, 

: PCt-ll: 
' ' --- ---.l i(tls(t)) 

'i(tls(t)) 

V 
Fig. 2. The sequential structure of the estimator when the state­

dependent noise is white (Section 5). 
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50 
X(0)• 31.0 

--x<t> 
-o-x*<t> 
--X(t) 

STAGE 
Fig. 3. Sample paths of x(t), x*(t) and x(t) for case (1). 
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--o-x*co 
--X(t) 

20 
STAGE 

30 

Fig. 4. Sample paths of x(t), x*(t) and x(t) for case (2). 
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Fig. 5. Performance indices /(t) and /*(t) for case (1). 
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30 

Fig. 6. Performance indices /(t) and f*(t) for case (2). 
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a=0.98, b=l, c=l, d=0, 

Q(t)=Q=l.0, R(t)=R=25.0, S 1=0.2, 

.x(0) =15, .P(0) =50. 

For case (2), the following set of numerical values is chosen : 

a=0.98, b=0, c=l, d=l, 

Q(t) =Q=4.0, R(t) =R=25.0, S2=25.0, 

.x(0) =10, .P(0) =50. 

The initial value of the state x(0) is sampled randomly at each experiment from 

the population with N {30,5} for case (1), and with N {30,2} for case (2). Figs. 

3 and 4 display the sample paths of the estimate x(t) by the proposed algorithm, 

together with the estimate x*(t) due to the linear estimator3>, and the actual 

state value x(t). The performance of the two estimators is compared on the 

basis of the N sample root mean squares defined by 

(6. 3) 

{ 
1 N } 1/2 

J*(t)@ N~?(t)-x*(t)J2 ct> (6. 4) 

Here, J (t) and ]*(t) are the performance indices of the proposed estimator and 

the linear estimator3> respectively, and the subscript i indicates the number of 

the simulation run. A total of 25 runs (N=25) with different noise samples are 

made in each Monte Carlo run. The results are shown in Figs. 5 and 6. 

Although the justification of the assumption (4.1) has not yet been made, 

we can observe from Figs. 3 through 6 that the proposed estimator gives an 

improvement over the linear estimator given by McLane. 

7. Conclusion 

The estimation problem for the linear discrete-time systems with a state-de­

pendent noise was considered. We have shown that the best estimate in the mean 

square sense is obtained as the weighted mean of estimates, each of which is 

accompanied by a specified state-dependent noise sequence. As the optimal es­

timator is not realistic from a practical point of view, we then have proposed an 

approximate method. The sub-optimal estimation algorithm has been derived by 

the same approach taken for the derivation of the optimal estimator. Therefore, 

the sub-optimal estimate is still nonlinear in the observation data, and the co­

variances should be obtained recursively using the observation data. Although 

the justification of the assumption (4,1) has not yet been made, the simulation 
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studies demonstrate the practicability of the proposed sub-optimal estimator. 
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Appendix: Derivation of eqs. (4.14) and (4.15) 

It is obvious that 

p(x(t) [s(t+l), Y(t)) = )P(x(t) [s(t), Y(t))p(s(t) [s(t+l), Y(t))ds(t). (A. l) 

Applying Bayes' rule again to p(s(t) [s(t+l), Y(t)), we have 

p(x(t) [s(t+l), Y(t)) 

=)P(x(t)[s(t), Y(t)) P(s(t)[Y(t))P(s(t+l)Js(t)) ds(t). (A.2) 
)P(s(t) JY (t)) p(s(t + 1) [s(t) )ds (t) 

From this, 

.x(t[s(t+l)) = ),X(tJs(t)) p(s(t) JY(t))p(s(t+l) Js(t)) ds(t). (A.3) 
)P(s(t) [Y(t))p(s(t+l) [s(t))ds(t) 

This is eq. (4.14). By the definition of the conditional covariance, 

.P(tJs(t + 1)) =) (x(t) -.x(tJs(t+l)) J(x(t) -x(tls(t +l)) J' 

xp(x(t)!s(t+l), Y(t))dx(t). (A.4) 

Substituting eq. (A.I) into eq. (A.4), we have 

.P(tJs(t+l)) = )P(t)p(s(t) Js(t+l), Y(t))ds(t) (A.5) 

where 

P(t) =) (x(t) - .x(tJs(t +l)) J(x(t) -x(tls (t + 1)) J' 
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xp(x(t) ls(t), Y(t))dx(t), 

which can be transformed to 

P(t) = ~(x(t) -x(tls(t) ))(x(t) - x(tls (t)) J'p(x(t) ls(t), Y (t)) dx(t) 

(A.6) 

+(x(tls(t+l))-x(tls(t))J(x(tjs(t+l))-x(tjs(t))J'. (A. 7) 

Eqs. (A.5) and (A.7) construct eq. (4.15). 


